organic compounds
2,6-Bis(2,4-dimethylbenzylidene)cyclohexanone
aUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: adb@chem.sdu.dk
In the 24H6O, the molecule exhibits m but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face interactions between the 2,4-dimethylbenzylidene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings.
of the title compound, CRelated literature
For related structures, see: Guo et al. (2008); Jia et al. (1989); Liu (2009); Ompraba et al. (2003); Shi et al. (2008); Zhang et al. (2005); Zhou (2007). For quantification of the molecular see: Pilati & Forni (1998, 2000).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810018684/jh2159sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018684/jh2159Isup2.hkl
2,4-Dimethylbenzaldehyde (2.8 ml, 0.02 mol), cyclohexanone (1.0 ml, 0.01 mol) and 30% NaOH(aq) (1 ml) were stirred in ethanol (3 ml) at room temperature for 6 h. The yellow product was filtered and washed using EtOH (3 × 2 ml). Crystals were obtained by slow evaporation from acetone under ambient conditions.
H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent
with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). Methyl groups were allowed to rotate about their local threefold axes.We were interested in the
of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.
The molecular
m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.For related structures, see: Guo et al. (2008); Jia et al. (1989); Liu (2009); Ompraba et al. (2003); Shi et al. (2008); Zhang et al. (2005); Zhou (2007). For quantification of the molecular
see: Pilati & Forni (1998, 2000).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular unit showing displacement ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Face-to-face interactions between the 2,4-dimethylbenzylidene substituents, with C(methyl)···centroid interactions highlighted. |
C24H26O | F(000) = 712 |
Mr = 330.45 | Dx = 1.170 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5996 reflections |
a = 6.9784 (4) Å | θ = 2.6–24.5° |
b = 19.2540 (12) Å | µ = 0.07 mm−1 |
c = 14.2829 (10) Å | T = 120 K |
β = 102.179 (3)° | Needle, yellow |
V = 1875.9 (2) Å3 | 0.60 × 0.20 × 0.20 mm |
Z = 4 |
Bruker–Nonius X8 APEXII CCD diffractometer | 3565 independent reflections |
Radiation source: fine-focus sealed tube | 2399 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω and φ scans | θmax = 25.8°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −8→8 |
Tmin = 0.895, Tmax = 0.986 | k = −19→23 |
32106 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0604P)2 + 0.133P] where P = (Fo2 + 2Fc2)/3 |
3565 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C24H26O | V = 1875.9 (2) Å3 |
Mr = 330.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.9784 (4) Å | µ = 0.07 mm−1 |
b = 19.2540 (12) Å | T = 120 K |
c = 14.2829 (10) Å | 0.60 × 0.20 × 0.20 mm |
β = 102.179 (3)° |
Bruker–Nonius X8 APEXII CCD diffractometer | 3565 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2399 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 0.986 | Rint = 0.042 |
32106 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.21 e Å−3 |
3565 reflections | Δρmin = −0.22 e Å−3 |
230 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0853 (2) | 0.39396 (5) | 0.26683 (9) | 0.0545 (4) | |
C1 | 0.1796 (2) | 0.39689 (7) | 0.20350 (11) | 0.0297 (4) | |
C2 | 0.2281 (2) | 0.46589 (7) | 0.16524 (10) | 0.0243 (3) | |
C3 | 0.3539 (2) | 0.46722 (7) | 0.09156 (10) | 0.0250 (4) | |
H3A | 0.4324 | 0.5105 | 0.0989 | 0.030* | |
H3B | 0.2687 | 0.4673 | 0.0267 | 0.030* | |
C4 | 0.4907 (2) | 0.40496 (7) | 0.10168 (11) | 0.0274 (4) | |
H4A | 0.5727 | 0.4074 | 0.0531 | 0.033* | |
H4B | 0.5785 | 0.4051 | 0.1659 | 0.033* | |
C5 | 0.3697 (2) | 0.33903 (7) | 0.08813 (10) | 0.0246 (4) | |
H5A | 0.2836 | 0.3391 | 0.0234 | 0.030* | |
H5B | 0.4583 | 0.2985 | 0.0924 | 0.030* | |
C6 | 0.24585 (19) | 0.33209 (7) | 0.16204 (10) | 0.0226 (3) | |
C10 | 0.1637 (2) | 0.52272 (7) | 0.20284 (10) | 0.0243 (4) | |
H10A | 0.0927 | 0.5149 | 0.2518 | 0.029* | |
C11 | 0.18876 (19) | 0.59566 (7) | 0.17793 (10) | 0.0205 (3) | |
C12 | 0.23238 (18) | 0.64565 (7) | 0.25081 (10) | 0.0207 (3) | |
C13 | 0.25309 (18) | 0.71416 (7) | 0.22573 (10) | 0.0215 (3) | |
H13A | 0.2840 | 0.7477 | 0.2754 | 0.026* | |
C14 | 0.23096 (18) | 0.73622 (7) | 0.13169 (10) | 0.0227 (3) | |
C15 | 0.18354 (19) | 0.68668 (7) | 0.05996 (10) | 0.0225 (3) | |
H15A | 0.1646 | 0.7003 | −0.0053 | 0.027* | |
C16 | 0.16363 (19) | 0.61763 (7) | 0.08281 (10) | 0.0217 (3) | |
H16A | 0.1322 | 0.5844 | 0.0328 | 0.026* | |
C17 | 0.2599 (2) | 0.62591 (8) | 0.35419 (10) | 0.0271 (4) | |
H17A | 0.3140 | 0.6655 | 0.3944 | 0.041* | |
H17B | 0.3505 | 0.5865 | 0.3677 | 0.041* | |
H17C | 0.1332 | 0.6128 | 0.3682 | 0.041* | |
C18 | 0.2627 (2) | 0.81108 (8) | 0.11040 (11) | 0.0330 (4) | |
H18A | 0.2040 | 0.8406 | 0.1527 | 0.049* | |
H18B | 0.2012 | 0.8211 | 0.0435 | 0.049* | |
H18C | 0.4036 | 0.8205 | 0.1210 | 0.049* | |
C20 | 0.19241 (19) | 0.27140 (7) | 0.19475 (10) | 0.0225 (3) | |
H20A | 0.1265 | 0.2743 | 0.2464 | 0.027* | |
C21 | 0.22247 (18) | 0.20107 (7) | 0.16113 (9) | 0.0198 (3) | |
C22 | 0.25798 (18) | 0.14544 (7) | 0.22633 (10) | 0.0199 (3) | |
C23 | 0.27183 (19) | 0.07907 (7) | 0.19172 (10) | 0.0247 (4) | |
H23A | 0.2970 | 0.0417 | 0.2361 | 0.030* | |
C24 | 0.2504 (2) | 0.06452 (8) | 0.09459 (11) | 0.0278 (4) | |
C25 | 0.2156 (2) | 0.11958 (8) | 0.03073 (11) | 0.0268 (4) | |
H25A | 0.2004 | 0.1113 | −0.0360 | 0.032* | |
C26 | 0.20303 (19) | 0.18648 (8) | 0.06376 (10) | 0.0239 (4) | |
H26A | 0.1805 | 0.2236 | 0.0190 | 0.029* | |
C27 | 0.28382 (19) | 0.15735 (8) | 0.33191 (9) | 0.0255 (4) | |
H27A | 0.3023 | 0.1127 | 0.3655 | 0.038* | |
H27B | 0.1671 | 0.1804 | 0.3450 | 0.038* | |
H27C | 0.3990 | 0.1868 | 0.3543 | 0.038* | |
C28 | 0.2652 (3) | −0.00880 (8) | 0.06076 (13) | 0.0441 (5) | |
H28A | 0.1693 | −0.0379 | 0.0835 | 0.066* | |
H28B | 0.3975 | −0.0266 | 0.0861 | 0.066* | |
H28C | 0.2384 | −0.0097 | −0.0094 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0908 (10) | 0.0269 (7) | 0.0671 (9) | −0.0005 (6) | 0.0645 (8) | 0.0014 (6) |
C1 | 0.0368 (9) | 0.0268 (10) | 0.0313 (9) | −0.0015 (7) | 0.0202 (7) | 0.0008 (7) |
C2 | 0.0257 (8) | 0.0240 (9) | 0.0256 (8) | 0.0008 (6) | 0.0105 (6) | 0.0022 (7) |
C3 | 0.0293 (8) | 0.0223 (9) | 0.0276 (8) | −0.0005 (6) | 0.0154 (6) | 0.0029 (6) |
C4 | 0.0286 (8) | 0.0266 (9) | 0.0316 (9) | 0.0009 (7) | 0.0170 (7) | 0.0030 (7) |
C5 | 0.0292 (8) | 0.0232 (9) | 0.0242 (8) | 0.0044 (6) | 0.0117 (6) | 0.0032 (6) |
C6 | 0.0247 (8) | 0.0225 (9) | 0.0220 (8) | 0.0002 (6) | 0.0080 (6) | 0.0012 (6) |
C10 | 0.0251 (8) | 0.0258 (9) | 0.0255 (8) | 0.0013 (6) | 0.0130 (6) | 0.0022 (7) |
C11 | 0.0153 (7) | 0.0233 (9) | 0.0251 (9) | 0.0033 (6) | 0.0095 (6) | 0.0033 (7) |
C12 | 0.0127 (7) | 0.0269 (9) | 0.0231 (8) | 0.0042 (6) | 0.0055 (6) | 0.0022 (7) |
C13 | 0.0171 (7) | 0.0232 (9) | 0.0237 (8) | 0.0020 (6) | 0.0034 (6) | −0.0026 (6) |
C14 | 0.0171 (7) | 0.0229 (8) | 0.0283 (9) | 0.0038 (6) | 0.0056 (6) | 0.0047 (7) |
C15 | 0.0203 (7) | 0.0262 (9) | 0.0217 (8) | 0.0058 (6) | 0.0062 (6) | 0.0059 (7) |
C16 | 0.0195 (7) | 0.0249 (9) | 0.0218 (8) | 0.0027 (6) | 0.0070 (6) | −0.0024 (6) |
C17 | 0.0236 (8) | 0.0331 (9) | 0.0252 (8) | 0.0007 (7) | 0.0065 (6) | 0.0032 (7) |
C18 | 0.0369 (9) | 0.0268 (9) | 0.0350 (10) | 0.0000 (7) | 0.0071 (7) | 0.0045 (7) |
C20 | 0.0233 (7) | 0.0252 (9) | 0.0201 (8) | −0.0003 (6) | 0.0071 (6) | 0.0001 (6) |
C21 | 0.0162 (7) | 0.0220 (8) | 0.0218 (8) | −0.0019 (6) | 0.0051 (6) | −0.0016 (6) |
C22 | 0.0115 (7) | 0.0241 (9) | 0.0245 (8) | −0.0026 (6) | 0.0044 (6) | 0.0000 (7) |
C23 | 0.0170 (7) | 0.0222 (9) | 0.0353 (10) | −0.0009 (6) | 0.0060 (6) | 0.0031 (7) |
C24 | 0.0190 (7) | 0.0254 (9) | 0.0401 (10) | −0.0016 (6) | 0.0089 (7) | −0.0071 (8) |
C25 | 0.0233 (8) | 0.0324 (10) | 0.0243 (8) | −0.0026 (7) | 0.0044 (6) | −0.0078 (7) |
C26 | 0.0212 (7) | 0.0263 (9) | 0.0241 (9) | −0.0010 (6) | 0.0048 (6) | 0.0003 (7) |
C27 | 0.0223 (7) | 0.0296 (9) | 0.0248 (9) | −0.0024 (7) | 0.0049 (6) | 0.0038 (7) |
C28 | 0.0447 (10) | 0.0295 (10) | 0.0590 (12) | −0.0009 (8) | 0.0129 (9) | −0.0138 (9) |
O1—C1 | 1.2272 (17) | C16—H16A | 0.950 |
C1—C6 | 1.4954 (19) | C17—H17A | 0.980 |
C1—C2 | 1.5022 (19) | C17—H17B | 0.980 |
C2—C10 | 1.3378 (19) | C17—H17C | 0.980 |
C2—C3 | 1.5062 (19) | C18—H18A | 0.980 |
C3—C4 | 1.5198 (19) | C18—H18B | 0.980 |
C3—H3A | 0.990 | C18—H18C | 0.980 |
C3—H3B | 0.990 | C20—C21 | 1.4665 (19) |
C4—C5 | 1.5140 (19) | C20—H20A | 0.950 |
C4—H4A | 0.990 | C21—C26 | 1.3970 (19) |
C4—H4B | 0.990 | C21—C22 | 1.4067 (19) |
C5—C6 | 1.5049 (19) | C22—C23 | 1.381 (2) |
C5—H5A | 0.990 | C22—C27 | 1.4981 (19) |
C5—H5B | 0.990 | C23—C24 | 1.392 (2) |
C6—C20 | 1.3402 (18) | C23—H23A | 0.950 |
C10—C11 | 1.4683 (19) | C24—C25 | 1.386 (2) |
C10—H10A | 0.950 | C24—C28 | 1.503 (2) |
C11—C16 | 1.3983 (19) | C25—C26 | 1.381 (2) |
C11—C12 | 1.4033 (19) | C25—H25A | 0.950 |
C12—C13 | 1.3824 (19) | C26—H26A | 0.950 |
C12—C17 | 1.4973 (19) | C27—H27A | 0.980 |
C13—C14 | 1.3858 (19) | C27—H27B | 0.980 |
C13—H13A | 0.950 | C27—H27C | 0.980 |
C14—C15 | 1.3878 (19) | C28—H28A | 0.980 |
C14—C18 | 1.499 (2) | C28—H28B | 0.980 |
C15—C16 | 1.3829 (19) | C28—H28C | 0.980 |
C15—H15A | 0.950 | ||
O1—C1—C6 | 120.80 (13) | C11—C16—H16A | 119.3 |
O1—C1—C2 | 120.39 (13) | C12—C17—H17A | 109.5 |
C6—C1—C2 | 118.80 (12) | C12—C17—H17B | 109.5 |
C10—C2—C1 | 117.17 (12) | H17A—C17—H17B | 109.5 |
C10—C2—C3 | 124.17 (12) | C12—C17—H17C | 109.5 |
C1—C2—C3 | 118.58 (12) | H17A—C17—H17C | 109.5 |
C2—C3—C4 | 111.52 (11) | H17B—C17—H17C | 109.5 |
C2—C3—H3A | 109.3 | C14—C18—H18A | 109.5 |
C4—C3—H3A | 109.3 | C14—C18—H18B | 109.5 |
C2—C3—H3B | 109.3 | H18A—C18—H18B | 109.5 |
C4—C3—H3B | 109.3 | C14—C18—H18C | 109.5 |
H3A—C3—H3B | 108.0 | H18A—C18—H18C | 109.5 |
C5—C4—C3 | 109.10 (12) | H18B—C18—H18C | 109.5 |
C5—C4—H4A | 109.9 | C6—C20—C21 | 128.42 (13) |
C3—C4—H4A | 109.9 | C6—C20—H20A | 115.8 |
C5—C4—H4B | 109.9 | C21—C20—H20A | 115.8 |
C3—C4—H4B | 109.9 | C26—C21—C22 | 118.20 (13) |
H4A—C4—H4B | 108.3 | C26—C21—C20 | 121.40 (12) |
C6—C5—C4 | 111.84 (11) | C22—C21—C20 | 120.25 (12) |
C6—C5—H5A | 109.2 | C23—C22—C21 | 118.92 (13) |
C4—C5—H5A | 109.2 | C23—C22—C27 | 119.96 (13) |
C6—C5—H5B | 109.2 | C21—C22—C27 | 121.12 (12) |
C4—C5—H5B | 109.2 | C22—C23—C24 | 122.82 (13) |
H5A—C5—H5B | 107.9 | C22—C23—H23A | 118.6 |
C20—C6—C1 | 117.23 (12) | C24—C23—H23A | 118.6 |
C20—C6—C5 | 124.42 (12) | C25—C24—C23 | 117.97 (13) |
C1—C6—C5 | 118.35 (11) | C25—C24—C28 | 121.41 (14) |
C2—C10—C11 | 128.14 (13) | C23—C24—C28 | 120.61 (14) |
C2—C10—H10A | 115.9 | C26—C25—C24 | 120.23 (14) |
C11—C10—H10A | 115.9 | C26—C25—H25A | 119.9 |
C16—C11—C12 | 118.44 (12) | C24—C25—H25A | 119.9 |
C16—C11—C10 | 121.86 (13) | C25—C26—C21 | 121.85 (13) |
C12—C11—C10 | 119.65 (12) | C25—C26—H26A | 119.1 |
C13—C12—C11 | 118.72 (12) | C21—C26—H26A | 119.1 |
C13—C12—C17 | 119.94 (13) | C22—C27—H27A | 109.5 |
C11—C12—C17 | 121.33 (12) | C22—C27—H27B | 109.5 |
C12—C13—C14 | 123.18 (13) | H27A—C27—H27B | 109.5 |
C12—C13—H13A | 118.4 | C22—C27—H27C | 109.5 |
C14—C13—H13A | 118.4 | H27A—C27—H27C | 109.5 |
C13—C14—C15 | 117.73 (13) | H27B—C27—H27C | 109.5 |
C13—C14—C18 | 120.01 (13) | C24—C28—H28A | 109.5 |
C15—C14—C18 | 122.24 (13) | C24—C28—H28B | 109.5 |
C16—C15—C14 | 120.44 (13) | H28A—C28—H28B | 109.5 |
C16—C15—H15A | 119.8 | C24—C28—H28C | 109.5 |
C14—C15—H15A | 119.8 | H28A—C28—H28C | 109.5 |
C15—C16—C11 | 121.47 (13) | H28B—C28—H28C | 109.5 |
C15—C16—H16A | 119.3 | ||
O1—C1—C2—C10 | −0.3 (2) | C12—C13—C14—C15 | 0.74 (19) |
C6—C1—C2—C10 | 178.86 (13) | C12—C13—C14—C18 | −177.85 (12) |
O1—C1—C2—C3 | 176.57 (15) | C13—C14—C15—C16 | −1.32 (19) |
C6—C1—C2—C3 | −4.3 (2) | C18—C14—C15—C16 | 177.24 (13) |
C10—C2—C3—C4 | 148.79 (14) | C14—C15—C16—C11 | 0.5 (2) |
C1—C2—C3—C4 | −27.81 (19) | C12—C11—C16—C15 | 0.91 (19) |
C2—C3—C4—C5 | 60.25 (16) | C10—C11—C16—C15 | 178.63 (12) |
C3—C4—C5—C6 | −60.88 (15) | C1—C6—C20—C21 | 174.29 (13) |
O1—C1—C6—C20 | 2.1 (2) | C5—C6—C20—C21 | −6.7 (2) |
C2—C1—C6—C20 | −177.03 (13) | C6—C20—C21—C26 | −39.0 (2) |
O1—C1—C6—C5 | −176.96 (15) | C6—C20—C21—C22 | 145.61 (14) |
C2—C1—C6—C5 | 3.9 (2) | C26—C21—C22—C23 | −0.09 (18) |
C4—C5—C6—C20 | −150.24 (14) | C20—C21—C22—C23 | 175.44 (11) |
C4—C5—C6—C1 | 28.73 (18) | C26—C21—C22—C27 | 178.95 (12) |
C1—C2—C10—C11 | −179.33 (13) | C20—C21—C22—C27 | −5.52 (19) |
C3—C2—C10—C11 | 4.0 (2) | C21—C22—C23—C24 | −0.58 (19) |
C2—C10—C11—C16 | 43.5 (2) | C27—C22—C23—C24 | −179.63 (12) |
C2—C10—C11—C12 | −138.83 (15) | C22—C23—C24—C25 | 0.6 (2) |
C16—C11—C12—C13 | −1.47 (18) | C22—C23—C24—C28 | −179.46 (13) |
C10—C11—C12—C13 | −179.23 (12) | C23—C24—C25—C26 | 0.0 (2) |
C16—C11—C12—C17 | 179.60 (12) | C28—C24—C25—C26 | −179.90 (13) |
C10—C11—C12—C17 | 1.84 (19) | C24—C25—C26—C21 | −0.7 (2) |
C11—C12—C13—C14 | 0.66 (19) | C22—C21—C26—C25 | 0.71 (19) |
C17—C12—C13—C14 | 179.61 (12) | C20—C21—C26—C25 | −174.76 (12) |
Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···Cg1i | 0.98 | 3.00 | 3.532 (1) | 154 |
C17—H17C···Cg1ii | 0.98 | 2.62 | 3.469 (1) | 111 |
C27—H27B···Cg2iii | 0.98 | 2.64 | 3.486 (1) | 145 |
C27—H27C···Cg2iv | 0.98 | 2.80 | 3.510 (1) | 130 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H26O |
Mr | 330.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 6.9784 (4), 19.2540 (12), 14.2829 (10) |
β (°) | 102.179 (3) |
V (Å3) | 1875.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.60 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker–Nonius X8 APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.895, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32106, 3565, 2399 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.113, 1.08 |
No. of reflections | 3565 |
No. of parameters | 230 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.22 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).
Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···Cg1i | 0.98 | 3.00 | 3.532 (1) | 154.4 |
C17—H17C···Cg1ii | 0.98 | 2.62 | 3.469 (1) | 110.5 |
C27—H27B···Cg2iii | 0.98 | 2.64 | 3.486 (1) | 145.0 |
C27—H27C···Cg2iv | 0.98 | 2.80 | 3.510 (1) | 130.2 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to the Danish Natural Sciences Research Council for funding (grant No. 272-08-0237).
References
Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, D. (2009). Acta Cryst. E65, o694. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ompraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol. 38, 822–828. Web of Science CSD CrossRef CAS Google Scholar
Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem. 7, 683–686. Web of Science CSD CrossRef CAS Google Scholar
Zhou, L.-Y. (2007). Acta Cryst. E63, o3113. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.
We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.
The molecular point symmetry m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.