metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(1H-benzimidazole-2-carboxyl­ato-κ2O,N3)zinc(II)

aBasic College Science, Laboratory of Pharmaceutical Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
*Correspondence e-mail: lut163@163.com

(Received 16 April 2010; accepted 28 April 2010; online 8 May 2010)

In the title compound, [Zn(C8H5N2O2)2(H2O)], the ZnII ion is coordinated in each case by a carboxyl­ate O atom and an imidazole N atom from two different benzimidazole-2-carboxyl­ate (BIC) ligands and one water O atom in a trigonal-bipyramidal geometry. In the complex mol­ecule, the two benzimidazole planes are twisted, making a dihedral angle of 55.93 (11)°. The three-dimensional framework is organized by inter­molecular N—H⋯O hydrogen bonding and O—H⋯O inter­actions and ππ inter­actions between adjacent benzimidazole rings [centroid–centroid distance = 3.586 (3) Å].

Related literature

For the biological activity of zinc complexes, see: Yoshikawa et al. (2001[Yoshikawa, Y., Ueda, E., Suzuki, Y., Yanagihara, N., Sakurai, H. & Kojima, Y. (2001). Chem. Pharm. Bull. 49, 652-654.]); Adachi et al. (2004[Adachi, Y., Yoshida, J., Kodera, Y., Kato, A., Yoshikawa, Y., Kojima, Y. & Sakurai, H. (2004). J. Biol. Inorg. Chem. 9, 885-893.]). For the biological activity of benzimidazole derivatives, see: Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For zinc N-heterocyclic or their carboxyl­ate complexes, see: He (2006[He, H.-S. (2006). Acta Cryst. E62, m3535-m3536.]); Li et al. (2007[Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1274-m1276.]); Gao et al. (2005[Gao, S., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2005). Acta Cryst. E61, m494-m495.]). For the structural index τ, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For related structures, see: Liu et al. (2004[Liu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697-m1699.]); Lin (2006[Lin, X.-F. (2006). Acta Cryst. E62, m2039-m2040.]); Zhong et al. (2006[Zhong, R.-Q., Zou, R.-Q. & Xu, Q. (2006). Acta Cryst. E62, m2789-m2790.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5N2O2)2(H2O)]

  • Mr = 405.67

  • Monoclinic, C 2/c

  • a = 25.9702 (15) Å

  • b = 10.0870 (6) Å

  • c = 16.7885 (10) Å

  • β = 129.21 (3)°

  • V = 3407.8 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.757, Tmax = 0.866

  • 6178 measured reflections

  • 3097 independent reflections

  • 2368 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 0.99

  • 3097 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O5 1.947 (3)
Zn1—N1 2.007 (3)
Zn1—N3 2.014 (2)
Zn1—O4 2.184 (2)
Zn1—O2 2.193 (2)
O5—Zn1—N1 116.39 (12)
O5—Zn1—N3 115.42 (12)
N1—Zn1—N3 128.19 (11)
O5—Zn1—O4 93.18 (11)
N1—Zn1—O4 97.49 (10)
N3—Zn1—O4 79.46 (9)
O5—Zn1—O2 90.98 (11)
N1—Zn1—O2 79.56 (10)
N3—Zn1—O2 99.82 (10)
O4—Zn1—O2 175.67 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.93 2.765 (4) 162
N4—H4A⋯O3ii 0.86 1.95 2.778 (4) 161
O5—H5A⋯O2iii 0.85 2.06 2.670 (4) 128
O5—H5B⋯O4iv 0.85 2.18 2.695 (5) 119
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+2]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2002[Rigaku (2002). CrystalStructure. Rigaku Corporation, Yokyo, Japan.]).

Supporting information


Comment top

Zinc complexes with ligands such as amino acids, picolinic acid, vitamins, and allixin (isolated from garlic) are found to have high in vitro insulinomimetric activity and in vivo anti-diabetic activity (Yoshikawa et al., 2001; Adachi et al., 2004). Although many zinc N-heterocyclic or their carboxylate complexes have been reported(He, 2006; Li et al., 2007; Gao et al., 2005), those related to the benzimidazole-2-carboxylic acid(BICA) are reported rearly. Benzimidazole analogues are known to exhibit a wide variety of pharmacological properties; benzimidazole is an important pharmacophore and privileged structure in medicinal chemistry encompassing a diverse range of biological activities (Shingalapur et al., 2009). In the viewpoint of constructing new functional complex, we prepared aqua(1H-benzo[d]imidazole-2-carboxylato-κ2O:N)-zinc(II) with the formula [Zn(C8H5N2O2)2(H2O)] (I) and report its structure.

In (I) Zn II coordination sphere is completed by carboxylato O atom and imidazole N atom from two different ligand molecules and one O atom from water (Fig. 1). The two BICA molecules are deprotonated to make the molecule neutral, then the BIC- ligand behaves as a chelating unit that binds through the imidazole N atom and carboxylato O atom, giving a five-membered chelate ring. The structural index τ (Addison et al. 1984) which represents the relative amount of trigonality of the five-coordination geometry as τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramida in (I) is 0.791, therefore, the coordination geometry around ZnII seems to be classified as a trigonal bipyramid rather than a square pyramid; N3, O5, and N1 atoms form the equatorial trigonal plane indicated by the angle of O5-Zn-N1 and O5-Zn1-N3 being 116.39 (12) ° and 115.42 (12) °, respectively. The axial position occupy O2 and O4 atoms; O4-Zn-O2 is the only combination with bonding angle close to 180 degrees. Therefore, the five-coordination geometry around Zn is classified as a distorted trigonal bipyramid with ZnN2O3 core. Compared with the other analogous zinc complexes, the bond distance of ZnII and carboxylato O in (I) is in the normal range from 2.1445 (12) Å to 2.201 (3) Å (Table 1), while Zn—O5(water O atom) distance is significantly shorter than in the similar aqua zinc structures, such as 2.1565 (14) Å in [Zn(H2IDC)2(H2O)2] (where H2IDC is the 5-carboxy-1H-imidazole-4-carboxylate ligand (Liu et al., 2004), 2.020 (3) Å in {[Zn(HIDC)(H2O)].0.5H2O}n (HIDC is the imidazole-4,5-dicarboxylate ligand) (Lin, 2006) and 2.1491 (12) Å in [Zn(C5H3N2O4)2(H2O)2].C10H8N2(Zhong et al., 2006).

The benzimidazole moiety in each ligand is nearly coplanar with the mean deviation from plane by 0.0059 Å and 0.0042 Å for ring C1—C7/N1/N2 and C10—C16/N3/N4, respectively. Around ZnII two five-chelate rings are formed with slightly different conformations. The ring Zn1/N1/C7/C8/O2, adopts an envelope conformation with the deviation of Zn atom from the mean plane by 0.0686 (16) Å whereas the related ring Zn1/N3/C10/C9/O4 seems to be planar with the corresponding distance 0.0056 (14) Å. The dihedral angle of two benzimidazole groups around ZnII is about 55.93 (11) ° leading to the intersection mode in the stack (Fig.2). In the ab plane, the whole zig-zag motif is bulit up, together with the ππ interactions between the adjacent benzimidazole planes along the axis a. The pairs of the two benzimidazole rings are oriented almost parallel and overlap face to face with the Cg···Cg distances of 3.586 (3) Å (where Cg is the center of gravity of the benzimidazole ring) for the centroid···centroid separations of rings N1 / N2 / C1— C7 and N1 / N2 / C1— C7(symmetry code: 1-x, y, 3/2-z). The three-dimensional framework is defined by intermolecular hydrogen bonds involving water molecules, the uncoordinated imidazole N atoms, and carboxylate O atoms(N—H···O and O—H···O, Table 2 and Fig. 2).

Related literature top

For the biological activity of zinc complexes, see: Yoshikawa et al. (2001); Adachi et al. (2004). For the biological activity of benzimidazole derivatives, see: Shingalapur et al. (2009). For zinc N-heterocyclic or their carboxylate complexes, see: He (2006); Li et al. (2007); Gao et al. (2005). For the structural index τ, see: Addison et al. (1984). For related structures, see: Liu et al. (2004); Lin (2006); Zhong et al. (2006).

Experimental top

1H-benzo[d]imidazole-2-carboxylic acid(20 mg, 0.12 mmol) and zinc chloride dihydrate (10 mg, 0.06 mmol) were separately dissolved in 5 ml methanol. The solutions were mixed and stirred magnetically for 2 h. Colourless single crystals were isolated from the solution at room temperature over several days.

Refinement top

At first, all H atoms were located from the difference Fourier maps, and then were treated as riding [C—H = 0.93 Å ; Uiso(H) = 1.2 times Ueq; imidazole N—H = 0.86 Å and O—H = 0.85 Å; Uiso(H) = 1.5 times Ueq]. The weighting schemes were optimized .

Structure description top

Zinc complexes with ligands such as amino acids, picolinic acid, vitamins, and allixin (isolated from garlic) are found to have high in vitro insulinomimetric activity and in vivo anti-diabetic activity (Yoshikawa et al., 2001; Adachi et al., 2004). Although many zinc N-heterocyclic or their carboxylate complexes have been reported(He, 2006; Li et al., 2007; Gao et al., 2005), those related to the benzimidazole-2-carboxylic acid(BICA) are reported rearly. Benzimidazole analogues are known to exhibit a wide variety of pharmacological properties; benzimidazole is an important pharmacophore and privileged structure in medicinal chemistry encompassing a diverse range of biological activities (Shingalapur et al., 2009). In the viewpoint of constructing new functional complex, we prepared aqua(1H-benzo[d]imidazole-2-carboxylato-κ2O:N)-zinc(II) with the formula [Zn(C8H5N2O2)2(H2O)] (I) and report its structure.

In (I) Zn II coordination sphere is completed by carboxylato O atom and imidazole N atom from two different ligand molecules and one O atom from water (Fig. 1). The two BICA molecules are deprotonated to make the molecule neutral, then the BIC- ligand behaves as a chelating unit that binds through the imidazole N atom and carboxylato O atom, giving a five-membered chelate ring. The structural index τ (Addison et al. 1984) which represents the relative amount of trigonality of the five-coordination geometry as τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramida in (I) is 0.791, therefore, the coordination geometry around ZnII seems to be classified as a trigonal bipyramid rather than a square pyramid; N3, O5, and N1 atoms form the equatorial trigonal plane indicated by the angle of O5-Zn-N1 and O5-Zn1-N3 being 116.39 (12) ° and 115.42 (12) °, respectively. The axial position occupy O2 and O4 atoms; O4-Zn-O2 is the only combination with bonding angle close to 180 degrees. Therefore, the five-coordination geometry around Zn is classified as a distorted trigonal bipyramid with ZnN2O3 core. Compared with the other analogous zinc complexes, the bond distance of ZnII and carboxylato O in (I) is in the normal range from 2.1445 (12) Å to 2.201 (3) Å (Table 1), while Zn—O5(water O atom) distance is significantly shorter than in the similar aqua zinc structures, such as 2.1565 (14) Å in [Zn(H2IDC)2(H2O)2] (where H2IDC is the 5-carboxy-1H-imidazole-4-carboxylate ligand (Liu et al., 2004), 2.020 (3) Å in {[Zn(HIDC)(H2O)].0.5H2O}n (HIDC is the imidazole-4,5-dicarboxylate ligand) (Lin, 2006) and 2.1491 (12) Å in [Zn(C5H3N2O4)2(H2O)2].C10H8N2(Zhong et al., 2006).

The benzimidazole moiety in each ligand is nearly coplanar with the mean deviation from plane by 0.0059 Å and 0.0042 Å for ring C1—C7/N1/N2 and C10—C16/N3/N4, respectively. Around ZnII two five-chelate rings are formed with slightly different conformations. The ring Zn1/N1/C7/C8/O2, adopts an envelope conformation with the deviation of Zn atom from the mean plane by 0.0686 (16) Å whereas the related ring Zn1/N3/C10/C9/O4 seems to be planar with the corresponding distance 0.0056 (14) Å. The dihedral angle of two benzimidazole groups around ZnII is about 55.93 (11) ° leading to the intersection mode in the stack (Fig.2). In the ab plane, the whole zig-zag motif is bulit up, together with the ππ interactions between the adjacent benzimidazole planes along the axis a. The pairs of the two benzimidazole rings are oriented almost parallel and overlap face to face with the Cg···Cg distances of 3.586 (3) Å (where Cg is the center of gravity of the benzimidazole ring) for the centroid···centroid separations of rings N1 / N2 / C1— C7 and N1 / N2 / C1— C7(symmetry code: 1-x, y, 3/2-z). The three-dimensional framework is defined by intermolecular hydrogen bonds involving water molecules, the uncoordinated imidazole N atoms, and carboxylate O atoms(N—H···O and O—H···O, Table 2 and Fig. 2).

For the biological activity of zinc complexes, see: Yoshikawa et al. (2001); Adachi et al. (2004). For the biological activity of benzimidazole derivatives, see: Shingalapur et al. (2009). For zinc N-heterocyclic or their carboxylate complexes, see: He (2006); Li et al. (2007); Gao et al. (2005). For the structural index τ, see: Addison et al. (1984). For related structures, see: Liu et al. (2004); Lin (2006); Zhong et al. (2006).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2002).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms corresponding to 50 % probability.
[Figure 2] Fig. 2. Packing drawing of (I) with the hydrogen bonds indicated by dashed lines.
Aquabis(1H-benzimidazole-2-carboxylato-κ2O,N3)zinc(II) top
Crystal data top
[Zn(C8H5N2O2)2(H2O)]F(000) = 1648
Mr = 405.67Dx = 1.581 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 25.9702 (15) Åθ = 10–13°
b = 10.0870 (6) ŵ = 1.48 mm1
c = 16.7885 (10) ÅT = 293 K
β = 129.21 (3)°Block, colourless
V = 3407.8 (14) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 3131
Absorption correction: ψ scan
(ABSCOR; Higashi, 1995)
k = 012
Tmin = 0.757, Tmax = 0.866l = 2020
6178 measured reflections3 standard reflections every 120 min
3097 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Zn(C8H5N2O2)2(H2O)]V = 3407.8 (14) Å3
Mr = 405.67Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.9702 (15) ŵ = 1.48 mm1
b = 10.0870 (6) ÅT = 293 K
c = 16.7885 (10) Å0.20 × 0.10 × 0.10 mm
β = 129.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2368 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCOR; Higashi, 1995)
Rint = 0.039
Tmin = 0.757, Tmax = 0.8663 standard reflections every 120 min
6178 measured reflections intensity decay: 1%
3097 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.99Δρmax = 0.56 e Å3
3097 reflectionsΔρmin = 0.56 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.569627 (17)0.05468 (4)0.69627 (3)0.02900 (14)
O10.50351 (16)0.3274 (3)0.4673 (2)0.0650 (9)
O20.54498 (12)0.1385 (2)0.55532 (17)0.0374 (6)
O30.67653 (12)0.1506 (2)0.97193 (17)0.0413 (6)
O40.60004 (11)0.0175 (2)0.84308 (17)0.0364 (6)
O50.48517 (12)0.0394 (3)0.61712 (19)0.0544 (8)
H5A0.45770.03250.55200.065*
H5B0.47580.08720.64810.065*
N10.56695 (13)0.2485 (3)0.7205 (2)0.0330 (6)
N20.54861 (16)0.4515 (3)0.6583 (2)0.0433 (8)
H2A0.53750.51460.61560.052*
N30.64903 (12)0.0562 (3)0.74399 (19)0.0299 (6)
N40.72922 (13)0.1867 (3)0.8647 (2)0.0392 (7)
H4A0.75360.23200.92060.047*
C10.6165 (2)0.4261 (5)0.9534 (3)0.0632 (12)
H1A0.63230.41531.02040.076*
C20.6052 (2)0.5536 (5)0.9134 (3)0.0622 (12)
H2B0.61350.62540.95470.075*
C30.5824 (2)0.5773 (4)0.8158 (3)0.0567 (11)
H3A0.57500.66280.79000.068*
C40.57069 (19)0.4657 (3)0.7569 (3)0.0422 (9)
C50.58192 (16)0.3372 (4)0.7962 (3)0.0353 (8)
C60.60498 (19)0.3157 (4)0.8957 (3)0.0466 (9)
H6A0.61230.23050.92220.056*
C70.54749 (17)0.3217 (3)0.6408 (3)0.0351 (8)
C80.52981 (18)0.2603 (4)0.5450 (3)0.0377 (8)
C90.64989 (16)0.0943 (3)0.8895 (2)0.0309 (7)
C100.67732 (15)0.1125 (3)0.8339 (2)0.0295 (7)
C110.68567 (15)0.0954 (4)0.7139 (2)0.0318 (8)
C120.67916 (17)0.0663 (4)0.6270 (3)0.0415 (9)
H12A0.64520.01200.57530.050*
C130.72500 (19)0.1208 (4)0.6205 (3)0.0514 (11)
H13A0.72240.10140.56400.062*
C140.7749 (2)0.2041 (5)0.6966 (3)0.0587 (12)
H14A0.80420.24100.68850.070*
C150.78262 (19)0.2338 (4)0.7829 (3)0.0547 (11)
H15A0.81670.28860.83410.066*
C160.73686 (17)0.1779 (4)0.7905 (3)0.0378 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0261 (2)0.0311 (2)0.0279 (2)0.00695 (17)0.01612 (17)0.00661 (17)
O10.110 (3)0.0434 (17)0.0441 (16)0.0153 (17)0.0498 (18)0.0146 (14)
O20.0499 (14)0.0327 (14)0.0329 (13)0.0076 (11)0.0277 (12)0.0067 (11)
O30.0463 (14)0.0491 (16)0.0300 (13)0.0162 (12)0.0248 (12)0.0143 (12)
O40.0365 (13)0.0456 (15)0.0319 (12)0.0156 (11)0.0238 (11)0.0129 (11)
O50.0410 (14)0.089 (2)0.0384 (15)0.0239 (15)0.0277 (13)0.0217 (14)
N10.0356 (15)0.0309 (15)0.0288 (15)0.0036 (12)0.0187 (13)0.0037 (12)
N20.0580 (19)0.0310 (17)0.0414 (17)0.0026 (15)0.0316 (16)0.0080 (14)
N30.0272 (14)0.0362 (15)0.0250 (14)0.0105 (12)0.0159 (12)0.0095 (12)
N40.0362 (16)0.0500 (19)0.0305 (15)0.0204 (14)0.0206 (14)0.0189 (14)
C10.068 (3)0.075 (3)0.044 (2)0.011 (3)0.034 (2)0.014 (2)
C20.074 (3)0.054 (3)0.056 (3)0.014 (2)0.041 (3)0.025 (2)
C30.070 (3)0.038 (2)0.063 (3)0.007 (2)0.042 (3)0.011 (2)
C40.047 (2)0.035 (2)0.045 (2)0.0039 (16)0.0293 (19)0.0041 (17)
C50.0328 (18)0.039 (2)0.0334 (19)0.0000 (16)0.0204 (16)0.0015 (16)
C60.052 (2)0.048 (2)0.034 (2)0.0009 (19)0.0247 (19)0.0001 (18)
C70.041 (2)0.0280 (19)0.036 (2)0.0033 (15)0.0245 (17)0.0047 (16)
C80.045 (2)0.037 (2)0.0331 (19)0.0056 (17)0.0257 (17)0.0087 (16)
C90.0310 (18)0.0343 (18)0.0245 (17)0.0022 (15)0.0161 (15)0.0026 (15)
C100.0247 (16)0.0313 (17)0.0285 (17)0.0064 (14)0.0149 (14)0.0045 (15)
C110.0259 (16)0.0411 (19)0.0263 (17)0.0038 (14)0.0156 (15)0.0011 (15)
C120.0363 (19)0.054 (2)0.0334 (19)0.0130 (18)0.0216 (17)0.0142 (18)
C130.046 (2)0.074 (3)0.042 (2)0.014 (2)0.032 (2)0.013 (2)
C140.046 (2)0.086 (3)0.059 (3)0.026 (2)0.040 (2)0.017 (2)
C150.042 (2)0.076 (3)0.049 (2)0.031 (2)0.031 (2)0.024 (2)
C160.0327 (18)0.047 (2)0.0341 (19)0.0130 (16)0.0212 (16)0.0104 (17)
Geometric parameters (Å, º) top
Zn1—O51.947 (3)C1—C21.393 (6)
Zn1—N12.007 (3)C1—H1A0.9300
Zn1—N32.014 (2)C2—C31.365 (6)
Zn1—O42.184 (2)C2—H2B0.9300
Zn1—O22.193 (2)C3—C41.400 (5)
O1—C81.224 (4)C3—H3A0.9300
O2—C81.268 (4)C4—C51.398 (5)
O3—C91.227 (4)C5—C61.390 (5)
O4—C91.268 (4)C6—H6A0.9300
O5—H5A0.8500C7—C81.500 (5)
O5—H5B0.8500C9—C101.502 (4)
N1—C71.318 (4)C11—C121.389 (5)
N1—C51.394 (4)C11—C161.397 (5)
N2—C71.338 (4)C12—C131.377 (5)
N2—C41.375 (5)C12—H12A0.9300
N2—H2A0.8600C13—C141.387 (5)
N3—C101.318 (4)C13—H13A0.9300
N3—C111.387 (4)C14—C151.366 (5)
N4—C101.328 (4)C14—H14A0.9300
N4—C161.383 (4)C15—C161.391 (5)
N4—H4A0.8600C15—H15A0.9300
C1—C61.379 (6)
O5—Zn1—N1116.39 (12)C3—C4—C5121.7 (4)
O5—Zn1—N3115.42 (12)N1—C5—C6131.0 (3)
N1—Zn1—N3128.19 (11)N1—C5—C4108.1 (3)
O5—Zn1—O493.18 (11)C6—C5—C4120.9 (3)
N1—Zn1—O497.49 (10)C1—C6—C5117.1 (4)
N3—Zn1—O479.46 (9)C1—C6—H6A121.5
O5—Zn1—O290.98 (11)C5—C6—H6A121.5
N1—Zn1—O279.56 (10)N1—C7—N2112.6 (3)
N3—Zn1—O299.82 (10)N1—C7—C8121.2 (3)
O4—Zn1—O2175.67 (9)N2—C7—C8126.1 (3)
C8—O2—Zn1112.0 (2)O1—C8—O2126.7 (3)
C9—O4—Zn1113.4 (2)O1—C8—C7120.0 (3)
Zn1—O5—H5A120.4O2—C8—C7113.3 (3)
Zn1—O5—H5B119.6O3—C9—O4127.2 (3)
H5A—O5—H5B120.0O3—C9—C10119.6 (3)
C7—N1—C5105.8 (3)O4—C9—C10113.2 (3)
C7—N1—Zn1112.4 (2)N3—C10—N4112.5 (3)
C5—N1—Zn1141.7 (2)N3—C10—C9121.3 (3)
C7—N2—C4107.5 (3)N4—C10—C9126.2 (3)
C7—N2—H2A126.3C12—C11—N3131.7 (3)
C4—N2—H2A126.3C12—C11—C16120.3 (3)
C10—N3—C11106.3 (3)N3—C11—C16107.9 (3)
C10—N3—Zn1112.6 (2)C13—C12—C11117.5 (3)
C11—N3—Zn1141.2 (2)C13—C12—H12A121.3
C10—N4—C16107.5 (3)C11—C12—H12A121.3
C10—N4—H4A126.2C12—C13—C14121.4 (4)
C16—N4—H4A126.2C12—C13—H13A119.3
C6—C1—C2121.4 (4)C14—C13—H13A119.3
C6—C1—H1A119.3C15—C14—C13122.3 (4)
C2—C1—H1A119.3C15—C14—H14A118.9
C3—C2—C1122.6 (4)C13—C14—H14A118.9
C3—C2—H2B118.7C14—C15—C16116.6 (3)
C1—C2—H2B118.7C14—C15—H15A121.7
C2—C3—C4116.3 (4)C16—C15—H15A121.7
C2—C3—H3A121.9N4—C16—C15132.3 (3)
C4—C3—H3A121.9N4—C16—C11105.8 (3)
N2—C4—C3132.3 (4)C15—C16—C11121.9 (3)
N2—C4—C5106.0 (3)
O5—Zn1—O2—C8105.9 (2)Zn1—N1—C7—N2177.1 (2)
N1—Zn1—O2—C810.8 (2)C5—N1—C7—C8177.4 (3)
N3—Zn1—O2—C8138.1 (2)Zn1—N1—C7—C80.2 (4)
O5—Zn1—O4—C9113.9 (2)C4—N2—C7—N10.3 (4)
N1—Zn1—O4—C9128.9 (2)C4—N2—C7—C8176.9 (3)
N3—Zn1—O4—C91.3 (2)Zn1—O2—C8—O1166.9 (3)
O5—Zn1—N1—C780.8 (3)Zn1—O2—C8—C713.2 (4)
N3—Zn1—N1—C799.4 (2)N1—C7—C8—O1170.2 (3)
O4—Zn1—N1—C7178.1 (2)N2—C7—C8—O112.9 (6)
O2—Zn1—N1—C75.1 (2)N1—C7—C8—O29.9 (5)
O5—Zn1—N1—C5103.6 (4)N2—C7—C8—O2167.0 (3)
N3—Zn1—N1—C576.2 (4)Zn1—O4—C9—O3178.6 (3)
O4—Zn1—N1—C56.3 (4)Zn1—O4—C9—C102.2 (4)
O2—Zn1—N1—C5170.5 (4)C11—N3—C10—N40.7 (4)
O5—Zn1—N3—C1088.5 (2)Zn1—N3—C10—N4179.3 (2)
N1—Zn1—N3—C1091.3 (3)C11—N3—C10—C9178.7 (3)
O4—Zn1—N3—C100.0 (2)Zn1—N3—C10—C91.3 (4)
O2—Zn1—N3—C10175.6 (2)C16—N4—C10—N30.9 (4)
O5—Zn1—N3—C1191.5 (4)C16—N4—C10—C9178.9 (3)
N1—Zn1—N3—C1188.7 (4)O3—C9—C10—N3178.3 (3)
O4—Zn1—N3—C11180.0 (4)O4—C9—C10—N32.5 (5)
O2—Zn1—N3—C114.4 (4)O3—C9—C10—N40.5 (5)
C6—C1—C2—C30.2 (7)O4—C9—C10—N4179.8 (3)
C1—C2—C3—C40.1 (7)C10—N3—C11—C12179.6 (4)
C7—N2—C4—C3179.0 (4)Zn1—N3—C11—C120.4 (7)
C7—N2—C4—C50.5 (4)C10—N3—C11—C160.1 (4)
C2—C3—C4—N2179.5 (4)Zn1—N3—C11—C16179.8 (3)
C2—C3—C4—C50.1 (6)N3—C11—C12—C13179.3 (4)
C7—N1—C5—C6179.6 (4)C16—C11—C12—C130.4 (5)
Zn1—N1—C5—C63.8 (6)C11—C12—C13—C141.4 (6)
C7—N1—C5—C40.4 (4)C12—C13—C14—C151.8 (7)
Zn1—N1—C5—C4175.3 (3)C13—C14—C15—C161.1 (7)
N2—C4—C5—N10.6 (4)C10—N4—C16—C15179.6 (4)
C3—C4—C5—N1179.0 (3)C10—N4—C16—C110.8 (4)
N2—C4—C5—C6179.9 (3)C14—C15—C16—N4179.4 (4)
C3—C4—C5—C60.3 (6)C14—C15—C16—C110.1 (6)
C2—C1—C6—C50.4 (6)C12—C11—C16—N4179.9 (3)
N1—C5—C6—C1178.6 (4)N3—C11—C16—N40.4 (4)
C4—C5—C6—C10.5 (6)C12—C11—C16—C150.2 (6)
C5—N1—C7—N20.1 (4)N3—C11—C16—C15180.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.932.765 (4)162
N4—H4A···O3ii0.861.952.778 (4)161
O5—H5A···O2iii0.852.062.670 (4)128
O5—H5B···O4iv0.852.182.695 (5)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+2; (iii) x+1, y, z+1; (iv) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H5N2O2)2(H2O)]
Mr405.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.9702 (15), 10.0870 (6), 16.7885 (10)
β (°) 129.21 (3)
V3)3407.8 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.757, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
6178, 3097, 2368
Rint0.039
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 0.99
No. of reflections3097
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.56

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2002).

Selected geometric parameters (Å, º) top
Zn1—O51.947 (3)Zn1—O42.184 (2)
Zn1—N12.007 (3)Zn1—O22.193 (2)
Zn1—N32.014 (2)
O5—Zn1—N1116.39 (12)N3—Zn1—O479.46 (9)
O5—Zn1—N3115.42 (12)O5—Zn1—O290.98 (11)
N1—Zn1—N3128.19 (11)N1—Zn1—O279.56 (10)
O5—Zn1—O493.18 (11)N3—Zn1—O299.82 (10)
N1—Zn1—O497.49 (10)O4—Zn1—O2175.67 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.932.765 (4)162
N4—H4A···O3ii0.861.952.778 (4)161
O5—H5A···O2iii0.852.062.670 (4)128
O5—H5B···O4iv0.852.182.695 (5)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+2; (iii) x+1, y, z+1; (iv) x+1, y, z+3/2.
 

References

First citationAdachi, Y., Yoshida, J., Kodera, Y., Kato, A., Yoshikawa, Y., Kojima, Y. & Sakurai, H. (2004). J. Biol. Inorg. Chem. 9, 885–893.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGao, S., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2005). Acta Cryst. E61, m494–m495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHe, H.-S. (2006). Acta Cryst. E62, m3535–m3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1274–m1276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-F. (2006). Acta Cryst. E62, m2039–m2040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697–m1699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2002). CrystalStructure. Rigaku Corporation, Yokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshikawa, Y., Ueda, E., Suzuki, Y., Yanagihara, N., Sakurai, H. & Kojima, Y. (2001). Chem. Pharm. Bull. 49, 652–654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhong, R.-Q., Zou, R.-Q. & Xu, Q. (2006). Acta Cryst. E62, m2789–m2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds