metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(2,6-diiso­propyl­phen­yl)pentane-2,4-di­amine­(1–)-2κ2N,N′]-μ2-chlorido-1:2κ2Cl:Cl-chlorido-2κCl-bis­­(1,2-di­meth­oxy­ethane-1κ2O,O′)iron(II)lithium

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: lukas_ponikiewski@vp.pl

(Received 12 May 2010; accepted 17 May 2010; online 26 May 2010)

In the title compound, [FeLi(C29H41N2)Cl2(C4H10O2)2], the FeII atom is coordinated by two N and two Cl atoms, generating a distorted FeN2Cl2 tetra­hedral geometry. Additionally, one of the chloride atoms bridges to a lithium ion, which is solvated by two dimethoxy­ethane mol­ecules and is coordinated in a distorted trigonal-bipyramidal environment. The central Fe, Cl (× 2) and Li atoms are coplanar with a maximum deviation of 0.034 Å.

Related literature

For the crystal structure of the 2,4-bis­(2,6-diisopropyl­phenyl­imido)pentane ligand, see: Smith et al. (2001[Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2001). Chem. Commun. pp. 1542-1543.]); Evans et al. (2003[Evans, D. J., Hill, M. S. & Hitchcock, P. B. (2003). Dalton Trans. pp. 570-574.]). For a related iron(II) structure, see: Sciarone et al. (2006[Sciarone, T. J. J., Nijhuis, C. A., Meetsma, A. & Hessen, B. (2006). Dalton Trans. pp. 4896-4904.]). For details of the preparation, see: Kovacs et al. (1996[Kovacs, I., Matern, E. & Fritz, G. (1996). Z. Anorg. Allg. Chem. 622, 953-941.]); Panda et al. (2002[Panda, A., Stender, M., Wright, R. J., Olmstead, M. M., Klavins, P. & Power, P. P. (2002). Inorg. Chem. 41, 3909-3916.]). For related syntheses, see: Baum et al. (2004[Baum, E., Matern, E., Pikies, J. & Robaszkiewicz, A. (2004). Z. Anorg. Allg. Chem. 630, 1090-1095.]).

[Scheme 1]

Experimental

Crystal data
  • [FeLi(C29H41N2)Cl2(C4H10O2)2]

  • Mr = 731.57

  • Monoclinic, P 21 /c

  • a = 10.1467 (5) Å

  • b = 19.8186 (10) Å

  • c = 20.6289 (11) Å

  • β = 104.962 (4)°

  • V = 4007.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 150 K

  • 0.27 × 0.24 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.983, Tmax = 1

  • 23717 measured reflections

  • 7045 independent reflections

  • 4320 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 0.89

  • 7045 reflections

  • 438 parameters

  • H-atom parameters constrained

  • Δρmax = 1.63 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 2.020 (2)
Fe1—N2 2.029 (2)
Fe1—Cl1 2.2982 (8)
Fe1—Cl2 2.3207 (7)
Cl2—Li1 2.463 (4)
O1—Li1 2.058 (5)
O2—Li1 2.088 (5)
O3—Li1 2.081 (5)
O4—Li1 2.126 (5)

Data collection: X-AREA (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. ]); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the course of our studies on phosphorus-iron chemistry, we have syntesised the title complex of iron(II) [LFeCl{µ-Cl}Li(DME)2] (L = [{(2,6-iPr2H3C6)NC(CH3)}2CH]-) (1). This compound turned to be the main product in reaction tBu2P—P(SiMe3)Li.2THF with [LFeCl2] (L = {(2,6-iPr2H3C6)N(CH3)C}2CH]- (molar ratio 2:1 in DME). We observed reduction of starting complex of iron(III) to iron(II) by lithium salt of diphosphane. Simultaneously polyphosphorous compounds were formed. Similar reactions were observed for TiIV compoudns (Baum et al. 2004). [Cp2TiCl2](Cp = C5H5) reacts with tBu2P—P(Li)—PtBu2 or with tBu2P—P(SiMe3)Li, respectively yielding Ti(III) complex [Cp2Ti{µ-Cl)2Li(THF)2].

(I) crystallizes with one molecule in the asymmetric unit (Fig 1). The iron centre is tetrahedrally coordinated by a chelating amidinate ligand and two chloride atoms. One of them bridges to a lithium ion, which is solvated by two DME molecules. In contrast to the related complexes of iron(II) that includes 2,4-bis(2,6-diisopropylphenylimido) pentane ligand, with both chloride atoms bridging FeII and Li centres, the presented complex displays one bridging and one terminal chloride atom. The Cl—Fe—Cl angle value in this compound is about 7° wider than analogous one in the iron (II) complexes with 2,4-bis(2,6-diisopropylphenylimido) pentane ligands, and two bridging chloride atoms (Smith et al.2001). In comparison with complex [{PhC(N-2,6-iPr2C6H3)2}FeCl(µ-Cl)Li(THF)3] the Cl—N—Cl angle is about 15° smaller (Sciarone et al. 2006). The N(1)—Fe(1)—N(2) bond angle is 92.46 (9)°, while the N(1)—Fe(1)—Cl(1), N(1)—Fe(1)—Cl(2), N(2)—Fe(1)—Cl(1), N(2)—Fe(1)—Cl(2) bond angles are - 117.92 (6)°, 114.82 (6)°, 111.77 (6)°, 116.86 (6)°, respectively. The Fe—N and Fe—Cl bond lengths do not differ significantly from typical values (Evans et al. 2003).

Related literature top

For the crystal structure of the 2,4-bis(2,6-diisopropylphenylimido)pentane ligand, see: Smith et al. (2001); Evans et al. (2003). For a related iron(II) structure, see: Sciarone et al. (2006). For details of the preparation, see: Kovacs et al. (1996); Panda et al. (2002). For related syntheses, see: Baum et al. (2004);

Experimental top

This work was carried out using the standard vacuum-nitrogen line and Schlenk techiques. [LFeCl2] (L = {(2,6-iPr2H3C6)N(CH3)C}2CH]- and tBu2P—P(SiMe3)Li.2DME were prepared according to the procedure in the literature (Panda et al. 2002; Kovacs et al. 1996). Solution of 0.412 g (1.03 mmol) tBu2P—P(SiMe3)Li.2THF in 2 ml DME was addded dropwise into solution of 0.303 g (0.515 mmol) [LFeCl2] (L = [{2,6-iPr2H3C6)N(CH3)C}2CH-]) in 2 ml of DME at 243 K. The mixture immediately turned orange. The resultant solution was warmed to room temperature. Then the volume was reduced to about 2 ml and the concentrated solution stored for a few days at 243 K and the solution yielded orange crystals of (I).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.99 Å (methylene), 0.98 Å (methyl) and 1.00 Å (methine) with Uiso(H) = 1.2Ueq ( aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Structure description top

In the course of our studies on phosphorus-iron chemistry, we have syntesised the title complex of iron(II) [LFeCl{µ-Cl}Li(DME)2] (L = [{(2,6-iPr2H3C6)NC(CH3)}2CH]-) (1). This compound turned to be the main product in reaction tBu2P—P(SiMe3)Li.2THF with [LFeCl2] (L = {(2,6-iPr2H3C6)N(CH3)C}2CH]- (molar ratio 2:1 in DME). We observed reduction of starting complex of iron(III) to iron(II) by lithium salt of diphosphane. Simultaneously polyphosphorous compounds were formed. Similar reactions were observed for TiIV compoudns (Baum et al. 2004). [Cp2TiCl2](Cp = C5H5) reacts with tBu2P—P(Li)—PtBu2 or with tBu2P—P(SiMe3)Li, respectively yielding Ti(III) complex [Cp2Ti{µ-Cl)2Li(THF)2].

(I) crystallizes with one molecule in the asymmetric unit (Fig 1). The iron centre is tetrahedrally coordinated by a chelating amidinate ligand and two chloride atoms. One of them bridges to a lithium ion, which is solvated by two DME molecules. In contrast to the related complexes of iron(II) that includes 2,4-bis(2,6-diisopropylphenylimido) pentane ligand, with both chloride atoms bridging FeII and Li centres, the presented complex displays one bridging and one terminal chloride atom. The Cl—Fe—Cl angle value in this compound is about 7° wider than analogous one in the iron (II) complexes with 2,4-bis(2,6-diisopropylphenylimido) pentane ligands, and two bridging chloride atoms (Smith et al.2001). In comparison with complex [{PhC(N-2,6-iPr2C6H3)2}FeCl(µ-Cl)Li(THF)3] the Cl—N—Cl angle is about 15° smaller (Sciarone et al. 2006). The N(1)—Fe(1)—N(2) bond angle is 92.46 (9)°, while the N(1)—Fe(1)—Cl(1), N(1)—Fe(1)—Cl(2), N(2)—Fe(1)—Cl(1), N(2)—Fe(1)—Cl(2) bond angles are - 117.92 (6)°, 114.82 (6)°, 111.77 (6)°, 116.86 (6)°, respectively. The Fe—N and Fe—Cl bond lengths do not differ significantly from typical values (Evans et al. 2003).

For the crystal structure of the 2,4-bis(2,6-diisopropylphenylimido)pentane ligand, see: Smith et al. (2001); Evans et al. (2003). For a related iron(II) structure, see: Sciarone et al. (2006). For details of the preparation, see: Kovacs et al. (1996); Panda et al. (2002). For related syntheses, see: Baum et al. (2004);

Computing details top

Data collection: X-AREA (Stoe & Cie, 1997); cell refinement: X-AREA (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX32 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level.
[N,N'-Bis(2,6-diisopropylphenyl)pentane-2,4-diamine(1-)- 2κ2N,N']-µ2-chlorido-1:2κ2Cl:Cl- chlorido-2κCl-bis(1,2-dimethoxyethane- 1κ2O,O')iron(II)lithium top
Crystal data top
[FeLi(C29H41N2)Cl2(C4H10O2)2]F(000) = 1568
Mr = 731.57Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13275 reflections
a = 10.1467 (5) Åθ = 2.3–28.8°
b = 19.8186 (10) ŵ = 0.55 mm1
c = 20.6289 (11) ÅT = 150 K
β = 104.962 (4)°Block, yellow
V = 4007.7 (4) Å30.27 × 0.24 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
7045 independent reflections
Graphite monochromator4320 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.042
ω scansθmax = 25°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1112
Tmin = 0.983, Tmax = 1k = 2321
23717 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
7045 reflections(Δ/σ)max < 0.001
438 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[FeLi(C29H41N2)Cl2(C4H10O2)2]V = 4007.7 (4) Å3
Mr = 731.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1467 (5) ŵ = 0.55 mm1
b = 19.8186 (10) ÅT = 150 K
c = 20.6289 (11) Å0.27 × 0.24 × 0.13 mm
β = 104.962 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
7045 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4320 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 1Rint = 0.042
23717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.89Δρmax = 1.63 e Å3
7045 reflectionsΔρmin = 0.29 e Å3
438 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.31716 (4)0.24720 (2)0.352332 (17)0.02132 (12)
Cl10.08335 (7)0.25572 (4)0.32310 (4)0.0417 (2)
Cl20.37292 (6)0.25434 (4)0.25030 (3)0.03012 (17)
O10.11678 (19)0.15479 (10)0.17693 (9)0.0342 (5)
O20.07181 (18)0.24976 (11)0.14320 (9)0.0348 (5)
O30.1702 (2)0.26965 (10)0.08043 (9)0.0332 (5)
O40.13980 (19)0.36490 (10)0.16866 (9)0.0305 (5)
N10.4027 (2)0.16872 (11)0.41070 (10)0.0210 (5)
N20.4048 (2)0.31567 (11)0.42353 (10)0.0214 (5)
C10.4141 (3)0.10469 (13)0.37950 (12)0.0210 (6)
C20.5305 (3)0.09225 (14)0.35722 (13)0.0262 (7)
C30.5429 (3)0.02954 (15)0.32907 (13)0.0319 (7)
H3A0.62250.01990.31460.038*
C40.4431 (3)0.01886 (15)0.32163 (13)0.0323 (7)
H4A0.45450.06160.30290.039*
C50.3266 (3)0.00494 (14)0.34146 (12)0.0287 (7)
H5A0.25710.03820.33560.034*
C60.3087 (3)0.05698 (14)0.37007 (12)0.0241 (6)
C70.6441 (3)0.14354 (15)0.36438 (14)0.0322 (7)
H7A0.60750.1880.37460.039*
C80.7677 (3)0.12627 (19)0.42361 (15)0.0479 (9)
H8A0.73980.12750.46570.072*
H8B0.84040.15930.42560.072*
H8C0.80110.0810.41710.072*
C90.6902 (3)0.15230 (17)0.30007 (15)0.0401 (8)
H9A0.61280.16720.26380.06*
H9B0.72450.10920.28790.06*
H9C0.76290.18620.30730.06*
C100.1767 (3)0.06997 (15)0.38942 (13)0.0282 (7)
H10A0.1840.11530.41150.034*
C110.0567 (3)0.07233 (17)0.32694 (15)0.0401 (8)
H11A0.07280.10760.29660.06*
H11B0.02730.08230.34010.06*
H11C0.04780.02860.30410.06*
C120.1497 (3)0.01756 (16)0.43954 (15)0.0419 (8)
H12A0.22750.01630.47920.063*
H12B0.13730.02710.41830.063*
H12C0.06710.030.4530.063*
C130.4199 (3)0.38317 (14)0.40014 (12)0.0219 (6)
C140.3225 (3)0.43371 (14)0.40092 (12)0.0240 (6)
C150.3387 (3)0.49617 (14)0.37277 (12)0.0271 (7)
H15A0.27350.53070.37220.033*
C160.4468 (3)0.50898 (14)0.34572 (13)0.0288 (7)
H16A0.45580.55190.32690.035*
C170.5417 (3)0.45944 (15)0.34609 (13)0.0301 (7)
H17A0.61660.46890.32780.036*
C180.5309 (3)0.39550 (14)0.37261 (13)0.0257 (7)
C190.2041 (3)0.42393 (15)0.43281 (13)0.0309 (7)
H19A0.21250.3780.45360.037*
C200.2098 (3)0.47611 (17)0.48840 (15)0.0435 (8)
H20A0.29990.47470.52040.065*
H20B0.13950.46570.51170.065*
H20C0.19370.52130.46860.065*
C210.0649 (3)0.42854 (16)0.38159 (15)0.0405 (8)
H21A0.05390.39030.35060.061*
H21B0.05940.47080.35630.061*
H21C0.00760.42750.40510.061*
C220.6375 (3)0.34182 (15)0.37306 (14)0.0311 (7)
H22A0.59030.29720.36940.037*
C230.7495 (3)0.34164 (19)0.43980 (16)0.0496 (9)
H23A0.70850.33180.47690.074*
H23B0.79370.3860.44680.074*
H23C0.81760.3070.43810.074*
C240.7036 (3)0.34645 (17)0.31492 (15)0.0409 (8)
H24A0.63320.34270.27240.061*
H24B0.76970.30970.31820.061*
H24C0.75040.38990.31660.061*
C250.4912 (3)0.11037 (15)0.51887 (13)0.0319 (7)
H25A0.56070.08650.50230.048*
H25B0.41210.08090.51520.048*
H25C0.52920.12290.5660.048*
C260.4476 (3)0.17321 (14)0.47756 (12)0.0231 (6)
C270.4599 (3)0.23406 (13)0.51291 (13)0.0251 (7)
H27A0.47780.230.56030.03*
C280.4495 (3)0.30037 (14)0.48817 (13)0.0247 (6)
C290.4927 (3)0.35557 (15)0.54001 (13)0.0349 (8)
H29A0.53070.39350.52030.052*
H29B0.5620.3380.57860.052*
H29C0.41330.3710.55480.052*
C300.2147 (3)0.10323 (17)0.17719 (16)0.0470 (9)
H30A0.20120.06610.20620.07*
H30B0.30680.12170.19410.07*
H30C0.20350.08640.13140.07*
C310.0196 (3)0.13365 (17)0.14901 (16)0.0451 (9)
H31A0.03640.08990.16860.054*
H31B0.0370.12820.09980.054*
C320.1108 (3)0.18644 (18)0.16482 (16)0.0434 (9)
H32A0.2070.17640.14140.052*
H32B0.10240.18750.21370.052*
C330.1580 (3)0.3032 (2)0.15367 (19)0.0601 (11)
H33A0.25210.2940.12830.09*
H33B0.12730.34580.13840.09*
H33C0.15380.30640.20160.09*
C340.1146 (4)0.22442 (18)0.02709 (14)0.0482 (9)
H34A0.14580.23710.01240.072*
H34B0.01470.22650.01610.072*
H34C0.14470.17840.04070.072*
C350.1480 (3)0.33721 (17)0.05910 (13)0.0404 (8)
H35A0.04910.34610.04180.049*
H35B0.1930.34650.02280.049*
C360.2071 (3)0.38119 (16)0.11862 (14)0.0392 (8)
H36A0.30630.37290.13540.047*
H36B0.1930.42940.10610.047*
C370.1880 (3)0.40560 (16)0.22734 (13)0.0398 (8)
H37A0.16560.4530.21620.06*
H37B0.28710.40060.24390.06*
H37C0.14430.3910.26220.06*
Li10.1402 (4)0.2579 (2)0.1758 (2)0.0293 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0233 (2)0.0180 (2)0.01979 (19)0.00204 (18)0.00035 (15)0.00038 (17)
Cl10.0236 (3)0.0342 (5)0.0597 (5)0.0032 (3)0.0029 (3)0.0087 (4)
Cl20.0277 (3)0.0388 (4)0.0222 (3)0.0011 (3)0.0036 (3)0.0002 (3)
O10.0339 (12)0.0252 (12)0.0404 (11)0.0029 (9)0.0037 (9)0.0042 (9)
O20.0246 (10)0.0364 (13)0.0423 (11)0.0010 (10)0.0063 (9)0.0057 (10)
O30.0381 (12)0.0342 (13)0.0264 (10)0.0035 (9)0.0066 (9)0.0030 (9)
O40.0361 (12)0.0285 (12)0.0263 (10)0.0036 (9)0.0068 (9)0.0003 (9)
N10.0207 (12)0.0199 (13)0.0226 (11)0.0009 (10)0.0061 (10)0.0016 (10)
N20.0215 (12)0.0190 (13)0.0223 (12)0.0006 (10)0.0030 (10)0.0005 (9)
C10.0267 (15)0.0162 (15)0.0198 (13)0.0059 (12)0.0057 (12)0.0044 (11)
C20.0264 (15)0.0233 (17)0.0298 (15)0.0071 (12)0.0093 (13)0.0056 (12)
C30.0350 (17)0.0284 (18)0.0384 (16)0.0116 (14)0.0203 (14)0.0045 (14)
C40.0454 (18)0.0209 (17)0.0331 (16)0.0073 (14)0.0146 (14)0.0019 (13)
C50.0370 (17)0.0200 (16)0.0290 (15)0.0003 (13)0.0087 (14)0.0015 (12)
C60.0284 (15)0.0197 (16)0.0249 (14)0.0046 (12)0.0086 (12)0.0048 (11)
C70.0265 (16)0.0265 (18)0.0480 (18)0.0058 (13)0.0175 (14)0.0002 (14)
C80.0365 (19)0.063 (3)0.0453 (19)0.0069 (17)0.0127 (16)0.0029 (17)
C90.0356 (18)0.035 (2)0.0545 (19)0.0038 (15)0.0204 (16)0.0110 (16)
C100.0305 (16)0.0188 (16)0.0383 (16)0.0012 (12)0.0143 (14)0.0015 (12)
C110.0309 (17)0.039 (2)0.0504 (19)0.0037 (15)0.0106 (15)0.0020 (16)
C120.0468 (19)0.035 (2)0.053 (2)0.0013 (16)0.0291 (17)0.0045 (15)
C130.0240 (15)0.0196 (16)0.0180 (13)0.0034 (12)0.0021 (12)0.0032 (11)
C140.0265 (15)0.0195 (16)0.0235 (14)0.0029 (12)0.0018 (12)0.0040 (11)
C150.0297 (16)0.0188 (16)0.0286 (15)0.0026 (12)0.0000 (13)0.0024 (12)
C160.0375 (17)0.0163 (16)0.0309 (15)0.0054 (13)0.0060 (14)0.0021 (12)
C170.0300 (16)0.0264 (18)0.0337 (16)0.0085 (13)0.0079 (13)0.0045 (13)
C180.0233 (15)0.0218 (16)0.0275 (14)0.0034 (12)0.0017 (12)0.0044 (12)
C190.0394 (17)0.0197 (17)0.0371 (16)0.0074 (13)0.0161 (14)0.0057 (13)
C200.057 (2)0.038 (2)0.0402 (18)0.0106 (17)0.0197 (16)0.0022 (15)
C210.0349 (18)0.030 (2)0.060 (2)0.0003 (15)0.0194 (16)0.0050 (16)
C220.0225 (15)0.0242 (17)0.0440 (17)0.0002 (13)0.0036 (14)0.0008 (14)
C230.0268 (17)0.060 (3)0.055 (2)0.0082 (16)0.0013 (16)0.0030 (18)
C240.0328 (18)0.037 (2)0.0567 (19)0.0038 (15)0.0182 (16)0.0017 (16)
C250.0375 (17)0.0300 (18)0.0276 (15)0.0082 (14)0.0073 (13)0.0085 (13)
C260.0216 (15)0.0248 (16)0.0229 (14)0.0037 (12)0.0059 (12)0.0050 (12)
C270.0302 (15)0.0270 (18)0.0173 (13)0.0053 (12)0.0048 (11)0.0022 (11)
C280.0202 (15)0.0265 (17)0.0251 (14)0.0036 (12)0.0014 (12)0.0028 (12)
C290.0442 (19)0.0298 (19)0.0243 (15)0.0045 (14)0.0026 (14)0.0046 (13)
C300.061 (2)0.033 (2)0.0482 (19)0.0127 (17)0.0172 (17)0.0055 (16)
C310.045 (2)0.037 (2)0.0465 (19)0.0140 (16)0.0005 (16)0.0045 (16)
C320.0274 (17)0.049 (2)0.0492 (19)0.0150 (16)0.0012 (15)0.0062 (17)
C330.037 (2)0.057 (3)0.087 (3)0.0160 (19)0.016 (2)0.009 (2)
C340.062 (2)0.049 (2)0.0341 (18)0.0061 (18)0.0130 (17)0.0162 (16)
C350.050 (2)0.043 (2)0.0288 (16)0.0042 (16)0.0110 (15)0.0047 (15)
C360.052 (2)0.033 (2)0.0356 (17)0.0105 (16)0.0160 (15)0.0028 (14)
C370.058 (2)0.0288 (19)0.0306 (16)0.0031 (16)0.0079 (15)0.0096 (14)
Li10.027 (2)0.023 (3)0.035 (2)0.004 (2)0.004 (2)0.004 (2)
Geometric parameters (Å, º) top
Fe1—N12.020 (2)C16—C171.373 (4)
Fe1—N22.029 (2)C16—H16A0.95
Fe1—Cl12.2982 (8)C17—C181.396 (4)
Fe1—Cl22.3207 (7)C17—H17A0.95
Cl2—Li12.463 (4)C18—C221.516 (4)
O1—C311.418 (3)C19—C211.533 (4)
O1—C301.424 (4)C19—C201.534 (4)
O1—Li12.058 (5)C19—H19A1
O2—C321.422 (4)C20—H20A0.98
O2—C331.424 (4)C20—H20B0.98
O2—Li12.088 (5)C20—H20C0.98
O3—C351.409 (4)C21—H21A0.98
O3—C341.419 (3)C21—H21B0.98
O3—Li12.081 (5)C21—H21C0.98
O4—C361.415 (3)C22—C241.521 (4)
O4—C371.432 (3)C22—C231.543 (4)
O4—Li12.126 (5)C22—H22A1
N1—C261.339 (3)C23—H23A0.98
N1—C11.441 (3)C23—H23B0.98
N2—C281.328 (3)C23—H23C0.98
N2—C131.443 (3)C24—H24A0.98
C1—C21.395 (4)C24—H24B0.98
C1—C61.403 (4)C24—H24C0.98
C2—C31.391 (4)C25—C261.510 (4)
C2—C71.515 (4)C25—H25A0.98
C3—C41.375 (4)C25—H25B0.98
C3—H3A0.95C25—H25C0.98
C4—C51.374 (4)C26—C271.398 (4)
C4—H4A0.95C27—C281.404 (4)
C5—C61.394 (4)C27—H27A0.95
C5—H5A0.95C28—C291.513 (4)
C6—C101.515 (4)C29—H29A0.98
C7—C91.526 (4)C29—H29B0.98
C7—C81.546 (4)C29—H29C0.98
C7—H7A1C30—H30A0.98
C8—H8A0.98C30—H30B0.98
C8—H8B0.98C30—H30C0.98
C8—H8C0.98C31—C321.488 (5)
C9—H9A0.98C31—H31A0.99
C9—H9B0.98C31—H31B0.99
C9—H9C0.98C32—H32A0.99
C10—C111.528 (4)C32—H32B0.99
C10—C121.539 (4)C33—H33A0.98
C10—H10A1C33—H33B0.98
C11—H11A0.98C33—H33C0.98
C11—H11B0.98C34—H34A0.98
C11—H11C0.98C34—H34B0.98
C12—H12A0.98C34—H34C0.98
C12—H12B0.98C35—C361.499 (4)
C12—H12C0.98C35—H35A0.99
C13—C181.407 (4)C35—H35B0.99
C13—C141.410 (4)C36—H36A0.99
C14—C151.395 (4)C36—H36B0.99
C14—C191.524 (4)C37—H37A0.98
C15—C161.377 (4)C37—H37B0.98
C15—H15A0.95C37—H37C0.98
N1—Fe1—N292.46 (9)C19—C20—H20C109.5
N1—Fe1—Cl1117.92 (6)H20A—C20—H20C109.5
N2—Fe1—Cl1111.77 (6)H20B—C20—H20C109.5
N1—Fe1—Cl2114.82 (6)C19—C21—H21A109.5
N2—Fe1—Cl2116.86 (6)C19—C21—H21B109.5
Cl1—Fe1—Cl2103.56 (3)H21A—C21—H21B109.5
Fe1—Cl2—Li198.54 (11)C19—C21—H21C109.5
C31—O1—C30113.3 (2)H21A—C21—H21C109.5
C31—O1—Li1113.1 (2)H21B—C21—H21C109.5
C30—O1—Li1129.1 (2)C18—C22—C24114.3 (2)
C32—O2—C33112.1 (3)C18—C22—C23111.6 (2)
C32—O2—Li1108.3 (2)C24—C22—C23109.3 (2)
C33—O2—Li1121.0 (2)C18—C22—H22A107.1
C35—O3—C34111.0 (2)C24—C22—H22A107.1
C35—O3—Li1110.6 (2)C23—C22—H22A107.1
C34—O3—Li1122.5 (2)C22—C23—H23A109.5
C36—O4—C37111.4 (2)C22—C23—H23B109.5
C36—O4—Li1106.6 (2)H23A—C23—H23B109.5
C37—O4—Li1120.6 (2)C22—C23—H23C109.5
C26—N1—C1118.2 (2)H23A—C23—H23C109.5
C26—N1—Fe1122.84 (18)H23B—C23—H23C109.5
C1—N1—Fe1118.91 (15)C22—C24—H24A109.5
C28—N2—C13120.6 (2)C22—C24—H24B109.5
C28—N2—Fe1123.12 (19)H24A—C24—H24B109.5
C13—N2—Fe1116.26 (15)C22—C24—H24C109.5
C2—C1—C6121.0 (2)H24A—C24—H24C109.5
C2—C1—N1118.4 (2)H24B—C24—H24C109.5
C6—C1—N1120.6 (2)C26—C25—H25A109.5
C3—C2—C1118.1 (3)C26—C25—H25B109.5
C3—C2—C7119.4 (3)H25A—C25—H25B109.5
C1—C2—C7122.4 (3)C26—C25—H25C109.5
C4—C3—C2121.8 (3)H25A—C25—H25C109.5
C4—C3—H3A119.1H25B—C25—H25C109.5
C2—C3—H3A119.1N1—C26—C27123.7 (2)
C5—C4—C3119.5 (3)N1—C26—C25119.9 (2)
C5—C4—H4A120.3C27—C26—C25116.3 (2)
C3—C4—H4A120.3C26—C27—C28129.0 (2)
C4—C5—C6121.3 (3)C26—C27—H27A115.5
C4—C5—H5A119.4C28—C27—H27A115.5
C6—C5—H5A119.4N2—C28—C27123.6 (2)
C5—C6—C1118.3 (2)N2—C28—C29120.4 (2)
C5—C6—C10118.8 (3)C27—C28—C29116.0 (2)
C1—C6—C10122.9 (2)C28—C29—H29A109.5
C2—C7—C9112.8 (2)C28—C29—H29B109.5
C2—C7—C8111.7 (2)H29A—C29—H29B109.5
C9—C7—C8110.1 (2)C28—C29—H29C109.5
C2—C7—H7A107.3H29A—C29—H29C109.5
C9—C7—H7A107.3H29B—C29—H29C109.5
C8—C7—H7A107.3O1—C30—H30A109.5
C7—C8—H8A109.5O1—C30—H30B109.5
C7—C8—H8B109.5H30A—C30—H30B109.5
H8A—C8—H8B109.5O1—C30—H30C109.5
C7—C8—H8C109.5H30A—C30—H30C109.5
H8A—C8—H8C109.5H30B—C30—H30C109.5
H8B—C8—H8C109.5O1—C31—C32107.5 (2)
C7—C9—H9A109.5O1—C31—H31A110.2
C7—C9—H9B109.5C32—C31—H31A110.2
H9A—C9—H9B109.5O1—C31—H31B110.2
C7—C9—H9C109.5C32—C31—H31B110.2
H9A—C9—H9C109.5H31A—C31—H31B108.5
H9B—C9—H9C109.5O2—C32—C31108.2 (3)
C6—C10—C11110.4 (2)O2—C32—H32A110.1
C6—C10—C12112.7 (2)C31—C32—H32A110.1
C11—C10—C12110.2 (2)O2—C32—H32B110.1
C6—C10—H10A107.8C31—C32—H32B110.1
C11—C10—H10A107.8H32A—C32—H32B108.4
C12—C10—H10A107.8O2—C33—H33A109.5
C10—C11—H11A109.5O2—C33—H33B109.5
C10—C11—H11B109.5H33A—C33—H33B109.5
H11A—C11—H11B109.5O2—C33—H33C109.5
C10—C11—H11C109.5H33A—C33—H33C109.5
H11A—C11—H11C109.5H33B—C33—H33C109.5
H11B—C11—H11C109.5O3—C34—H34A109.5
C10—C12—H12A109.5O3—C34—H34B109.5
C10—C12—H12B109.5H34A—C34—H34B109.5
H12A—C12—H12B109.5O3—C34—H34C109.5
C10—C12—H12C109.5H34A—C34—H34C109.5
H12A—C12—H12C109.5H34B—C34—H34C109.5
H12B—C12—H12C109.5O3—C35—C36107.4 (2)
C18—C13—C14121.1 (3)O3—C35—H35A110.2
C18—C13—N2117.4 (2)C36—C35—H35A110.2
C14—C13—N2121.3 (2)O3—C35—H35B110.2
C15—C14—C13117.9 (3)C36—C35—H35B110.2
C15—C14—C19118.9 (3)H35A—C35—H35B108.5
C13—C14—C19123.2 (2)O4—C36—C35107.4 (2)
C16—C15—C14121.6 (3)O4—C36—H36A110.2
C16—C15—H15A119.2C35—C36—H36A110.2
C14—C15—H15A119.2O4—C36—H36B110.2
C17—C16—C15119.8 (3)C35—C36—H36B110.2
C17—C16—H16A120.1H36A—C36—H36B108.5
C15—C16—H16A120.1O4—C37—H37A109.5
C16—C17—C18121.7 (3)O4—C37—H37B109.5
C16—C17—H17A119.2H37A—C37—H37B109.5
C18—C17—H17A119.2O4—C37—H37C109.5
C17—C18—C13117.9 (3)H37A—C37—H37C109.5
C17—C18—C22120.8 (3)H37B—C37—H37C109.5
C13—C18—C22121.3 (3)O1—Li1—O399.6 (2)
C14—C19—C21112.6 (2)O1—Li1—O279.33 (18)
C14—C19—C20110.8 (2)O3—Li1—O295.40 (19)
C21—C19—C20109.0 (2)O1—Li1—O4173.3 (3)
C14—C19—H19A108.1O3—Li1—O479.66 (18)
C21—C19—H19A108.1O2—Li1—O494.1 (2)
C20—C19—H19A108.1O1—Li1—Cl293.41 (18)
C19—C20—H20A109.5O3—Li1—Cl2104.02 (19)
C19—C20—H20B109.5O2—Li1—Cl2160.2 (2)
H20A—C20—H20B109.5O4—Li1—Cl293.21 (17)
N1—Fe1—Cl2—Li1125.89 (13)C15—C14—C19—C2057.1 (3)
N2—Fe1—Cl2—Li1127.41 (13)C13—C14—C19—C20120.9 (3)
Cl1—Fe1—Cl2—Li14.06 (12)C17—C18—C22—C2431.1 (4)
N2—Fe1—N1—C2621.2 (2)C13—C18—C22—C24150.4 (3)
Cl1—Fe1—N1—C2695.1 (2)C17—C18—C22—C2393.5 (3)
Cl2—Fe1—N1—C26142.44 (18)C13—C18—C22—C2385.0 (3)
N2—Fe1—N1—C1159.79 (19)C1—N1—C26—C27170.7 (2)
Cl1—Fe1—N1—C183.93 (19)Fe1—N1—C26—C2710.3 (4)
Cl2—Fe1—N1—C138.6 (2)C1—N1—C26—C258.0 (4)
N1—Fe1—N2—C2821.1 (2)Fe1—N1—C26—C25171.04 (19)
Cl1—Fe1—N2—C28100.3 (2)N1—C26—C27—C2810.4 (5)
Cl2—Fe1—N2—C28140.67 (18)C25—C26—C27—C28168.3 (3)
N1—Fe1—N2—C13157.42 (18)C13—N2—C28—C27168.6 (3)
Cl1—Fe1—N2—C1381.13 (18)Fe1—N2—C28—C279.9 (4)
Cl2—Fe1—N2—C1337.9 (2)C13—N2—C28—C2911.5 (4)
C26—N1—C1—C292.5 (3)Fe1—N2—C28—C29170.0 (2)
Fe1—N1—C1—C288.5 (2)C26—C27—C28—N210.6 (5)
C26—N1—C1—C689.4 (3)C26—C27—C28—C29169.5 (3)
Fe1—N1—C1—C689.7 (2)C30—O1—C31—C32168.3 (2)
C6—C1—C2—C33.9 (4)Li1—O1—C31—C3233.3 (3)
N1—C1—C2—C3178.0 (2)C33—O2—C32—C31177.4 (2)
C6—C1—C2—C7177.8 (2)Li1—O2—C32—C3146.5 (3)
N1—C1—C2—C70.3 (4)O1—C31—C32—O252.7 (3)
C1—C2—C3—C41.4 (4)C34—O3—C35—C36178.8 (2)
C7—C2—C3—C4179.8 (2)Li1—O3—C35—C3639.5 (3)
C2—C3—C4—C51.0 (4)C37—O4—C36—C35178.9 (2)
C3—C4—C5—C61.1 (4)Li1—O4—C36—C3547.7 (3)
C4—C5—C6—C11.3 (4)O3—C35—C36—O459.3 (3)
C4—C5—C6—C10178.6 (2)C31—O1—Li1—O386.8 (2)
C2—C1—C6—C53.8 (4)C30—O1—Li1—O367.4 (3)
N1—C1—C6—C5178.1 (2)C31—O1—Li1—O26.9 (2)
C2—C1—C6—C10176.0 (2)C30—O1—Li1—O2161.2 (2)
N1—C1—C6—C102.0 (4)C31—O1—Li1—Cl2168.4 (2)
C3—C2—C7—C948.4 (3)C30—O1—Li1—Cl237.4 (3)
C1—C2—C7—C9133.3 (3)C35—O3—Li1—O1162.1 (2)
C3—C2—C7—C876.3 (3)C34—O3—Li1—O128.3 (3)
C1—C2—C7—C8102.0 (3)C35—O3—Li1—O282.1 (2)
C5—C6—C10—C1165.9 (3)C34—O3—Li1—O251.8 (3)
C1—C6—C10—C11114.0 (3)C35—O3—Li1—O411.1 (2)
C5—C6—C10—C1257.9 (3)C34—O3—Li1—O4145.0 (2)
C1—C6—C10—C12122.3 (3)C35—O3—Li1—Cl2101.9 (2)
C28—N2—C13—C1898.2 (3)C34—O3—Li1—Cl2124.3 (2)
Fe1—N2—C13—C1880.4 (2)C32—O2—Li1—O122.2 (2)
C28—N2—C13—C1485.7 (3)C33—O2—Li1—O1153.6 (2)
Fe1—N2—C13—C1495.7 (2)C32—O2—Li1—O3121.0 (2)
C18—C13—C14—C150.8 (4)C33—O2—Li1—O3107.5 (3)
N2—C13—C14—C15175.2 (2)C32—O2—Li1—O4159.0 (2)
C18—C13—C14—C19177.3 (2)C33—O2—Li1—O427.6 (3)
N2—C13—C14—C196.8 (4)C32—O2—Li1—Cl247.7 (8)
C13—C14—C15—C160.8 (4)C33—O2—Li1—Cl283.8 (8)
C19—C14—C15—C16177.3 (2)C36—O4—Li1—O320.9 (2)
C14—C15—C16—C170.1 (4)C37—O4—Li1—O3149.1 (2)
C15—C16—C17—C180.8 (4)C36—O4—Li1—O2115.6 (2)
C16—C17—C18—C130.9 (4)C37—O4—Li1—O2116.2 (2)
C16—C17—C18—C22179.4 (2)C36—O4—Li1—Cl282.8 (2)
C14—C13—C18—C170.1 (4)C37—O4—Li1—Cl245.4 (3)
N2—C13—C18—C17176.1 (2)Fe1—Cl2—Li1—O182.12 (15)
C14—C13—C18—C22178.6 (2)Fe1—Cl2—Li1—O3177.06 (16)
N2—C13—C18—C225.3 (3)Fe1—Cl2—Li1—O214.6 (7)
C15—C14—C19—C2165.2 (3)Fe1—Cl2—Li1—O496.92 (14)
C13—C14—C19—C21116.8 (3)

Experimental details

Crystal data
Chemical formula[FeLi(C29H41N2)Cl2(C4H10O2)2]
Mr731.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.1467 (5), 19.8186 (10), 20.6289 (11)
β (°) 104.962 (4)
V3)4007.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.27 × 0.24 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 (large Be window)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.983, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
23717, 7045, 4320
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.89
No. of reflections7045
No. of parameters438
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.63, 0.29

Computer programs: X-AREA (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999).

Selected bond lengths (Å) top
Fe1—N12.020 (2)O1—Li12.058 (5)
Fe1—N22.029 (2)O2—Li12.088 (5)
Fe1—Cl12.2982 (8)O3—Li12.081 (5)
Fe1—Cl22.3207 (7)O4—Li12.126 (5)
 

Acknowledgements

We thank the Polish State Committee of Scientific Research (project No. NN204271535) for financial support.

References

First citationBaum, E., Matern, E., Pikies, J. & Robaszkiewicz, A. (2004). Z. Anorg. Allg. Chem. 630, 1090–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. J., Hill, M. S. & Hitchcock, P. B. (2003). Dalton Trans. pp. 570–574.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKovacs, I., Matern, E. & Fritz, G. (1996). Z. Anorg. Allg. Chem. 622, 953–941.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPanda, A., Stender, M., Wright, R. J., Olmstead, M. M., Klavins, P. & Power, P. P. (2002). Inorg. Chem. 41, 3909–3916.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSciarone, T. J. J., Nijhuis, C. A., Meetsma, A. & Hessen, B. (2006). Dalton Trans. pp. 4896–4904.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. M., Lachicotte, R. J. & Holland, P. L. (2001). Chem. Commun. pp. 1542–1543.  Web of Science CSD CrossRef Google Scholar
First citationStoe & Cie (1997). IPDS Software and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds