organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(2,4-di­methyl­benzyl­­idene)cyclo­hexa­none

aUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 17 May 2010; accepted 19 May 2010; online 22 May 2010)

In the crystal structure of the title compound, C24H6O, the mol­ecule exhibits point symmetry m but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face inter­actions between the 2,4-dimethyl­benzyl­idene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings.

Related literature

For related structures, see: Guo et al. (2008[Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.]); Jia et al. (1989[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285-289.]); Liu (2009[Liu, D. (2009). Acta Cryst. E65, o694.]); Ompraba et al. (2003[Ompraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol. 38, 822-828.]); Shi et al. (2008[Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.]); Zhang et al. (2005[Zhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem. 7, 683-686.]); Zhou (2007[Zhou, L.-Y. (2007). Acta Cryst. E63, o3113.]). For quanti­fication of the mol­ecular point symmetry, see: Pilati & Forni (1998[Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503-504.], 2000[Pilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26O

  • Mr = 330.45

  • Monoclinic, P 21 /c

  • a = 6.9784 (4) Å

  • b = 19.2540 (12) Å

  • c = 14.2829 (10) Å

  • β = 102.179 (3)°

  • V = 1875.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.60 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.986

  • 32106 measured reflections

  • 3565 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.08

  • 3565 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
C—H⋯π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg1i 0.98 3.00 3.532 (1) 154
C17—H17CCg1ii 0.98 2.62 3.469 (1) 111
C27—H27BCg2iii 0.98 2.64 3.486 (1) 145
C27—H27CCg2iv 0.98 2.80 3.510 (1) 130
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.

We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.

The molecular point symmetry m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.

Related literature top

For related structures, see: Guo et al. (2008); Jia et al. (1989); Liu (2009); Ompraba et al. (2003); Shi et al. (2008); Zhang et al. (2005); Zhou (2007). For quantification of the molecular point symmetry, see: Pilati & Forni (1998, 2000).

Experimental top

2,4-Dimethylbenzaldehyde (2.8 ml, 0.02 mol), cyclohexanone (1.0 ml, 0.01 mol) and 30% NaOH(aq) (1 ml) were stirred in ethanol (3 ml) at room temperature for 6 h. The yellow product was filtered and washed using EtOH (3 × 2 ml). Crystals were obtained by slow evaporation from acetone under ambient conditions.

Refinement top

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). Methyl groups were allowed to rotate about their local threefold axes.

Structure description top

We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.

We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.

The molecular point symmetry m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.

For related structures, see: Guo et al. (2008); Jia et al. (1989); Liu (2009); Ompraba et al. (2003); Shi et al. (2008); Zhang et al. (2005); Zhou (2007). For quantification of the molecular point symmetry, see: Pilati & Forni (1998, 2000).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular unit showing displacement ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Face-to-face interactions between the 2,4-dimethylbenzylidene substituents, with C(methyl)···centroid interactions highlighted.
2,6-Bis(2,4-dimethylbenzylidene)cyclohexanone top
Crystal data top
C24H26OF(000) = 712
Mr = 330.45Dx = 1.170 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5996 reflections
a = 6.9784 (4) Åθ = 2.6–24.5°
b = 19.2540 (12) ŵ = 0.07 mm1
c = 14.2829 (10) ÅT = 120 K
β = 102.179 (3)°Needle, yellow
V = 1875.9 (2) Å30.60 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
3565 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scansθmax = 25.8°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.895, Tmax = 0.986k = 1923
32106 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.133P]
where P = (Fo2 + 2Fc2)/3
3565 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H26OV = 1875.9 (2) Å3
Mr = 330.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9784 (4) ŵ = 0.07 mm1
b = 19.2540 (12) ÅT = 120 K
c = 14.2829 (10) Å0.60 × 0.20 × 0.20 mm
β = 102.179 (3)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2399 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.986Rint = 0.042
32106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
3565 reflectionsΔρmin = 0.22 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0853 (2)0.39396 (5)0.26683 (9)0.0545 (4)
C10.1796 (2)0.39689 (7)0.20350 (11)0.0297 (4)
C20.2281 (2)0.46589 (7)0.16524 (10)0.0243 (3)
C30.3539 (2)0.46722 (7)0.09156 (10)0.0250 (4)
H3A0.43240.51050.09890.030*
H3B0.26870.46730.02670.030*
C40.4907 (2)0.40496 (7)0.10168 (11)0.0274 (4)
H4A0.57270.40740.05310.033*
H4B0.57850.40510.16590.033*
C50.3697 (2)0.33903 (7)0.08813 (10)0.0246 (4)
H5A0.28360.33910.02340.030*
H5B0.45830.29850.09240.030*
C60.24585 (19)0.33209 (7)0.16204 (10)0.0226 (3)
C100.1637 (2)0.52272 (7)0.20284 (10)0.0243 (4)
H10A0.09270.51490.25180.029*
C110.18876 (19)0.59566 (7)0.17793 (10)0.0205 (3)
C120.23238 (18)0.64565 (7)0.25081 (10)0.0207 (3)
C130.25309 (18)0.71416 (7)0.22573 (10)0.0215 (3)
H13A0.28400.74770.27540.026*
C140.23096 (18)0.73622 (7)0.13169 (10)0.0227 (3)
C150.18354 (19)0.68668 (7)0.05996 (10)0.0225 (3)
H15A0.16460.70030.00530.027*
C160.16363 (19)0.61763 (7)0.08281 (10)0.0217 (3)
H16A0.13220.58440.03280.026*
C170.2599 (2)0.62591 (8)0.35419 (10)0.0271 (4)
H17A0.31400.66550.39440.041*
H17B0.35050.58650.36770.041*
H17C0.13320.61280.36820.041*
C180.2627 (2)0.81108 (8)0.11040 (11)0.0330 (4)
H18A0.20400.84060.15270.049*
H18B0.20120.82110.04350.049*
H18C0.40360.82050.12100.049*
C200.19241 (19)0.27140 (7)0.19475 (10)0.0225 (3)
H20A0.12650.27430.24640.027*
C210.22247 (18)0.20107 (7)0.16113 (9)0.0198 (3)
C220.25798 (18)0.14544 (7)0.22633 (10)0.0199 (3)
C230.27183 (19)0.07907 (7)0.19172 (10)0.0247 (4)
H23A0.29700.04170.23610.030*
C240.2504 (2)0.06452 (8)0.09459 (11)0.0278 (4)
C250.2156 (2)0.11958 (8)0.03073 (11)0.0268 (4)
H25A0.20040.11130.03600.032*
C260.20303 (19)0.18648 (8)0.06376 (10)0.0239 (4)
H26A0.18050.22360.01900.029*
C270.28382 (19)0.15735 (8)0.33191 (9)0.0255 (4)
H27A0.30230.11270.36550.038*
H27B0.16710.18040.34500.038*
H27C0.39900.18680.35430.038*
C280.2652 (3)0.00880 (8)0.06076 (13)0.0441 (5)
H28A0.16930.03790.08350.066*
H28B0.39750.02660.08610.066*
H28C0.23840.00970.00940.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0908 (10)0.0269 (7)0.0671 (9)0.0005 (6)0.0645 (8)0.0014 (6)
C10.0368 (9)0.0268 (10)0.0313 (9)0.0015 (7)0.0202 (7)0.0008 (7)
C20.0257 (8)0.0240 (9)0.0256 (8)0.0008 (6)0.0105 (6)0.0022 (7)
C30.0293 (8)0.0223 (9)0.0276 (8)0.0005 (6)0.0154 (6)0.0029 (6)
C40.0286 (8)0.0266 (9)0.0316 (9)0.0009 (7)0.0170 (7)0.0030 (7)
C50.0292 (8)0.0232 (9)0.0242 (8)0.0044 (6)0.0117 (6)0.0032 (6)
C60.0247 (8)0.0225 (9)0.0220 (8)0.0002 (6)0.0080 (6)0.0012 (6)
C100.0251 (8)0.0258 (9)0.0255 (8)0.0013 (6)0.0130 (6)0.0022 (7)
C110.0153 (7)0.0233 (9)0.0251 (9)0.0033 (6)0.0095 (6)0.0033 (7)
C120.0127 (7)0.0269 (9)0.0231 (8)0.0042 (6)0.0055 (6)0.0022 (7)
C130.0171 (7)0.0232 (9)0.0237 (8)0.0020 (6)0.0034 (6)0.0026 (6)
C140.0171 (7)0.0229 (8)0.0283 (9)0.0038 (6)0.0056 (6)0.0047 (7)
C150.0203 (7)0.0262 (9)0.0217 (8)0.0058 (6)0.0062 (6)0.0059 (7)
C160.0195 (7)0.0249 (9)0.0218 (8)0.0027 (6)0.0070 (6)0.0024 (6)
C170.0236 (8)0.0331 (9)0.0252 (8)0.0007 (7)0.0065 (6)0.0032 (7)
C180.0369 (9)0.0268 (9)0.0350 (10)0.0000 (7)0.0071 (7)0.0045 (7)
C200.0233 (7)0.0252 (9)0.0201 (8)0.0003 (6)0.0071 (6)0.0001 (6)
C210.0162 (7)0.0220 (8)0.0218 (8)0.0019 (6)0.0051 (6)0.0016 (6)
C220.0115 (7)0.0241 (9)0.0245 (8)0.0026 (6)0.0044 (6)0.0000 (7)
C230.0170 (7)0.0222 (9)0.0353 (10)0.0009 (6)0.0060 (6)0.0031 (7)
C240.0190 (7)0.0254 (9)0.0401 (10)0.0016 (6)0.0089 (7)0.0071 (8)
C250.0233 (8)0.0324 (10)0.0243 (8)0.0026 (7)0.0044 (6)0.0078 (7)
C260.0212 (7)0.0263 (9)0.0241 (9)0.0010 (6)0.0048 (6)0.0003 (7)
C270.0223 (7)0.0296 (9)0.0248 (9)0.0024 (7)0.0049 (6)0.0038 (7)
C280.0447 (10)0.0295 (10)0.0590 (12)0.0009 (8)0.0129 (9)0.0138 (9)
Geometric parameters (Å, º) top
O1—C11.2272 (17)C16—H16A0.950
C1—C61.4954 (19)C17—H17A0.980
C1—C21.5022 (19)C17—H17B0.980
C2—C101.3378 (19)C17—H17C0.980
C2—C31.5062 (19)C18—H18A0.980
C3—C41.5198 (19)C18—H18B0.980
C3—H3A0.990C18—H18C0.980
C3—H3B0.990C20—C211.4665 (19)
C4—C51.5140 (19)C20—H20A0.950
C4—H4A0.990C21—C261.3970 (19)
C4—H4B0.990C21—C221.4067 (19)
C5—C61.5049 (19)C22—C231.381 (2)
C5—H5A0.990C22—C271.4981 (19)
C5—H5B0.990C23—C241.392 (2)
C6—C201.3402 (18)C23—H23A0.950
C10—C111.4683 (19)C24—C251.386 (2)
C10—H10A0.950C24—C281.503 (2)
C11—C161.3983 (19)C25—C261.381 (2)
C11—C121.4033 (19)C25—H25A0.950
C12—C131.3824 (19)C26—H26A0.950
C12—C171.4973 (19)C27—H27A0.980
C13—C141.3858 (19)C27—H27B0.980
C13—H13A0.950C27—H27C0.980
C14—C151.3878 (19)C28—H28A0.980
C14—C181.499 (2)C28—H28B0.980
C15—C161.3829 (19)C28—H28C0.980
C15—H15A0.950
O1—C1—C6120.80 (13)C11—C16—H16A119.3
O1—C1—C2120.39 (13)C12—C17—H17A109.5
C6—C1—C2118.80 (12)C12—C17—H17B109.5
C10—C2—C1117.17 (12)H17A—C17—H17B109.5
C10—C2—C3124.17 (12)C12—C17—H17C109.5
C1—C2—C3118.58 (12)H17A—C17—H17C109.5
C2—C3—C4111.52 (11)H17B—C17—H17C109.5
C2—C3—H3A109.3C14—C18—H18A109.5
C4—C3—H3A109.3C14—C18—H18B109.5
C2—C3—H3B109.3H18A—C18—H18B109.5
C4—C3—H3B109.3C14—C18—H18C109.5
H3A—C3—H3B108.0H18A—C18—H18C109.5
C5—C4—C3109.10 (12)H18B—C18—H18C109.5
C5—C4—H4A109.9C6—C20—C21128.42 (13)
C3—C4—H4A109.9C6—C20—H20A115.8
C5—C4—H4B109.9C21—C20—H20A115.8
C3—C4—H4B109.9C26—C21—C22118.20 (13)
H4A—C4—H4B108.3C26—C21—C20121.40 (12)
C6—C5—C4111.84 (11)C22—C21—C20120.25 (12)
C6—C5—H5A109.2C23—C22—C21118.92 (13)
C4—C5—H5A109.2C23—C22—C27119.96 (13)
C6—C5—H5B109.2C21—C22—C27121.12 (12)
C4—C5—H5B109.2C22—C23—C24122.82 (13)
H5A—C5—H5B107.9C22—C23—H23A118.6
C20—C6—C1117.23 (12)C24—C23—H23A118.6
C20—C6—C5124.42 (12)C25—C24—C23117.97 (13)
C1—C6—C5118.35 (11)C25—C24—C28121.41 (14)
C2—C10—C11128.14 (13)C23—C24—C28120.61 (14)
C2—C10—H10A115.9C26—C25—C24120.23 (14)
C11—C10—H10A115.9C26—C25—H25A119.9
C16—C11—C12118.44 (12)C24—C25—H25A119.9
C16—C11—C10121.86 (13)C25—C26—C21121.85 (13)
C12—C11—C10119.65 (12)C25—C26—H26A119.1
C13—C12—C11118.72 (12)C21—C26—H26A119.1
C13—C12—C17119.94 (13)C22—C27—H27A109.5
C11—C12—C17121.33 (12)C22—C27—H27B109.5
C12—C13—C14123.18 (13)H27A—C27—H27B109.5
C12—C13—H13A118.4C22—C27—H27C109.5
C14—C13—H13A118.4H27A—C27—H27C109.5
C13—C14—C15117.73 (13)H27B—C27—H27C109.5
C13—C14—C18120.01 (13)C24—C28—H28A109.5
C15—C14—C18122.24 (13)C24—C28—H28B109.5
C16—C15—C14120.44 (13)H28A—C28—H28B109.5
C16—C15—H15A119.8C24—C28—H28C109.5
C14—C15—H15A119.8H28A—C28—H28C109.5
C15—C16—C11121.47 (13)H28B—C28—H28C109.5
C15—C16—H16A119.3
O1—C1—C2—C100.3 (2)C12—C13—C14—C150.74 (19)
C6—C1—C2—C10178.86 (13)C12—C13—C14—C18177.85 (12)
O1—C1—C2—C3176.57 (15)C13—C14—C15—C161.32 (19)
C6—C1—C2—C34.3 (2)C18—C14—C15—C16177.24 (13)
C10—C2—C3—C4148.79 (14)C14—C15—C16—C110.5 (2)
C1—C2—C3—C427.81 (19)C12—C11—C16—C150.91 (19)
C2—C3—C4—C560.25 (16)C10—C11—C16—C15178.63 (12)
C3—C4—C5—C660.88 (15)C1—C6—C20—C21174.29 (13)
O1—C1—C6—C202.1 (2)C5—C6—C20—C216.7 (2)
C2—C1—C6—C20177.03 (13)C6—C20—C21—C2639.0 (2)
O1—C1—C6—C5176.96 (15)C6—C20—C21—C22145.61 (14)
C2—C1—C6—C53.9 (2)C26—C21—C22—C230.09 (18)
C4—C5—C6—C20150.24 (14)C20—C21—C22—C23175.44 (11)
C4—C5—C6—C128.73 (18)C26—C21—C22—C27178.95 (12)
C1—C2—C10—C11179.33 (13)C20—C21—C22—C275.52 (19)
C3—C2—C10—C114.0 (2)C21—C22—C23—C240.58 (19)
C2—C10—C11—C1643.5 (2)C27—C22—C23—C24179.63 (12)
C2—C10—C11—C12138.83 (15)C22—C23—C24—C250.6 (2)
C16—C11—C12—C131.47 (18)C22—C23—C24—C28179.46 (13)
C10—C11—C12—C13179.23 (12)C23—C24—C25—C260.0 (2)
C16—C11—C12—C17179.60 (12)C28—C24—C25—C26179.90 (13)
C10—C11—C12—C171.84 (19)C24—C25—C26—C210.7 (2)
C11—C12—C13—C140.66 (19)C22—C21—C26—C250.71 (19)
C17—C12—C13—C14179.61 (12)C20—C21—C26—C25174.76 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg1i0.983.003.532 (1)154
C17—H17C···Cg1ii0.982.623.469 (1)111
C27—H27B···Cg2iii0.982.643.486 (1)145
C27—H27C···Cg2iv0.982.803.510 (1)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H26O
Mr330.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.9784 (4), 19.2540 (12), 14.2829 (10)
β (°) 102.179 (3)
V3)1875.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.20 × 0.20
Data collection
DiffractometerBruker–Nonius X8 APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.895, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
32106, 3565, 2399
Rint0.042
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.08
No. of reflections3565
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg1i0.983.003.532 (1)154.4
C17—H17C···Cg1ii0.982.623.469 (1)110.5
C27—H27B···Cg2iii0.982.643.486 (1)145.0
C27—H27C···Cg2iv0.982.803.510 (1)130.2
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Danish Natural Sciences Research Council for funding (grant No. 272-08-0237).

References

First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, D. (2009). Acta Cryst. E65, o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmpraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol. 38, 822–828.  Web of Science CSD CrossRef CAS Google Scholar
First citationPilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem. 7, 683–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, L.-Y. (2007). Acta Cryst. E63, o3113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds