organic compounds
7,9-Dichloro-6H,12H-indolo[2,1-b]quinazoline-6,12-dione
aDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA
*Correspondence e-mail: pgrundt@d.umn.edu, vnemykin@d.umn.edu
There are two independent molecules in the 15H6Cl2N2O2. The conjugated four-ring system is essentially planar in each molecule [maximum deviation = 0.089 (2) Å]. In the crystal, weak intermolecular C—H⋯Cl, C—H⋯O and C—H⋯·N interactions help to stabilize the packing.
of the title compound, CRelated literature
For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979); Mitscher & Baker (1998); Kataoka et al. (2001); Bandekar et al. (2010); Sharma et al. (2002); Motoki et al. (2005); Yu et al. (2009); Bhattacharjee et al. (2002); Scovill et al. (2002); Bhattacharjee et al. (2004); Pitzer et al. (2000). For the extinction correction, see: Larson (1970).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku Americas, 2009); cell HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536810018969/jj2032sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018969/jj2032Isup2.hkl
The title compound was prepared by condensation of isatoic anhydride and 4,6-dichloroisatin in refluxing benzene with triethylamine as a co-solvent (Krivogorsky et al., 2008). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an acetone solution of the compound.
In the absence of significant
Friedel pairs were merged. The H atoms were all located in a difference map, but were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.The natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives have been shown to possess antibacterial (Honda et al., 1979), Mitscher & Baker, 1998, Kataoka et al., 2001, Bandekar et al., 2010) and antitumor Sharma et al., 2002, Motoki et al., 2005, Yu et al., 2009) properties. Of particular interest is the discovery by several groups that this class of compounds also inibits the growth of parasites such as Leishmania donovani (Bhattacharjee et al., 2002), Trypanosoma brucei (Scovill et al., 2002), and Plasmodium falciparum (Bhattacharjee et al., 2004, Pitzer et al., 2000), and more recently by our laboratory, Toxoplasma gondii (Krivogorsky et al., 2008). In our continued interest to characterize the structure-activity-relationship of this class of compounds and to reveal the underlying mechanism, we have synthesized the 7,9-dichloro analog of tryptanthrin.
The title compound, (I), C15H6Cl2N2O2, crystallizes in the P-1
with two independent molecules in the cell. It consists of a 7,9-dichloroindolo ring fused to a quinazoline ring with a dione group at the 6 and 12 poisitions (IUPAC nomenclature). C—Cl bond distances have been observed between 1.7272 (19) and 1.7358 (19) Å with Cl1—C7 distances being slightly shorter as compared to Cl2—C9 bond lengths. C=O bonds have clear double bond character and were observed between 1.211 (2) and 1.221 (2) Å with C=O bonds in the five-membered ring being slightly shorter as compared to those at the six-membered rings. N5—C14 bond distances in molecules A and B have clear double bond character. Four weak intermolecular interactions are observed in (I), (Table 2) that help stabilize crystal packing.For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979); Mitscher & Baker (1998); Kataoka et al. (2001); Bandekar et al. (2010); Sharma et al. (2002); Motoki et al. (2005); Yu et al. (2009); Bhattacharjee et al. (2002); Scovill et al. (2002); Bhattacharjee et al. (2004); Pitzer et al. (2000). For the extinction correction, see: Larson (1970).
Data collection: CrystalClear (Rigaku Americas, 2009); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear (Rigaku Americas, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. | |
Fig. 2. Packing diagram for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omited for clarity. |
C15H6Cl2N2O2 | Z = 4 |
Mr = 317.13 | F(000) = 640 |
Triclinic, P1 | Dx = 1.727 Mg m−3 |
Hall symbol: -P 1 | Melting point: 200 K |
a = 7.0179 (2) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.7276 (3) Å | Cell parameters from 28356 reflections |
c = 17.2338 (12) Å | θ = 3.1–27.5° |
α = 94.908 (7)° | µ = 0.54 mm−1 |
β = 96.709 (7)° | T = 100 K |
γ = 107.395 (8)° | Block, yellow |
V = 1219.66 (12) Å3 | 0.54 × 0.48 × 0.35 mm |
Rigaku R-AXIS RAPID-II imaging plate diffractometer | 5585 independent reflections |
Radiation source: Sealed tube (Mo) | 4830 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.633, Tmax = 0.899 | l = −22→22 |
31502 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | All H-atom parameters refined |
wR(F2) = 0.082 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.02P)2 + 2.09P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
5571 reflections | Δρmax = 0.53 e Å−3 |
416 parameters | Δρmin = −0.36 e Å−3 |
84 restraints | Extinction correction: Larson (1970), Equation 22 |
0 constraints | Extinction coefficient: 43 (4) |
Primary atom site location: structure-invariant direct methods |
C15H6Cl2N2O2 | γ = 107.395 (8)° |
Mr = 317.13 | V = 1219.66 (12) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.0179 (2) Å | Mo Kα radiation |
b = 10.7276 (3) Å | µ = 0.54 mm−1 |
c = 17.2338 (12) Å | T = 100 K |
α = 94.908 (7)° | 0.54 × 0.48 × 0.35 mm |
β = 96.709 (7)° |
Rigaku R-AXIS RAPID-II imaging plate diffractometer | 5585 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4830 reflections with I > 2σ(I) |
Tmin = 0.633, Tmax = 0.899 | Rint = 0.049 |
31502 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 84 restraints |
wR(F2) = 0.082 | All H-atom parameters refined |
S = 1.00 | Δρmax = 0.53 e Å−3 |
5571 reflections | Δρmin = −0.36 e Å−3 |
416 parameters |
Experimental. The crystal was placed in the cold stream of an X-stream 2000 liquid nitrogen generator with open-flow nitrogen cryostat with a nominal stability of 0.1 K. 1H NMR (DMSO-d6, 500 MHz): d 7.75-7.78 (m, 2H), 7.98-8.00 (m, 2H), 8.33 (d, J 7.5, 1H), 8.41 (d, J 1.9, 1H). 13C NMR (DMSO-d6, 125 MHz): d 115.6, 118.3, 122.6, 127.0, 127.4, 129.9, 130.1, 132.3, 135.6, 141.6, 144.4, 146.1, 147.3, 157.6, 178.4. |
Refinement. Crystals for Windows program eliminates all reflections with [Sin theta/lambda]**2 less than 0.01 in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 14 reflections, which resulted in difference between 5585 measured unique reflections and 5571 reflections used for refinement. |
x | y | z | Uiso*/Ueq | ||
Cl1A | 0.12767 (7) | 0.19849 (5) | −0.30745 (3) | 0.0154 | |
Cl2A | 0.22470 (8) | −0.16786 (5) | −0.51632 (3) | 0.0203 | |
O1A | 0.5092 (2) | 0.25603 (14) | −0.16905 (8) | 0.0172 | |
O2A | 0.8111 (2) | −0.15104 (14) | −0.30107 (8) | 0.0181 | |
C1A | 1.1319 (3) | −0.08669 (19) | −0.17069 (12) | 0.0162 | |
C2A | 1.2819 (3) | −0.0485 (2) | −0.10617 (12) | 0.0183 | |
C3A | 1.2850 (3) | 0.0523 (2) | −0.04843 (12) | 0.0208 | |
C4A | 1.1391 (3) | 0.1145 (2) | −0.05462 (12) | 0.0185 | |
N5A | 0.8403 (2) | 0.14280 (16) | −0.12490 (10) | 0.0151 | |
C6A | 0.5402 (3) | 0.16629 (19) | −0.20790 (11) | 0.0137 | |
C7A | 0.2640 (3) | 0.09548 (18) | −0.33341 (11) | 0.0137 | |
C8A | 0.1974 (3) | 0.01396 (19) | −0.40464 (11) | 0.0154 | |
C9A | 0.3055 (3) | −0.06961 (19) | −0.42595 (11) | 0.0151 | |
C10A | 0.4729 (3) | −0.07980 (19) | −0.37831 (11) | 0.0146 | |
N11A | 0.6952 (2) | 0.01079 (16) | −0.24828 (9) | 0.0130 | |
C12A | 0.8273 (3) | −0.06404 (19) | −0.24787 (11) | 0.0140 | |
C13A | 0.9855 (3) | 0.07665 (19) | −0.11960 (11) | 0.0142 | |
C14A | 0.7090 (3) | 0.10816 (18) | −0.18691 (11) | 0.0134 | |
C15A | 0.4331 (3) | 0.09159 (18) | −0.28464 (11) | 0.0129 | |
C16A | 0.5321 (3) | 0.00196 (19) | −0.30772 (11) | 0.0141 | |
C17A | 0.9828 (3) | −0.02472 (18) | −0.17809 (11) | 0.0139 | |
Cl1B | 0.89170 (7) | 0.34858 (5) | 0.34019 (3) | 0.0173 | |
Cl2B | 0.70190 (7) | 0.70635 (5) | 0.52404 (3) | 0.0192 | |
O1B | 0.5337 (2) | 0.26130 (14) | 0.19080 (9) | 0.0189 | |
O2B | 0.1512 (2) | 0.64871 (14) | 0.28391 (8) | 0.0169 | |
C1B | −0.1458 (3) | 0.55847 (19) | 0.14382 (12) | 0.0163 | |
C2B | −0.2819 (3) | 0.5080 (2) | 0.07583 (12) | 0.0193 | |
C3B | −0.2635 (3) | 0.4038 (2) | 0.02547 (12) | 0.0192 | |
C4B | −0.1086 (3) | 0.3521 (2) | 0.04302 (12) | 0.0176 | |
N5B | 0.1872 (3) | 0.34718 (16) | 0.12667 (10) | 0.0153 | |
C6B | 0.4831 (3) | 0.34864 (19) | 0.22288 (11) | 0.0148 | |
C7B | 0.7333 (3) | 0.44170 (19) | 0.35489 (12) | 0.0146 | |
C8B | 0.7737 (3) | 0.5271 (2) | 0.42418 (12) | 0.0165 | |
C9B | 0.6463 (3) | 0.60188 (19) | 0.43630 (11) | 0.0151 | |
C10B | 0.4808 (3) | 0.59806 (19) | 0.38219 (11) | 0.0144 | |
N11B | 0.2930 (2) | 0.49043 (16) | 0.24801 (9) | 0.0130 | |
C12B | 0.1523 (3) | 0.55777 (19) | 0.23644 (11) | 0.0138 | |
C13B | 0.0312 (3) | 0.40238 (18) | 0.11173 (11) | 0.0139 | |
C14B | 0.3049 (3) | 0.39217 (19) | 0.19191 (11) | 0.0140 | |
C15B | 0.5689 (3) | 0.43274 (19) | 0.29911 (11) | 0.0139 | |
C16B | 0.4478 (3) | 0.51304 (19) | 0.31342 (11) | 0.0135 | |
C17B | 0.0111 (3) | 0.50602 (19) | 0.16292 (11) | 0.0141 | |
H1A | 1.130 (2) | −0.1539 (13) | −0.2094 (9) | 0.0204* | |
H2A | 1.380 (2) | −0.0909 (13) | −0.1021 (9) | 0.0206* | |
H3A | 1.388 (2) | 0.0793 (14) | −0.0051 (9) | 0.0251* | |
H4A | 1.142 (2) | 0.1815 (13) | −0.0153 (9) | 0.0215* | |
H5A | 0.083 (2) | 0.0145 (13) | −0.4368 (9) | 0.0178* | |
H6A | 0.541 (2) | −0.1385 (13) | −0.3938 (9) | 0.0187* | |
H1B | −0.159 (2) | 0.6286 (13) | 0.1773 (9) | 0.0204* | |
H2B | −0.388 (2) | 0.5439 (14) | 0.0634 (9) | 0.0248* | |
H3B | −0.355 (2) | 0.3688 (14) | −0.0209 (9) | 0.0224* | |
H4B | −0.094 (2) | 0.2847 (13) | 0.0083 (9) | 0.0208* | |
H5B | 0.885 (2) | 0.5353 (13) | 0.4615 (9) | 0.0195* | |
H6B | 0.398 (2) | 0.6491 (12) | 0.3915 (9) | 0.0160* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.0147 (2) | 0.0165 (2) | 0.0164 (2) | 0.00768 (18) | 0.00158 (17) | 0.00171 (18) |
Cl2A | 0.0192 (2) | 0.0251 (3) | 0.0143 (2) | 0.0077 (2) | −0.00299 (18) | −0.00561 (19) |
O1A | 0.0188 (7) | 0.0163 (7) | 0.0172 (7) | 0.0078 (6) | 0.0020 (6) | −0.0021 (6) |
O2A | 0.0182 (7) | 0.0184 (7) | 0.0177 (7) | 0.0084 (6) | 0.0001 (6) | −0.0036 (6) |
C1A | 0.0174 (10) | 0.0143 (9) | 0.0181 (10) | 0.0060 (8) | 0.0036 (8) | 0.0031 (8) |
C2A | 0.0166 (10) | 0.0196 (10) | 0.0207 (10) | 0.0089 (8) | 0.0013 (8) | 0.0042 (8) |
C3A | 0.0202 (10) | 0.0255 (11) | 0.0166 (10) | 0.0097 (9) | −0.0037 (8) | 0.0014 (8) |
C4A | 0.0196 (10) | 0.0208 (10) | 0.0138 (9) | 0.0067 (8) | −0.0007 (8) | −0.0015 (8) |
N5A | 0.0154 (8) | 0.0161 (8) | 0.0138 (8) | 0.0061 (7) | 0.0005 (6) | 0.0000 (6) |
C6A | 0.0131 (9) | 0.0135 (9) | 0.0146 (9) | 0.0039 (7) | 0.0020 (7) | 0.0031 (7) |
C7A | 0.0137 (9) | 0.0125 (9) | 0.0154 (9) | 0.0042 (7) | 0.0033 (7) | 0.0026 (7) |
C8A | 0.0122 (9) | 0.0187 (10) | 0.0144 (9) | 0.0048 (8) | −0.0011 (7) | 0.0024 (8) |
C9A | 0.0150 (9) | 0.0151 (9) | 0.0121 (9) | 0.0016 (8) | 0.0004 (7) | −0.0015 (7) |
C10A | 0.0134 (9) | 0.0133 (9) | 0.0162 (9) | 0.0039 (7) | 0.0012 (7) | −0.0005 (7) |
N11A | 0.0126 (8) | 0.0131 (8) | 0.0122 (8) | 0.0038 (6) | −0.0005 (6) | −0.0011 (6) |
C12A | 0.0120 (9) | 0.0138 (9) | 0.0156 (9) | 0.0025 (7) | 0.0027 (7) | 0.0024 (7) |
C13A | 0.0140 (9) | 0.0137 (9) | 0.0150 (9) | 0.0043 (7) | 0.0021 (7) | 0.0030 (7) |
C14A | 0.0145 (9) | 0.0116 (9) | 0.0147 (9) | 0.0046 (7) | 0.0028 (7) | 0.0010 (7) |
C15A | 0.0124 (9) | 0.0121 (9) | 0.0138 (9) | 0.0028 (7) | 0.0027 (7) | 0.0024 (7) |
C16A | 0.0125 (9) | 0.0145 (9) | 0.0147 (9) | 0.0033 (7) | 0.0013 (7) | 0.0027 (7) |
C17A | 0.0133 (9) | 0.0130 (9) | 0.0148 (9) | 0.0034 (7) | 0.0014 (7) | 0.0028 (7) |
Cl1B | 0.0148 (2) | 0.0186 (2) | 0.0217 (2) | 0.00967 (18) | 0.00275 (18) | 0.00399 (19) |
Cl2B | 0.0183 (2) | 0.0231 (3) | 0.0153 (2) | 0.00847 (19) | −0.00197 (18) | −0.00346 (19) |
O1B | 0.0201 (7) | 0.0182 (7) | 0.0213 (7) | 0.0103 (6) | 0.0049 (6) | 0.0004 (6) |
O2B | 0.0170 (7) | 0.0174 (7) | 0.0167 (7) | 0.0085 (6) | −0.0007 (5) | −0.0024 (6) |
C1B | 0.0173 (9) | 0.0151 (9) | 0.0173 (9) | 0.0070 (8) | 0.0013 (8) | 0.0010 (8) |
C2B | 0.0168 (10) | 0.0214 (10) | 0.0210 (10) | 0.0097 (8) | −0.0012 (8) | 0.0028 (8) |
C3B | 0.0179 (10) | 0.0207 (10) | 0.0162 (10) | 0.0052 (8) | −0.0038 (8) | −0.0006 (8) |
C4B | 0.0207 (10) | 0.0163 (9) | 0.0157 (9) | 0.0068 (8) | 0.0010 (8) | −0.0003 (8) |
N5B | 0.0162 (8) | 0.0149 (8) | 0.0153 (8) | 0.0059 (7) | 0.0022 (6) | 0.0011 (7) |
C6B | 0.0120 (9) | 0.0157 (9) | 0.0165 (9) | 0.0035 (7) | 0.0031 (7) | 0.0038 (8) |
C7B | 0.0126 (9) | 0.0141 (9) | 0.0197 (10) | 0.0065 (7) | 0.0045 (7) | 0.0048 (8) |
C8B | 0.0148 (9) | 0.0190 (10) | 0.0156 (9) | 0.0057 (8) | −0.0010 (8) | 0.0039 (8) |
C9B | 0.0160 (9) | 0.0143 (9) | 0.0128 (9) | 0.0024 (7) | 0.0013 (7) | −0.0001 (7) |
C10B | 0.0123 (9) | 0.0158 (9) | 0.0157 (9) | 0.0055 (7) | 0.0022 (7) | 0.0009 (8) |
N11B | 0.0117 (7) | 0.0142 (8) | 0.0128 (8) | 0.0048 (6) | 0.0002 (6) | −0.0001 (6) |
C12B | 0.0120 (9) | 0.0141 (9) | 0.0155 (9) | 0.0039 (7) | 0.0022 (7) | 0.0027 (7) |
C13B | 0.0145 (9) | 0.0117 (9) | 0.0158 (9) | 0.0035 (7) | 0.0030 (7) | 0.0034 (7) |
C14B | 0.0141 (9) | 0.0126 (9) | 0.0166 (9) | 0.0053 (7) | 0.0049 (7) | 0.0022 (7) |
C15B | 0.0124 (9) | 0.0137 (9) | 0.0162 (9) | 0.0045 (7) | 0.0034 (7) | 0.0030 (7) |
C16B | 0.0106 (8) | 0.0144 (9) | 0.0152 (9) | 0.0034 (7) | 0.0009 (7) | 0.0029 (7) |
C17B | 0.0145 (9) | 0.0137 (9) | 0.0144 (9) | 0.0045 (7) | 0.0024 (7) | 0.0034 (7) |
Cl1A—C7A | 1.7272 (19) | C1A—C2A | 1.379 (3) |
Cl2A—C9A | 1.7358 (19) | C1A—H1A | 0.937 (15) |
Cl1B—C7B | 1.7276 (19) | C2A—C3A | 1.399 (3) |
Cl2B—C9B | 1.734 (2) | C2A—H2A | 0.929 (16) |
O1A—C6A | 1.213 (2) | C3A—C4A | 1.379 (3) |
O2A—C12A | 1.221 (2) | C3A—H3A | 0.937 (16) |
O1B—C6B | 1.211 (2) | C4A—C13A | 1.399 (3) |
O2B—C12B | 1.221 (2) | C4A—H4A | 0.937 (15) |
N5A—C13A | 1.405 (2) | C14A—C6A | 1.518 (3) |
N5A—C14A | 1.275 (2) | C15B—C7B | 1.387 (3) |
N11A—C16A | 1.419 (2) | C15B—C16B | 1.405 (3) |
N11A—C12A | 1.396 (2) | C15B—C6B | 1.480 (3) |
N11A—C14A | 1.395 (2) | C7B—C8B | 1.387 (3) |
N5B—C13B | 1.401 (2) | C8B—C9B | 1.389 (3) |
N5B—C14B | 1.277 (3) | C8B—H5B | 0.931 (15) |
N11B—C16B | 1.421 (2) | C9B—C10B | 1.390 (3) |
N11B—C12B | 1.394 (2) | C10B—C16B | 1.384 (3) |
N11B—C14B | 1.396 (2) | C10B—H6B | 0.930 (15) |
C15A—C7A | 1.386 (3) | C12B—C17B | 1.467 (3) |
C15A—C16A | 1.401 (3) | C17B—C1B | 1.399 (3) |
C15A—C6A | 1.477 (3) | C17B—C13B | 1.410 (3) |
C7A—C8A | 1.389 (3) | C1B—C2B | 1.378 (3) |
C8A—C9A | 1.389 (3) | C1B—H1B | 0.942 (15) |
C8A—H5A | 0.925 (15) | C2B—C3B | 1.402 (3) |
C9A—C10A | 1.390 (3) | C2B—H2B | 0.947 (16) |
C10A—C16A | 1.380 (3) | C3B—C4B | 1.377 (3) |
C10A—H6A | 0.938 (15) | C3B—H3B | 0.937 (16) |
C12A—C17A | 1.465 (3) | C4B—C13B | 1.399 (3) |
C17A—C1A | 1.397 (3) | C4B—H4B | 0.936 (16) |
C17A—C13A | 1.412 (3) | C14B—C6B | 1.517 (3) |
Cl1A—C7A—C15A | 121.65 (15) | Cl1B—C7B—C15B | 121.43 (15) |
Cl1A—C7A—C8A | 118.05 (15) | Cl1B—C7B—C8B | 118.59 (15) |
C15A—C7A—C8A | 120.30 (18) | C15B—C7B—C8B | 119.98 (18) |
C7A—C15A—C6A | 132.59 (18) | C7B—C15B—C6B | 132.47 (18) |
C7A—C15A—C16A | 118.79 (17) | C7B—C15B—C16B | 118.96 (18) |
C6A—C15A—C16A | 108.62 (16) | C6B—C15B—C16B | 108.54 (16) |
C15A—C6A—O1A | 129.87 (18) | C15B—C6B—O1B | 130.04 (18) |
C15A—C6A—C14A | 104.37 (15) | C15B—C6B—C14B | 104.47 (16) |
O1A—C6A—C14A | 125.75 (17) | O1B—C6B—C14B | 125.46 (18) |
C6A—C14A—N5A | 126.26 (17) | C6B—C14B—N11B | 107.35 (16) |
C6A—C14A—N11A | 107.38 (16) | C6B—C14B—N5B | 126.40 (17) |
N5A—C14A—N11A | 126.35 (17) | N11B—C14B—N5B | 126.25 (17) |
C14A—N5A—C13A | 115.81 (17) | C14B—N11B—C16B | 110.20 (15) |
N5A—C13A—C4A | 118.48 (17) | C14B—N11B—C12B | 122.59 (16) |
N5A—C13A—C17A | 122.13 (17) | C16B—N11B—C12B | 127.14 (16) |
C4A—C13A—C17A | 119.38 (18) | N11B—C16B—C15B | 109.35 (16) |
C13A—C4A—C3A | 119.69 (19) | N11B—C16B—C10B | 127.71 (17) |
C13A—C4A—H4A | 120.2 (10) | C15B—C16B—C10B | 122.94 (18) |
C3A—C4A—H4A | 120.2 (10) | C16B—C10B—C9B | 115.54 (18) |
C4A—C3A—C2A | 120.96 (19) | C16B—C10B—H6B | 122.2 (10) |
C4A—C3A—H3A | 119.0 (10) | C9B—C10B—H6B | 122.3 (10) |
C2A—C3A—H3A | 120.0 (10) | C10B—C9B—C8B | 123.79 (18) |
C3A—C2A—C1A | 120.04 (19) | C10B—C9B—Cl2B | 119.12 (15) |
C3A—C2A—H2A | 121.2 (10) | C8B—C9B—Cl2B | 117.08 (15) |
C1A—C2A—H2A | 118.8 (10) | C9B—C8B—C7B | 118.75 (18) |
C2A—C1A—C17A | 119.86 (19) | C9B—C8B—H5B | 120.6 (10) |
C2A—C1A—H1A | 119.9 (10) | C7B—C8B—H5B | 120.6 (10) |
C17A—C1A—H1A | 120.2 (10) | N11B—C12B—O2B | 121.91 (17) |
C13A—C17A—C1A | 120.07 (18) | N11B—C12B—C17B | 112.41 (16) |
C13A—C17A—C12A | 120.66 (17) | O2B—C12B—C17B | 125.68 (17) |
C1A—C17A—C12A | 119.26 (17) | C12B—C17B—C13B | 120.36 (17) |
C17A—C12A—N11A | 112.36 (16) | C12B—C17B—C1B | 119.93 (17) |
C17A—C12A—O2A | 125.53 (18) | C13B—C17B—C1B | 119.70 (18) |
N11A—C12A—O2A | 122.11 (17) | C17B—C13B—N5B | 122.53 (17) |
C12A—N11A—C14A | 122.65 (16) | C17B—C13B—C4B | 119.38 (18) |
C12A—N11A—C16A | 127.27 (16) | N5B—C13B—C4B | 118.09 (17) |
C14A—N11A—C16A | 110.08 (15) | C13B—N5B—C14B | 115.64 (16) |
N11A—C16A—C15A | 109.50 (16) | C13B—C4B—C3B | 120.22 (19) |
N11A—C16A—C10A | 127.57 (18) | C13B—C4B—H4B | 119.5 (10) |
C15A—C16A—C10A | 122.93 (18) | C3B—C4B—H4B | 120.2 (10) |
C16A—C10A—C9A | 115.95 (18) | C4B—C3B—C2B | 120.39 (19) |
C16A—C10A—H6A | 122.5 (10) | C4B—C3B—H3B | 118.8 (10) |
C9A—C10A—H6A | 121.5 (10) | C2B—C3B—H3B | 120.8 (10) |
C10A—C9A—C8A | 123.45 (18) | C3B—C2B—C1B | 120.12 (19) |
C10A—C9A—Cl2A | 118.47 (15) | C3B—C2B—H2B | 120.2 (10) |
C8A—C9A—Cl2A | 118.07 (15) | C1B—C2B—H2B | 119.6 (10) |
C9A—C8A—C7A | 118.51 (17) | C17B—C1B—C2B | 120.18 (18) |
C9A—C8A—H5A | 120.8 (10) | C17B—C1B—H1B | 120.2 (10) |
C7A—C8A—H5A | 120.6 (10) | C2B—C1B—H1B | 119.6 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1B—H1B···Cl1Ai | 0.94 (2) | 2.73 (2) | 3.637 (2) | 162 (1) |
C2A—H2A···O1Bii | 0.93 (2) | 2.54 (2) | 3.264 (3) | 135 (1) |
C4B—H4B···N5Aiii | 0.94 (2) | 2.56 (2) | 3.422 (3) | 154 (1) |
C10A—H6A···Cl2Biv | 0.94 (2) | 2.67 (2) | 3.585 (2) | 165 (1) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+2, −y, −z; (iii) x−1, y, z; (iv) x, y−1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C15H6Cl2N2O2 |
Mr | 317.13 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.0179 (2), 10.7276 (3), 17.2338 (12) |
α, β, γ (°) | 94.908 (7), 96.709 (7), 107.395 (8) |
V (Å3) | 1219.66 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.54 |
Crystal size (mm) | 0.54 × 0.48 × 0.35 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-II imaging plate |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.633, 0.899 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31502, 5585, 4830 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.082, 1.00 |
No. of reflections | 5571 |
No. of parameters | 416 |
No. of restraints | 84 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.53, −0.36 |
Computer programs: CrystalClear (Rigaku Americas, 2009), HKL-2000 (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
Cl1A—C7A | 1.7272 (19) | N5A—C14A | 1.275 (2) |
Cl2A—C9A | 1.7358 (19) | N11A—C16A | 1.419 (2) |
Cl1B—C7B | 1.7276 (19) | N11A—C12A | 1.396 (2) |
Cl2B—C9B | 1.734 (2) | N11A—C14A | 1.395 (2) |
O1A—C6A | 1.213 (2) | N5B—C13B | 1.401 (2) |
O2A—C12A | 1.221 (2) | N5B—C14B | 1.277 (3) |
O1B—C6B | 1.211 (2) | N11B—C16B | 1.421 (2) |
O2B—C12B | 1.221 (2) | N11B—C12B | 1.394 (2) |
N5A—C13A | 1.405 (2) | N11B—C14B | 1.396 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1B—H1B···Cl1Ai | 0.942 (15) | 2.729 (15) | 3.637 (2) | 162.0 (12) |
C2A—H2A···O1Bii | 0.929 (16) | 2.539 (15) | 3.264 (3) | 134.9 (12) |
C4B—H4B···N5Aiii | 0.936 (16) | 2.556 (15) | 3.422 (3) | 153.9 (12) |
C10A—H6A···Cl2Biv | 0.938 (15) | 2.673 (15) | 3.585 (2) | 164.8 (12) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+2, −y, −z; (iii) x−1, y, z; (iv) x, y−1, z−1. |
Acknowledgements
This study was supported by Stanley Medical Research Institute (grant 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).
References
Bandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem. 53, 3558–3565. Web of Science CrossRef CAS PubMed Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bhattacharjee, A. K., Hartell, M. G., Nichols, D. A., Hicks, R. P., Stanton, B., Van Hamont, J. E. & Milhous, W. K. (2004). Eur. J. Med. Chem. 39, 59–67. Web of Science CrossRef PubMed CAS Google Scholar
Bhattacharjee, A. K., Skanchy, D. J., Jennings, B., Hudson, T. H., Brendle, J. J. & Werbovetz, K. A. (2002). Bioorg. Med. Chem. 10, 1979–1989. Web of Science CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172–174. CrossRef CAS PubMed Web of Science Google Scholar
Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M. & Kurimoto, M. (2001). J. Gastroenterol. 36, 5–9. Web of Science CrossRef PubMed CAS Google Scholar
Krivogorsky, B., Grundt, P., Yolken, R. & Jones-Brando, L. (2008). Antimicrob. Agents Chemother. 52, 4466–4469. Web of Science CrossRef PubMed CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Mitscher, L. A. & Baker, W. R. (1998). Pure Appl. Chem. 70, 365–371. Web of Science CrossRef CAS Google Scholar
Motoki, T., Takami, Y., Yagi, Y., Tai, A., Yamamoto, I. & Gohda, E. (2005). Biol. Pharm. Bull. 28, 260–266. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pitzer, K. K., Scovill, J. P., Kyle, D. E. & Gerena, L. (2000). [WRAIR (Walter Reid Army Institute of Research), USA]. 99-US22569 2000018769. Google Scholar
Rigaku Americas (2009). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Scovill, J., Blank, E., Konnick, M., Nenortas, E. & Shapiro, T. (2002). Antimicrob. Agents Chemother. 46, 882–883. Web of Science CrossRef PubMed CAS Google Scholar
Sharma, V. M., Prasanna, P., Adi Seshu, K. V., Renuka, B., Laxman Rao, C. V., Sunil Kumar, G., Narasimhulu, C. P., Aravind Babu, P., Puranik, R. C., Subramanyam, D., Venkateswarlu, A., Rajagopal, S., Kumar, K. B. S., Rao, C. S., Mamidi, N. V. S. R., Deevi, D. S., Ajaykumar, R. & Rajagopalan, R. (2002). Bioorg. Med. Chem. Lett. 12, 2303–2307. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Yu, S.-T., Chen, T.-M., Chern, J.-W., Tseng, S.-Y. & Chen, Y.-H. (2009). Anti-Cancer Drugs, 20, 382–388. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives have been shown to possess antibacterial (Honda et al., 1979), Mitscher & Baker, 1998, Kataoka et al., 2001, Bandekar et al., 2010) and antitumor Sharma et al., 2002, Motoki et al., 2005, Yu et al., 2009) properties. Of particular interest is the discovery by several groups that this class of compounds also inibits the growth of parasites such as Leishmania donovani (Bhattacharjee et al., 2002), Trypanosoma brucei (Scovill et al., 2002), and Plasmodium falciparum (Bhattacharjee et al., 2004, Pitzer et al., 2000), and more recently by our laboratory, Toxoplasma gondii (Krivogorsky et al., 2008). In our continued interest to characterize the structure-activity-relationship of this class of compounds and to reveal the underlying mechanism, we have synthesized the 7,9-dichloro analog of tryptanthrin.
The title compound, (I), C15H6Cl2N2O2, crystallizes in the P-1 space group with two independent molecules in the asymmetric unit cell. It consists of a 7,9-dichloroindolo ring fused to a quinazoline ring with a dione group at the 6 and 12 poisitions (IUPAC nomenclature). C—Cl bond distances have been observed between 1.7272 (19) and 1.7358 (19) Å with Cl1—C7 distances being slightly shorter as compared to Cl2—C9 bond lengths. C=O bonds have clear double bond character and were observed between 1.211 (2) and 1.221 (2) Å with C=O bonds in the five-membered ring being slightly shorter as compared to those at the six-membered rings. N5—C14 bond distances in molecules A and B have clear double bond character. Four weak intermolecular interactions are observed in (I), (Table 2) that help stabilize crystal packing.