organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,9-Di­chloro-6H,12H-indolo[2,1-b]quinazoline-6,12-dione

aDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA
*Correspondence e-mail: pgrundt@d.umn.edu, vnemykin@d.umn.edu

(Received 10 May 2010; accepted 20 May 2010; online 29 May 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H6Cl2N2O2. The conjugated four-ring system is essentially planar in each mol­ecule [maximum deviation = 0.089 (2) Å]. In the crystal, weak inter­molecular C—H⋯Cl, C—H⋯O and C—H⋯·N inter­actions help to stabilize the packing.

Related literature

For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008[Krivogorsky, B., Grundt, P., Yolken, R. & Jones-Brando, L. (2008). Antimicrob. Agents Chemother. 52, 4466-4469.]). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979[Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172-174.]); Mitscher & Baker (1998[Mitscher, L. A. & Baker, W. R. (1998). Pure Appl. Chem. 70, 365-371.]); Kataoka et al. (2001[Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M. & Kurimoto, M. (2001). J. Gastroenterol. 36, 5-9.]); Bandekar et al. (2010[Bandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem. 53, 3558-3565.]); Sharma et al. (2002[Sharma, V. M., Prasanna, P., Adi Seshu, K. V., Renuka, B., Laxman Rao, C. V., Sunil Kumar, G., Narasimhulu, C. P., Aravind Babu, P., Puranik, R. C., Subramanyam, D., Venkateswarlu, A., Rajagopal, S., Kumar, K. B. S., Rao, C. S., Mamidi, N. V. S. R., Deevi, D. S., Ajaykumar, R. & Rajagopalan, R. (2002). Bioorg. Med. Chem. Lett. 12, 2303-2307.]); Motoki et al. (2005[Motoki, T., Takami, Y., Yagi, Y., Tai, A., Yamamoto, I. & Gohda, E. (2005). Biol. Pharm. Bull. 28, 260-266.]); Yu et al. (2009[Yu, S.-T., Chen, T.-M., Chern, J.-W., Tseng, S.-Y. & Chen, Y.-H. (2009). Anti-Cancer Drugs, 20, 382-388.]); Bhattacharjee et al. (2002[Bhattacharjee, A. K., Skanchy, D. J., Jennings, B., Hudson, T. H., Brendle, J. J. & Werbovetz, K. A. (2002). Bioorg. Med. Chem. 10, 1979-1989.]); Scovill et al. (2002[Scovill, J., Blank, E., Konnick, M., Nenortas, E. & Shapiro, T. (2002). Antimicrob. Agents Chemother. 46, 882-883.]); Bhattacharjee et al. (2004[Bhattacharjee, A. K., Hartell, M. G., Nichols, D. A., Hicks, R. P., Stanton, B., Van Hamont, J. E. & Milhous, W. K. (2004). Eur. J. Med. Chem. 39, 59-67.]); Pitzer et al. (2000[Pitzer, K. K., Scovill, J. P., Kyle, D. E. & Gerena, L. (2000). [WRAIR (Walter Reid Army Institute of Research), USA]. 99-US22569 2000018769.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C15H6Cl2N2O2

  • Mr = 317.13

  • Triclinic, [P \overline 1]

  • a = 7.0179 (2) Å

  • b = 10.7276 (3) Å

  • c = 17.2338 (12) Å

  • α = 94.908 (7)°

  • β = 96.709 (7)°

  • γ = 107.395 (8)°

  • V = 1219.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.54 × 0.48 × 0.35 mm

Data collection
  • Rigaku R-AXIS RAPID-II imaging plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.633, Tmax = 0.899

  • 31502 measured reflections

  • 5585 independent reflections

  • 4830 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.00

  • 5571 reflections

  • 416 parameters

  • 84 restraints

  • All H-atom parameters refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1B⋯Cl1Ai 0.94 (2) 2.73 (2) 3.637 (2) 162 (1)
C2A—H2A⋯O1Bii 0.93 (2) 2.54 (2) 3.264 (3) 135 (1)
C4B—H4B⋯N5Aiii 0.94 (2) 2.56 (2) 3.422 (3) 154 (1)
C10A—H6A⋯Cl2Biv 0.94 (2) 2.67 (2) 3.585 (2) 165 (1)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+2, -y, -z; (iii) x-1, y, z; (iv) x, y-1, z-1.

Data collection: CrystalClear (Rigaku Americas, 2009[Rigaku Americas (2009). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: CrystalClear; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives have been shown to possess antibacterial (Honda et al., 1979), Mitscher & Baker, 1998, Kataoka et al., 2001, Bandekar et al., 2010) and antitumor Sharma et al., 2002, Motoki et al., 2005, Yu et al., 2009) properties. Of particular interest is the discovery by several groups that this class of compounds also inibits the growth of parasites such as Leishmania donovani (Bhattacharjee et al., 2002), Trypanosoma brucei (Scovill et al., 2002), and Plasmodium falciparum (Bhattacharjee et al., 2004, Pitzer et al., 2000), and more recently by our laboratory, Toxoplasma gondii (Krivogorsky et al., 2008). In our continued interest to characterize the structure-activity-relationship of this class of compounds and to reveal the underlying mechanism, we have synthesized the 7,9-dichloro analog of tryptanthrin.

The title compound, (I), C15H6Cl2N2O2, crystallizes in the P-1 space group with two independent molecules in the asymmetric unit cell. It consists of a 7,9-dichloroindolo ring fused to a quinazoline ring with a dione group at the 6 and 12 poisitions (IUPAC nomenclature). C—Cl bond distances have been observed between 1.7272 (19) and 1.7358 (19) Å with Cl1—C7 distances being slightly shorter as compared to Cl2—C9 bond lengths. C=O bonds have clear double bond character and were observed between 1.211 (2) and 1.221 (2) Å with C=O bonds in the five-membered ring being slightly shorter as compared to those at the six-membered rings. N5—C14 bond distances in molecules A and B have clear double bond character. Four weak intermolecular interactions are observed in (I), (Table 2) that help stabilize crystal packing.

Related literature top

For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979); Mitscher & Baker (1998); Kataoka et al. (2001); Bandekar et al. (2010); Sharma et al. (2002); Motoki et al. (2005); Yu et al. (2009); Bhattacharjee et al. (2002); Scovill et al. (2002); Bhattacharjee et al. (2004); Pitzer et al. (2000). For the extinction correction, see: Larson (1970).

Experimental top

The title compound was prepared by condensation of isatoic anhydride and 4,6-dichloroisatin in refluxing benzene with triethylamine as a co-solvent (Krivogorsky et al., 2008). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an acetone solution of the compound.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged. The H atoms were all located in a difference map, but were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

The natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives have been shown to possess antibacterial (Honda et al., 1979), Mitscher & Baker, 1998, Kataoka et al., 2001, Bandekar et al., 2010) and antitumor Sharma et al., 2002, Motoki et al., 2005, Yu et al., 2009) properties. Of particular interest is the discovery by several groups that this class of compounds also inibits the growth of parasites such as Leishmania donovani (Bhattacharjee et al., 2002), Trypanosoma brucei (Scovill et al., 2002), and Plasmodium falciparum (Bhattacharjee et al., 2004, Pitzer et al., 2000), and more recently by our laboratory, Toxoplasma gondii (Krivogorsky et al., 2008). In our continued interest to characterize the structure-activity-relationship of this class of compounds and to reveal the underlying mechanism, we have synthesized the 7,9-dichloro analog of tryptanthrin.

The title compound, (I), C15H6Cl2N2O2, crystallizes in the P-1 space group with two independent molecules in the asymmetric unit cell. It consists of a 7,9-dichloroindolo ring fused to a quinazoline ring with a dione group at the 6 and 12 poisitions (IUPAC nomenclature). C—Cl bond distances have been observed between 1.7272 (19) and 1.7358 (19) Å with Cl1—C7 distances being slightly shorter as compared to Cl2—C9 bond lengths. C=O bonds have clear double bond character and were observed between 1.211 (2) and 1.221 (2) Å with C=O bonds in the five-membered ring being slightly shorter as compared to those at the six-membered rings. N5—C14 bond distances in molecules A and B have clear double bond character. Four weak intermolecular interactions are observed in (I), (Table 2) that help stabilize crystal packing.

For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979); Mitscher & Baker (1998); Kataoka et al. (2001); Bandekar et al. (2010); Sharma et al. (2002); Motoki et al. (2005); Yu et al. (2009); Bhattacharjee et al. (2002); Scovill et al. (2002); Bhattacharjee et al. (2004); Pitzer et al. (2000). For the extinction correction, see: Larson (1970).

Computing details top

Data collection: CrystalClear (Rigaku Americas, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear (Rigaku Americas, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Packing diagram for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omited for clarity.
7,9-Dichloro-6H,12H-indolo[2,1-b]quinazoline-6,12-dione top
Crystal data top
C15H6Cl2N2O2Z = 4
Mr = 317.13F(000) = 640
Triclinic, P1Dx = 1.727 Mg m3
Hall symbol: -P 1Melting point: 200 K
a = 7.0179 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.7276 (3) ÅCell parameters from 28356 reflections
c = 17.2338 (12) Åθ = 3.1–27.5°
α = 94.908 (7)°µ = 0.54 mm1
β = 96.709 (7)°T = 100 K
γ = 107.395 (8)°Block, yellow
V = 1219.66 (12) Å30.54 × 0.48 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID-II imaging plate
diffractometer
5585 independent reflections
Radiation source: Sealed tube (Mo)4830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.633, Tmax = 0.899l = 2222
31502 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.082 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.02P)2 + 2.09P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00(Δ/σ)max = 0.001
5571 reflectionsΔρmax = 0.53 e Å3
416 parametersΔρmin = 0.36 e Å3
84 restraintsExtinction correction: Larson (1970), Equation 22
0 constraintsExtinction coefficient: 43 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H6Cl2N2O2γ = 107.395 (8)°
Mr = 317.13V = 1219.66 (12) Å3
Triclinic, P1Z = 4
a = 7.0179 (2) ÅMo Kα radiation
b = 10.7276 (3) ŵ = 0.54 mm1
c = 17.2338 (12) ÅT = 100 K
α = 94.908 (7)°0.54 × 0.48 × 0.35 mm
β = 96.709 (7)°
Data collection top
Rigaku R-AXIS RAPID-II imaging plate
diffractometer
5585 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4830 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.899Rint = 0.049
31502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03484 restraints
wR(F2) = 0.082All H-atom parameters refined
S = 1.00Δρmax = 0.53 e Å3
5571 reflectionsΔρmin = 0.36 e Å3
416 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an X-stream 2000 liquid nitrogen generator with open-flow nitrogen cryostat with a nominal stability of 0.1 K. 1H NMR (DMSO-d6, 500 MHz): d 7.75-7.78 (m, 2H), 7.98-8.00 (m, 2H), 8.33 (d, J 7.5, 1H), 8.41 (d, J 1.9, 1H). 13C NMR (DMSO-d6, 125 MHz): d 115.6, 118.3, 122.6, 127.0, 127.4, 129.9, 130.1, 132.3, 135.6, 141.6, 144.4, 146.1, 147.3, 157.6, 178.4.

Refinement. Crystals for Windows program eliminates all reflections with [Sin theta/lambda]**2 less than 0.01 in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 14 reflections, which resulted in difference between 5585 measured unique reflections and 5571 reflections used for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.12767 (7)0.19849 (5)0.30745 (3)0.0154
Cl2A0.22470 (8)0.16786 (5)0.51632 (3)0.0203
O1A0.5092 (2)0.25603 (14)0.16905 (8)0.0172
O2A0.8111 (2)0.15104 (14)0.30107 (8)0.0181
C1A1.1319 (3)0.08669 (19)0.17069 (12)0.0162
C2A1.2819 (3)0.0485 (2)0.10617 (12)0.0183
C3A1.2850 (3)0.0523 (2)0.04843 (12)0.0208
C4A1.1391 (3)0.1145 (2)0.05462 (12)0.0185
N5A0.8403 (2)0.14280 (16)0.12490 (10)0.0151
C6A0.5402 (3)0.16629 (19)0.20790 (11)0.0137
C7A0.2640 (3)0.09548 (18)0.33341 (11)0.0137
C8A0.1974 (3)0.01396 (19)0.40464 (11)0.0154
C9A0.3055 (3)0.06961 (19)0.42595 (11)0.0151
C10A0.4729 (3)0.07980 (19)0.37831 (11)0.0146
N11A0.6952 (2)0.01079 (16)0.24828 (9)0.0130
C12A0.8273 (3)0.06404 (19)0.24787 (11)0.0140
C13A0.9855 (3)0.07665 (19)0.11960 (11)0.0142
C14A0.7090 (3)0.10816 (18)0.18691 (11)0.0134
C15A0.4331 (3)0.09159 (18)0.28464 (11)0.0129
C16A0.5321 (3)0.00196 (19)0.30772 (11)0.0141
C17A0.9828 (3)0.02472 (18)0.17809 (11)0.0139
Cl1B0.89170 (7)0.34858 (5)0.34019 (3)0.0173
Cl2B0.70190 (7)0.70635 (5)0.52404 (3)0.0192
O1B0.5337 (2)0.26130 (14)0.19080 (9)0.0189
O2B0.1512 (2)0.64871 (14)0.28391 (8)0.0169
C1B0.1458 (3)0.55847 (19)0.14382 (12)0.0163
C2B0.2819 (3)0.5080 (2)0.07583 (12)0.0193
C3B0.2635 (3)0.4038 (2)0.02547 (12)0.0192
C4B0.1086 (3)0.3521 (2)0.04302 (12)0.0176
N5B0.1872 (3)0.34718 (16)0.12667 (10)0.0153
C6B0.4831 (3)0.34864 (19)0.22288 (11)0.0148
C7B0.7333 (3)0.44170 (19)0.35489 (12)0.0146
C8B0.7737 (3)0.5271 (2)0.42418 (12)0.0165
C9B0.6463 (3)0.60188 (19)0.43630 (11)0.0151
C10B0.4808 (3)0.59806 (19)0.38219 (11)0.0144
N11B0.2930 (2)0.49043 (16)0.24801 (9)0.0130
C12B0.1523 (3)0.55777 (19)0.23644 (11)0.0138
C13B0.0312 (3)0.40238 (18)0.11173 (11)0.0139
C14B0.3049 (3)0.39217 (19)0.19191 (11)0.0140
C15B0.5689 (3)0.43274 (19)0.29911 (11)0.0139
C16B0.4478 (3)0.51304 (19)0.31342 (11)0.0135
C17B0.0111 (3)0.50602 (19)0.16292 (11)0.0141
H1A1.130 (2)0.1539 (13)0.2094 (9)0.0204*
H2A1.380 (2)0.0909 (13)0.1021 (9)0.0206*
H3A1.388 (2)0.0793 (14)0.0051 (9)0.0251*
H4A1.142 (2)0.1815 (13)0.0153 (9)0.0215*
H5A0.083 (2)0.0145 (13)0.4368 (9)0.0178*
H6A0.541 (2)0.1385 (13)0.3938 (9)0.0187*
H1B0.159 (2)0.6286 (13)0.1773 (9)0.0204*
H2B0.388 (2)0.5439 (14)0.0634 (9)0.0248*
H3B0.355 (2)0.3688 (14)0.0209 (9)0.0224*
H4B0.094 (2)0.2847 (13)0.0083 (9)0.0208*
H5B0.885 (2)0.5353 (13)0.4615 (9)0.0195*
H6B0.398 (2)0.6491 (12)0.3915 (9)0.0160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0147 (2)0.0165 (2)0.0164 (2)0.00768 (18)0.00158 (17)0.00171 (18)
Cl2A0.0192 (2)0.0251 (3)0.0143 (2)0.0077 (2)0.00299 (18)0.00561 (19)
O1A0.0188 (7)0.0163 (7)0.0172 (7)0.0078 (6)0.0020 (6)0.0021 (6)
O2A0.0182 (7)0.0184 (7)0.0177 (7)0.0084 (6)0.0001 (6)0.0036 (6)
C1A0.0174 (10)0.0143 (9)0.0181 (10)0.0060 (8)0.0036 (8)0.0031 (8)
C2A0.0166 (10)0.0196 (10)0.0207 (10)0.0089 (8)0.0013 (8)0.0042 (8)
C3A0.0202 (10)0.0255 (11)0.0166 (10)0.0097 (9)0.0037 (8)0.0014 (8)
C4A0.0196 (10)0.0208 (10)0.0138 (9)0.0067 (8)0.0007 (8)0.0015 (8)
N5A0.0154 (8)0.0161 (8)0.0138 (8)0.0061 (7)0.0005 (6)0.0000 (6)
C6A0.0131 (9)0.0135 (9)0.0146 (9)0.0039 (7)0.0020 (7)0.0031 (7)
C7A0.0137 (9)0.0125 (9)0.0154 (9)0.0042 (7)0.0033 (7)0.0026 (7)
C8A0.0122 (9)0.0187 (10)0.0144 (9)0.0048 (8)0.0011 (7)0.0024 (8)
C9A0.0150 (9)0.0151 (9)0.0121 (9)0.0016 (8)0.0004 (7)0.0015 (7)
C10A0.0134 (9)0.0133 (9)0.0162 (9)0.0039 (7)0.0012 (7)0.0005 (7)
N11A0.0126 (8)0.0131 (8)0.0122 (8)0.0038 (6)0.0005 (6)0.0011 (6)
C12A0.0120 (9)0.0138 (9)0.0156 (9)0.0025 (7)0.0027 (7)0.0024 (7)
C13A0.0140 (9)0.0137 (9)0.0150 (9)0.0043 (7)0.0021 (7)0.0030 (7)
C14A0.0145 (9)0.0116 (9)0.0147 (9)0.0046 (7)0.0028 (7)0.0010 (7)
C15A0.0124 (9)0.0121 (9)0.0138 (9)0.0028 (7)0.0027 (7)0.0024 (7)
C16A0.0125 (9)0.0145 (9)0.0147 (9)0.0033 (7)0.0013 (7)0.0027 (7)
C17A0.0133 (9)0.0130 (9)0.0148 (9)0.0034 (7)0.0014 (7)0.0028 (7)
Cl1B0.0148 (2)0.0186 (2)0.0217 (2)0.00967 (18)0.00275 (18)0.00399 (19)
Cl2B0.0183 (2)0.0231 (3)0.0153 (2)0.00847 (19)0.00197 (18)0.00346 (19)
O1B0.0201 (7)0.0182 (7)0.0213 (7)0.0103 (6)0.0049 (6)0.0004 (6)
O2B0.0170 (7)0.0174 (7)0.0167 (7)0.0085 (6)0.0007 (5)0.0024 (6)
C1B0.0173 (9)0.0151 (9)0.0173 (9)0.0070 (8)0.0013 (8)0.0010 (8)
C2B0.0168 (10)0.0214 (10)0.0210 (10)0.0097 (8)0.0012 (8)0.0028 (8)
C3B0.0179 (10)0.0207 (10)0.0162 (10)0.0052 (8)0.0038 (8)0.0006 (8)
C4B0.0207 (10)0.0163 (9)0.0157 (9)0.0068 (8)0.0010 (8)0.0003 (8)
N5B0.0162 (8)0.0149 (8)0.0153 (8)0.0059 (7)0.0022 (6)0.0011 (7)
C6B0.0120 (9)0.0157 (9)0.0165 (9)0.0035 (7)0.0031 (7)0.0038 (8)
C7B0.0126 (9)0.0141 (9)0.0197 (10)0.0065 (7)0.0045 (7)0.0048 (8)
C8B0.0148 (9)0.0190 (10)0.0156 (9)0.0057 (8)0.0010 (8)0.0039 (8)
C9B0.0160 (9)0.0143 (9)0.0128 (9)0.0024 (7)0.0013 (7)0.0001 (7)
C10B0.0123 (9)0.0158 (9)0.0157 (9)0.0055 (7)0.0022 (7)0.0009 (8)
N11B0.0117 (7)0.0142 (8)0.0128 (8)0.0048 (6)0.0002 (6)0.0001 (6)
C12B0.0120 (9)0.0141 (9)0.0155 (9)0.0039 (7)0.0022 (7)0.0027 (7)
C13B0.0145 (9)0.0117 (9)0.0158 (9)0.0035 (7)0.0030 (7)0.0034 (7)
C14B0.0141 (9)0.0126 (9)0.0166 (9)0.0053 (7)0.0049 (7)0.0022 (7)
C15B0.0124 (9)0.0137 (9)0.0162 (9)0.0045 (7)0.0034 (7)0.0030 (7)
C16B0.0106 (8)0.0144 (9)0.0152 (9)0.0034 (7)0.0009 (7)0.0029 (7)
C17B0.0145 (9)0.0137 (9)0.0144 (9)0.0045 (7)0.0024 (7)0.0034 (7)
Geometric parameters (Å, º) top
Cl1A—C7A1.7272 (19)C1A—C2A1.379 (3)
Cl2A—C9A1.7358 (19)C1A—H1A0.937 (15)
Cl1B—C7B1.7276 (19)C2A—C3A1.399 (3)
Cl2B—C9B1.734 (2)C2A—H2A0.929 (16)
O1A—C6A1.213 (2)C3A—C4A1.379 (3)
O2A—C12A1.221 (2)C3A—H3A0.937 (16)
O1B—C6B1.211 (2)C4A—C13A1.399 (3)
O2B—C12B1.221 (2)C4A—H4A0.937 (15)
N5A—C13A1.405 (2)C14A—C6A1.518 (3)
N5A—C14A1.275 (2)C15B—C7B1.387 (3)
N11A—C16A1.419 (2)C15B—C16B1.405 (3)
N11A—C12A1.396 (2)C15B—C6B1.480 (3)
N11A—C14A1.395 (2)C7B—C8B1.387 (3)
N5B—C13B1.401 (2)C8B—C9B1.389 (3)
N5B—C14B1.277 (3)C8B—H5B0.931 (15)
N11B—C16B1.421 (2)C9B—C10B1.390 (3)
N11B—C12B1.394 (2)C10B—C16B1.384 (3)
N11B—C14B1.396 (2)C10B—H6B0.930 (15)
C15A—C7A1.386 (3)C12B—C17B1.467 (3)
C15A—C16A1.401 (3)C17B—C1B1.399 (3)
C15A—C6A1.477 (3)C17B—C13B1.410 (3)
C7A—C8A1.389 (3)C1B—C2B1.378 (3)
C8A—C9A1.389 (3)C1B—H1B0.942 (15)
C8A—H5A0.925 (15)C2B—C3B1.402 (3)
C9A—C10A1.390 (3)C2B—H2B0.947 (16)
C10A—C16A1.380 (3)C3B—C4B1.377 (3)
C10A—H6A0.938 (15)C3B—H3B0.937 (16)
C12A—C17A1.465 (3)C4B—C13B1.399 (3)
C17A—C1A1.397 (3)C4B—H4B0.936 (16)
C17A—C13A1.412 (3)C14B—C6B1.517 (3)
Cl1A—C7A—C15A121.65 (15)Cl1B—C7B—C15B121.43 (15)
Cl1A—C7A—C8A118.05 (15)Cl1B—C7B—C8B118.59 (15)
C15A—C7A—C8A120.30 (18)C15B—C7B—C8B119.98 (18)
C7A—C15A—C6A132.59 (18)C7B—C15B—C6B132.47 (18)
C7A—C15A—C16A118.79 (17)C7B—C15B—C16B118.96 (18)
C6A—C15A—C16A108.62 (16)C6B—C15B—C16B108.54 (16)
C15A—C6A—O1A129.87 (18)C15B—C6B—O1B130.04 (18)
C15A—C6A—C14A104.37 (15)C15B—C6B—C14B104.47 (16)
O1A—C6A—C14A125.75 (17)O1B—C6B—C14B125.46 (18)
C6A—C14A—N5A126.26 (17)C6B—C14B—N11B107.35 (16)
C6A—C14A—N11A107.38 (16)C6B—C14B—N5B126.40 (17)
N5A—C14A—N11A126.35 (17)N11B—C14B—N5B126.25 (17)
C14A—N5A—C13A115.81 (17)C14B—N11B—C16B110.20 (15)
N5A—C13A—C4A118.48 (17)C14B—N11B—C12B122.59 (16)
N5A—C13A—C17A122.13 (17)C16B—N11B—C12B127.14 (16)
C4A—C13A—C17A119.38 (18)N11B—C16B—C15B109.35 (16)
C13A—C4A—C3A119.69 (19)N11B—C16B—C10B127.71 (17)
C13A—C4A—H4A120.2 (10)C15B—C16B—C10B122.94 (18)
C3A—C4A—H4A120.2 (10)C16B—C10B—C9B115.54 (18)
C4A—C3A—C2A120.96 (19)C16B—C10B—H6B122.2 (10)
C4A—C3A—H3A119.0 (10)C9B—C10B—H6B122.3 (10)
C2A—C3A—H3A120.0 (10)C10B—C9B—C8B123.79 (18)
C3A—C2A—C1A120.04 (19)C10B—C9B—Cl2B119.12 (15)
C3A—C2A—H2A121.2 (10)C8B—C9B—Cl2B117.08 (15)
C1A—C2A—H2A118.8 (10)C9B—C8B—C7B118.75 (18)
C2A—C1A—C17A119.86 (19)C9B—C8B—H5B120.6 (10)
C2A—C1A—H1A119.9 (10)C7B—C8B—H5B120.6 (10)
C17A—C1A—H1A120.2 (10)N11B—C12B—O2B121.91 (17)
C13A—C17A—C1A120.07 (18)N11B—C12B—C17B112.41 (16)
C13A—C17A—C12A120.66 (17)O2B—C12B—C17B125.68 (17)
C1A—C17A—C12A119.26 (17)C12B—C17B—C13B120.36 (17)
C17A—C12A—N11A112.36 (16)C12B—C17B—C1B119.93 (17)
C17A—C12A—O2A125.53 (18)C13B—C17B—C1B119.70 (18)
N11A—C12A—O2A122.11 (17)C17B—C13B—N5B122.53 (17)
C12A—N11A—C14A122.65 (16)C17B—C13B—C4B119.38 (18)
C12A—N11A—C16A127.27 (16)N5B—C13B—C4B118.09 (17)
C14A—N11A—C16A110.08 (15)C13B—N5B—C14B115.64 (16)
N11A—C16A—C15A109.50 (16)C13B—C4B—C3B120.22 (19)
N11A—C16A—C10A127.57 (18)C13B—C4B—H4B119.5 (10)
C15A—C16A—C10A122.93 (18)C3B—C4B—H4B120.2 (10)
C16A—C10A—C9A115.95 (18)C4B—C3B—C2B120.39 (19)
C16A—C10A—H6A122.5 (10)C4B—C3B—H3B118.8 (10)
C9A—C10A—H6A121.5 (10)C2B—C3B—H3B120.8 (10)
C10A—C9A—C8A123.45 (18)C3B—C2B—C1B120.12 (19)
C10A—C9A—Cl2A118.47 (15)C3B—C2B—H2B120.2 (10)
C8A—C9A—Cl2A118.07 (15)C1B—C2B—H2B119.6 (10)
C9A—C8A—C7A118.51 (17)C17B—C1B—C2B120.18 (18)
C9A—C8A—H5A120.8 (10)C17B—C1B—H1B120.2 (10)
C7A—C8A—H5A120.6 (10)C2B—C1B—H1B119.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···Cl1Ai0.94 (2)2.73 (2)3.637 (2)162 (1)
C2A—H2A···O1Bii0.93 (2)2.54 (2)3.264 (3)135 (1)
C4B—H4B···N5Aiii0.94 (2)2.56 (2)3.422 (3)154 (1)
C10A—H6A···Cl2Biv0.94 (2)2.67 (2)3.585 (2)165 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC15H6Cl2N2O2
Mr317.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0179 (2), 10.7276 (3), 17.2338 (12)
α, β, γ (°)94.908 (7), 96.709 (7), 107.395 (8)
V3)1219.66 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.54 × 0.48 × 0.35
Data collection
DiffractometerRigaku R-AXIS RAPID-II imaging plate
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.633, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
31502, 5585, 4830
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.00
No. of reflections5571
No. of parameters416
No. of restraints84
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: CrystalClear (Rigaku Americas, 2009), HKL-2000 (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
Cl1A—C7A1.7272 (19)N5A—C14A1.275 (2)
Cl2A—C9A1.7358 (19)N11A—C16A1.419 (2)
Cl1B—C7B1.7276 (19)N11A—C12A1.396 (2)
Cl2B—C9B1.734 (2)N11A—C14A1.395 (2)
O1A—C6A1.213 (2)N5B—C13B1.401 (2)
O2A—C12A1.221 (2)N5B—C14B1.277 (3)
O1B—C6B1.211 (2)N11B—C16B1.421 (2)
O2B—C12B1.221 (2)N11B—C12B1.394 (2)
N5A—C13A1.405 (2)N11B—C14B1.396 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···Cl1Ai0.942 (15)2.729 (15)3.637 (2)162.0 (12)
C2A—H2A···O1Bii0.929 (16)2.539 (15)3.264 (3)134.9 (12)
C4B—H4B···N5Aiii0.936 (16)2.556 (15)3.422 (3)153.9 (12)
C10A—H6A···Cl2Biv0.938 (15)2.673 (15)3.585 (2)164.8 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x, y1, z1.
 

Acknowledgements

This study was supported by Stanley Medical Research Institute (grant 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).

References

First citationBandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem. 53, 3558–3565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBhattacharjee, A. K., Hartell, M. G., Nichols, D. A., Hicks, R. P., Stanton, B., Van Hamont, J. E. & Milhous, W. K. (2004). Eur. J. Med. Chem. 39, 59–67.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhattacharjee, A. K., Skanchy, D. J., Jennings, B., Hudson, T. H., Brendle, J. J. & Werbovetz, K. A. (2002). Bioorg. Med. Chem. 10, 1979–1989.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHonda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172–174.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M. & Kurimoto, M. (2001). J. Gastroenterol. 36, 5–9.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrivogorsky, B., Grundt, P., Yolken, R. & Jones-Brando, L. (2008). Antimicrob. Agents Chemother. 52, 4466–4469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationMitscher, L. A. & Baker, W. R. (1998). Pure Appl. Chem. 70, 365–371.  Web of Science CrossRef CAS Google Scholar
First citationMotoki, T., Takami, Y., Yagi, Y., Tai, A., Yamamoto, I. & Gohda, E. (2005). Biol. Pharm. Bull. 28, 260–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPitzer, K. K., Scovill, J. P., Kyle, D. E. & Gerena, L. (2000). [WRAIR (Walter Reid Army Institute of Research), USA]. 99-US22569 2000018769.  Google Scholar
First citationRigaku Americas (2009). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationScovill, J., Blank, E., Konnick, M., Nenortas, E. & Shapiro, T. (2002). Antimicrob. Agents Chemother. 46, 882–883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, V. M., Prasanna, P., Adi Seshu, K. V., Renuka, B., Laxman Rao, C. V., Sunil Kumar, G., Narasimhulu, C. P., Aravind Babu, P., Puranik, R. C., Subramanyam, D., Venkateswarlu, A., Rajagopal, S., Kumar, K. B. S., Rao, C. S., Mamidi, N. V. S. R., Deevi, D. S., Ajaykumar, R. & Rajagopalan, R. (2002). Bioorg. Med. Chem. Lett. 12, 2303–2307.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationYu, S.-T., Chen, T.-M., Chern, J.-W., Tseng, S.-Y. & Chen, Y.-H. (2009). Anti-Cancer Drugs, 20, 382–388.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds