metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{3,3′,5,5′-Tetra­meth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenol­ato}­copper(II)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 May 2010; accepted 10 May 2010; online 15 May 2010)

In the title square-planar copper complex, [Cu(C20H22N2O6)], the Cu—N and Cu—O bond lengths are significantly longer than those of its isostructural nickel analog. The title structure is related to that of the corresponding monohydrate. There are significant differences in the conformations of the two complexes. While the monohydrate is mainly planar, in the title compound there is a slight twist in the two benzene rings at each end of the complex [dihedral angle = 13.14 (6)°]. All the atoms of the meth­oxy substitutents are in the plane of the ring to which they are attached (r.m.s. deviation = 0.0079 Å) except for one of the meth­oxy C atoms, which deviates slightly [0.309 (4) Å]. In the crystal, weak C—H⋯O inter­molecular inter­actions link the mol­ecules.

Related literature

For similar Cu–salen {salen is 2,2′-[ethane-1,2-diylbis(nitrilo­methylidyne)]diphenolate}complexes, see: Labisbal et al. (1994[Labisbal, E., Romero, J., García-Vázquez, J. A., Sousa, A., Castellano, E. E. & Zukerman-Schpector, J. (1994). Acta Cryst. C50, 1043-1044.]). For the isostructural nickel analog, see: Assey et al. (2010[Assey, G. E., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m620.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H22N2O6)]

  • Mr = 449.94

  • Monoclinic, P 21 /c

  • a = 7.3953 (2) Å

  • b = 15.8514 (5) Å

  • c = 15.7042 (4) Å

  • β = 91.842 (3)°

  • V = 1839.97 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 110 K

  • 0.51 × 0.29 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.281, Tmax = 1.000

  • 7277 measured reflections

  • 3608 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.04

  • 3608 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.9059 (13)
Cu—O2 1.9070 (13)
Cu—N2 1.9314 (16)
Cu—N1 1.9347 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O5i 0.98 2.57 3.439 (2) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure is reported of the square planar copper complex C20H22N2CuO6, which is related a previously published structure, which crystallized as a monohydrate (Labisbal et al., 1994).

The Cu—N and Cu—O bond distances of 1.9314 (16) Å, 1.9347 (15) and 1.9059 (13) Å, 1.9070 (13) Å are significantly longer than those found in both the polymorph [1.892 (3) and 1.898 (3) \%A for Cu—O and 1.908 (4) and 1.912 (4) \%A for Cu—N], and the structure of the isotructural nickel derivative (Assey et al., 2010). There are significant differences in the conformations of the structures. While the monohydrate is mainly planar, in the title compound there is a slight twist in the two phenyl rings at each end of the complex (dihedral angle of 13.14 (6)°). All the atoms of the methoxy substitutents are in the plane of the ring to which they are attached except C7 which deviates slightly [0.309 (4) °]. There are weak C—H···O intermolecular interactions which link the molecules.

Related literature top

For similar Cusalen complexes, see: Labisbal et al. (1994). For the isostructural nickel analog, see: Assey et al. (2010).

Experimental top

The ligand synthesis was accomplished by adding a solution of (2 g, 33.3 mmol) ethylenediamine in 25 ml of methanol to a solution of (12.13 g, 66.6 mmol) 4,6-dimethoxysalicylaldehyde in 40 ml of methanol. The mixture was refluxed overnight while stirring. Then the mixture was evaporated under reduced pressure to afford yellow solids. The complex was synthesized by mixing a solution of (0.38 g, 1 mmol) N,N-ethylenebis(4,6-dimethoxysalicylaldimine) in 5 ml of CH2Cl2 with a solution of (0.29 g, 1 mmol) copper acetate in 5 ml methanol. The solution mixture was stirred for 1 hour then filtered and layered with diethyl ether for crystallization. Single crystals of X-ray quality were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Structure description top

The structure is reported of the square planar copper complex C20H22N2CuO6, which is related a previously published structure, which crystallized as a monohydrate (Labisbal et al., 1994).

The Cu—N and Cu—O bond distances of 1.9314 (16) Å, 1.9347 (15) and 1.9059 (13) Å, 1.9070 (13) Å are significantly longer than those found in both the polymorph [1.892 (3) and 1.898 (3) \%A for Cu—O and 1.908 (4) and 1.912 (4) \%A for Cu—N], and the structure of the isotructural nickel derivative (Assey et al., 2010). There are significant differences in the conformations of the structures. While the monohydrate is mainly planar, in the title compound there is a slight twist in the two phenyl rings at each end of the complex (dihedral angle of 13.14 (6)°). All the atoms of the methoxy substitutents are in the plane of the ring to which they are attached except C7 which deviates slightly [0.309 (4) °]. There are weak C—H···O intermolecular interactions which link the molecules.

For similar Cusalen complexes, see: Labisbal et al. (1994). For the isostructural nickel analog, see: Assey et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the square planar copper complex C20H22N2CuO6 showing atom labeling.
[Figure 2] Fig. 2. The molecular packing for C20H22N2CuO6 viewed down the c axis.
{3,3',5,5'-Tetramethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C20H22N2O6)]F(000) = 932
Mr = 449.94Dx = 1.624 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5963 reflections
a = 7.3953 (2) Åθ = 5.6–73.9°
b = 15.8514 (5) ŵ = 2.06 mm1
c = 15.7042 (4) ÅT = 110 K
β = 91.842 (3)°Thick needle, pale red-brown
V = 1839.97 (10) Å30.51 × 0.29 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3608 independent reflections
Radiation source: Enhance (Cu) X-ray Source3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 5.6°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1619
Tmin = 0.281, Tmax = 1.000l = 1919
7277 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0699P)2 + 1.2928P]
where P = (Fo2 + 2Fc2)/3
3608 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C20H22N2O6)]V = 1839.97 (10) Å3
Mr = 449.94Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.3953 (2) ŵ = 2.06 mm1
b = 15.8514 (5) ÅT = 110 K
c = 15.7042 (4) Å0.51 × 0.29 × 0.25 mm
β = 91.842 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3608 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3370 reflections with I > 2σ(I)
Tmin = 0.281, Tmax = 1.000Rint = 0.023
7277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
3608 reflectionsΔρmin = 0.67 e Å3
266 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d (release 27-02-2009 CrysAlis171 .NET) (compiled Feb 27 2009,15:38:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.25447 (4)0.525237 (16)0.433936 (15)0.01235 (12)
O10.25593 (19)0.64183 (8)0.40431 (8)0.0170 (3)
O20.2540 (2)0.49500 (9)0.31640 (8)0.0177 (3)
O30.1266 (2)0.93385 (9)0.42484 (9)0.0216 (3)
O40.09313 (19)0.76058 (9)0.67036 (8)0.0181 (3)
O50.45901 (18)0.21001 (8)0.34323 (8)0.0164 (3)
O60.3678 (2)0.33149 (9)0.07068 (8)0.0190 (3)
N10.2340 (2)0.54910 (11)0.55406 (10)0.0145 (3)
N20.2733 (2)0.40900 (10)0.47001 (9)0.0142 (3)
C10.2100 (2)0.70552 (12)0.45207 (11)0.0137 (3)
C20.1913 (2)0.78495 (12)0.41203 (11)0.0153 (4)
H2A0.21130.79020.35280.018*
C30.1442 (3)0.85471 (12)0.45847 (12)0.0162 (4)
C40.1614 (3)0.94303 (12)0.33597 (13)0.0219 (4)
H4A0.15001.00250.31980.033*
H4B0.07390.90940.30230.033*
H4C0.28420.92340.32510.033*
C50.1081 (3)0.84984 (12)0.54622 (12)0.0172 (4)
H5A0.07340.89860.57690.021*
C60.1246 (2)0.77302 (12)0.58594 (12)0.0153 (4)
C70.0026 (3)0.82691 (12)0.71463 (12)0.0181 (4)
H7A0.03190.80660.77080.027*
H7B0.10610.84400.68170.027*
H7C0.08410.87540.72160.027*
C80.1771 (2)0.69860 (12)0.54123 (11)0.0141 (4)
C90.1990 (2)0.62182 (12)0.58746 (11)0.0144 (4)
H9A0.18700.62410.64750.017*
C100.2694 (3)0.47571 (11)0.60918 (12)0.0162 (4)
H10A0.19570.47920.66060.019*
H10B0.39870.47410.62750.019*
C110.2201 (3)0.39663 (13)0.55836 (11)0.0167 (4)
H11A0.28380.34710.58330.020*
H11B0.08820.38630.56000.020*
C120.3216 (2)0.34537 (11)0.42416 (12)0.0139 (3)
H12A0.33900.29250.45170.017*
C130.3503 (2)0.34984 (11)0.33470 (11)0.0135 (4)
C140.4107 (2)0.27605 (11)0.29156 (12)0.0135 (3)
C150.5160 (3)0.13421 (12)0.30225 (12)0.0188 (4)
H15A0.55760.09340.34540.028*
H15B0.61520.14720.26440.028*
H15C0.41430.11030.26880.028*
C160.4194 (2)0.27244 (12)0.20436 (12)0.0151 (4)
H16A0.46290.22330.17710.018*
C170.3626 (2)0.34309 (12)0.15641 (11)0.0148 (4)
C180.3346 (3)0.40405 (13)0.01816 (12)0.0241 (4)
H18A0.33530.38750.04190.036*
H18B0.42920.44620.02960.036*
H18C0.21640.42820.03090.036*
C190.3084 (3)0.41683 (12)0.19463 (11)0.0147 (4)
H19A0.27380.46400.16050.018*
C200.3042 (2)0.42257 (11)0.28476 (12)0.0137 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01952 (18)0.00796 (17)0.00974 (17)0.00107 (9)0.00301 (11)0.00065 (9)
O10.0278 (7)0.0090 (6)0.0146 (6)0.0013 (5)0.0072 (5)0.0015 (5)
O20.0322 (8)0.0100 (6)0.0109 (6)0.0046 (5)0.0015 (5)0.0010 (5)
O30.0366 (8)0.0101 (6)0.0186 (7)0.0025 (6)0.0079 (6)0.0007 (5)
O40.0285 (7)0.0139 (6)0.0120 (6)0.0037 (5)0.0051 (5)0.0032 (5)
O50.0241 (7)0.0095 (6)0.0157 (6)0.0039 (5)0.0020 (5)0.0023 (5)
O60.0298 (8)0.0162 (7)0.0113 (6)0.0003 (5)0.0041 (5)0.0029 (5)
N10.0202 (8)0.0125 (8)0.0107 (7)0.0006 (6)0.0007 (6)0.0016 (6)
N20.0197 (8)0.0105 (7)0.0124 (7)0.0019 (6)0.0027 (6)0.0008 (6)
C10.0160 (8)0.0103 (8)0.0151 (8)0.0011 (6)0.0023 (7)0.0028 (7)
C20.0192 (9)0.0135 (9)0.0135 (8)0.0025 (7)0.0046 (7)0.0011 (7)
C30.0204 (9)0.0099 (9)0.0184 (9)0.0010 (7)0.0022 (7)0.0003 (7)
C40.0316 (11)0.0138 (9)0.0210 (10)0.0044 (8)0.0104 (8)0.0048 (7)
C50.0229 (10)0.0119 (9)0.0171 (9)0.0013 (7)0.0032 (7)0.0044 (7)
C60.0163 (9)0.0152 (9)0.0145 (8)0.0014 (7)0.0022 (7)0.0035 (7)
C70.0217 (9)0.0174 (9)0.0153 (8)0.0026 (7)0.0045 (7)0.0055 (7)
C80.0176 (9)0.0105 (8)0.0143 (8)0.0005 (7)0.0018 (7)0.0019 (7)
C90.0166 (9)0.0160 (9)0.0106 (8)0.0002 (7)0.0015 (6)0.0026 (7)
C100.0235 (10)0.0140 (9)0.0112 (8)0.0021 (7)0.0006 (7)0.0012 (6)
C110.0241 (10)0.0132 (9)0.0129 (8)0.0011 (7)0.0045 (7)0.0019 (7)
C120.0168 (9)0.0090 (8)0.0159 (8)0.0012 (6)0.0005 (7)0.0000 (7)
C130.0163 (8)0.0097 (8)0.0145 (8)0.0005 (6)0.0013 (7)0.0022 (7)
C140.0133 (8)0.0097 (8)0.0175 (8)0.0013 (6)0.0011 (6)0.0019 (7)
C150.0242 (10)0.0115 (9)0.0207 (9)0.0049 (7)0.0025 (7)0.0044 (7)
C160.0169 (9)0.0104 (8)0.0181 (9)0.0010 (7)0.0036 (7)0.0049 (7)
C170.0163 (9)0.0161 (9)0.0124 (8)0.0038 (7)0.0037 (6)0.0026 (7)
C180.0412 (13)0.0190 (10)0.0122 (8)0.0058 (9)0.0045 (8)0.0005 (7)
C190.0202 (9)0.0109 (8)0.0132 (8)0.0024 (7)0.0024 (7)0.0003 (7)
C200.0155 (9)0.0101 (8)0.0157 (8)0.0012 (6)0.0015 (6)0.0019 (7)
Geometric parameters (Å, º) top
Cu—O11.9059 (13)C6—C81.433 (2)
Cu—O21.9070 (13)C7—H7A0.9800
Cu—N21.9314 (16)C7—H7B0.9800
Cu—N11.9347 (15)C7—H7C0.9800
O1—C11.309 (2)C8—C91.424 (3)
O2—C201.309 (2)C9—H9A0.9500
O3—C31.366 (2)C10—C111.524 (3)
O3—C41.435 (2)C10—H10A0.9900
O4—C61.368 (2)C10—H10B0.9900
O4—C71.438 (2)C11—H11A0.9900
O5—C141.365 (2)C11—H11B0.9900
O5—C151.433 (2)C12—C131.429 (3)
O6—C171.360 (2)C12—H12A0.9500
O6—C181.432 (2)C13—C201.429 (3)
N1—C91.296 (3)C13—C141.430 (2)
N1—C101.469 (2)C14—C161.374 (3)
N2—C121.296 (2)C15—H15A0.9800
N2—C111.467 (2)C15—H15B0.9800
C1—C21.412 (3)C15—H15C0.9800
C1—C81.433 (2)C16—C171.406 (3)
C2—C31.376 (3)C16—H16A0.9500
C2—H2A0.9500C17—C191.379 (3)
C3—C51.414 (3)C18—H18A0.9800
C4—H4A0.9800C18—H18B0.9800
C4—H4B0.9800C18—H18C0.9800
C4—H4C0.9800C19—C201.420 (2)
C5—C61.372 (3)C19—H19A0.9500
C5—H5A0.9500
O1—Cu—O290.42 (6)N1—C9—C8125.09 (16)
O1—Cu—N2174.72 (6)N1—C9—H9A117.5
O2—Cu—N292.41 (6)C8—C9—H9A117.5
O1—Cu—N192.85 (7)N1—C10—C11107.92 (15)
O2—Cu—N1174.37 (7)N1—C10—H10A110.1
N2—Cu—N184.71 (7)C11—C10—H10A110.1
C1—O1—Cu127.19 (12)N1—C10—H10B110.1
C20—O2—Cu126.58 (12)C11—C10—H10B110.1
C3—O3—C4116.84 (15)H10A—C10—H10B108.4
C6—O4—C7117.37 (15)N2—C11—C10108.56 (15)
C14—O5—C15116.82 (14)N2—C11—H11A110.0
C17—O6—C18116.84 (15)C10—C11—H11A110.0
C9—N1—C10120.01 (15)N2—C11—H11B110.0
C9—N1—Cu126.26 (13)C10—C11—H11B110.0
C10—N1—Cu113.69 (12)H11A—C11—H11B108.4
C12—N2—C11120.56 (16)N2—C12—C13124.04 (16)
C12—N2—Cu126.73 (13)N2—C12—H12A118.0
C11—N2—Cu112.69 (12)C13—C12—H12A118.0
O1—C1—C2117.14 (16)C12—C13—C20122.61 (16)
O1—C1—C8123.79 (16)C12—C13—C14118.91 (16)
C2—C1—C8119.07 (16)C20—C13—C14118.19 (16)
C3—C2—C1120.24 (16)O5—C14—C16122.73 (16)
C3—C2—H2A119.9O5—C14—C13115.18 (15)
C1—C2—H2A119.9C16—C14—C13122.09 (17)
O3—C3—C2123.78 (17)O5—C15—H15A109.5
O3—C3—C5114.10 (16)O5—C15—H15B109.5
C2—C3—C5122.12 (17)H15A—C15—H15B109.5
O3—C4—H4A109.5O5—C15—H15C109.5
O3—C4—H4B109.5H15A—C15—H15C109.5
H4A—C4—H4B109.5H15B—C15—H15C109.5
O3—C4—H4C109.5C14—C16—C17118.54 (17)
H4A—C4—H4C109.5C14—C16—H16A120.7
H4B—C4—H4C109.5C17—C16—H16A120.7
C6—C5—C3118.34 (17)O6—C17—C19124.27 (17)
C6—C5—H5A120.8O6—C17—C16113.88 (16)
C3—C5—H5A120.8C19—C17—C16121.85 (16)
O4—C6—C5123.59 (17)O6—C18—H18A109.5
O4—C6—C8114.43 (16)O6—C18—H18B109.5
C5—C6—C8121.97 (17)H18A—C18—H18B109.5
O4—C7—H7A109.5O6—C18—H18C109.5
O4—C7—H7B109.5H18A—C18—H18C109.5
H7A—C7—H7B109.5H18B—C18—H18C109.5
O4—C7—H7C109.5C17—C19—C20120.29 (17)
H7A—C7—H7C109.5C17—C19—H19A119.9
H7B—C7—H7C109.5C20—C19—H19A119.9
C9—C8—C6118.82 (16)O2—C20—C19116.76 (16)
C9—C8—C1122.92 (16)O2—C20—C13124.37 (16)
C6—C8—C1118.23 (16)C19—C20—C13118.86 (16)
O2—Cu—O1—C1160.64 (16)Cu—N1—C9—C83.0 (3)
N1—Cu—O1—C114.77 (16)C6—C8—C9—N1175.14 (18)
O1—Cu—O2—C20158.92 (16)C1—C8—C9—N16.6 (3)
O1—Cu—N1—C911.10 (17)C9—N1—C10—C11154.24 (17)
N2—Cu—N1—C9173.59 (17)Cu—N1—C10—C1127.89 (19)
O1—Cu—N1—C10166.61 (13)C12—N2—C11—C10149.54 (18)
N2—Cu—N1—C108.70 (13)Cu—N2—C11—C1032.21 (19)
O2—Cu—N2—C1216.82 (17)N1—C10—C11—N237.8 (2)
N1—Cu—N2—C12168.03 (17)C11—N2—C12—C13170.68 (17)
O2—Cu—N2—C11161.30 (13)Cu—N2—C12—C137.3 (3)
N1—Cu—N2—C1113.86 (13)N2—C12—C13—C208.9 (3)
Cu—O1—C1—C2169.17 (13)N2—C12—C13—C14177.42 (18)
Cu—O1—C1—C810.4 (3)C15—O5—C14—C161.6 (3)
O1—C1—C2—C3179.68 (17)C15—O5—C14—C13178.48 (16)
C8—C1—C2—C30.8 (3)C12—C13—C14—O58.4 (2)
C4—O3—C3—C20.5 (3)C20—C13—C14—O5177.63 (15)
C4—O3—C3—C5180.00 (17)C12—C13—C14—C16171.67 (17)
C1—C2—C3—O3178.78 (17)C20—C13—C14—C162.3 (3)
C1—C2—C3—C51.8 (3)O5—C14—C16—C17178.48 (16)
O3—C3—C5—C6179.16 (17)C13—C14—C16—C171.6 (3)
C2—C3—C5—C61.3 (3)C18—O6—C17—C197.5 (3)
C7—O4—C6—C513.4 (3)C18—O6—C17—C16172.08 (17)
C7—O4—C6—C8166.65 (16)C14—C16—C17—O6176.78 (16)
C3—C5—C6—O4179.92 (17)C14—C16—C17—C193.7 (3)
C3—C5—C6—C80.1 (3)O6—C17—C19—C20178.80 (17)
O4—C6—C8—C92.7 (3)C16—C17—C19—C201.7 (3)
C5—C6—C8—C9177.33 (18)Cu—O2—C20—C19174.25 (12)
O4—C6—C8—C1179.00 (16)Cu—O2—C20—C137.1 (3)
C5—C6—C8—C11.0 (3)C17—C19—C20—O2178.98 (17)
O1—C1—C8—C92.8 (3)C17—C19—C20—C132.3 (3)
C2—C1—C8—C9177.69 (17)C12—C13—C20—O29.1 (3)
O1—C1—C8—C6178.94 (17)C14—C13—C20—O2177.20 (17)
C2—C1—C8—C60.6 (3)C12—C13—C20—C19169.52 (17)
C10—N1—C9—C8174.61 (17)C14—C13—C20—C194.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O5i0.982.573.439 (2)148
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C20H22N2O6)]
Mr449.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)7.3953 (2), 15.8514 (5), 15.7042 (4)
β (°) 91.842 (3)
V3)1839.97 (10)
Z4
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.51 × 0.29 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.281, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7277, 3608, 3370
Rint0.023
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.04
No. of reflections3608
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.67

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu—O11.9059 (13)Cu—N21.9314 (16)
Cu—O21.9070 (13)Cu—N11.9347 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O5i0.982.573.439 (2)148.4
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAssey, G. E., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLabisbal, E., Romero, J., García-Vázquez, J. A., Sousa, A., Castellano, E. E. & Zukerman-Schpector, J. (1994). Acta Cryst. C50, 1043–1044.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds