organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Carbamoylphen­yl)boronic acid

aInstitute of Molecular Biology "Acad. R. Tsanev", Bulgarian Academy of Sciences, Acad G. Bonchev Str. Building 21, 1113 Sofia, Bulgaria, and bCentral Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad G. Bonchev Str. Building 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: blshivachev@gmail.com

(Received 15 February 2010; accepted 22 April 2010; online 8 May 2010)

In the title compound, C7H8BNO3, the mol­ecule lies on an inversion center leading to a statistical disorder of the B(OH)2 and CONH2 groups. In the crystal structure, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. The B(OH)2 and CONH2 groups are twisted out of the mean plane of the benzene ring by 23.9 (5) and 24.6 (6)°, respectively.

Related literature

For general background to the use of boronic acids in organic synthesis, as pharmaceutical agents and in crystal engineering see: Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]); Suzuki (1999[Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.]); Adams & Kauffman (2004[Adams, J. & Kauffman, M. (2004). Cancer Investig. 22, 304-311.]); Barth et al. (2005[Barth, R. F., Coderre, J. A., Gra, M., Vicente, H. & Blue, T. E. (2005). Clin. Cancer Res. 11, 3987-4002.]); Minkkilä et al. (2008[Minkkilä, A., Saario, S. M., Käsnänen, H., Leppänen, J., Poso, A. & Nevalainen, T. (2008). J. Med. Chem. 51, 7057-7060.]); Maly et al. (2006[Maly, K. E., Malek, N., Fournier, J.-H., Rodríguez-Cuamatzi, P., Maris, Th. & Wuest, J. D. (2006). Pure Appl. Chem. 78, 1305-1321.]); Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]); James et al. (2006[James, T. D., Phillips, M. D. & Shinkai, S. (2006). Boronic Acids in Saccharide Recognition. London: Royal Society of Chemistry.]).. For related structures, see: Cobbledick & Small (1972[Cobbledick, R. E. & Small, R. W. H. (1972). Acta Cryst. B28, 2893-2896.]); Rodríguez-Cuamatzi et al. (2004[Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316-o1318.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8BNO3

  • Mr = 164.95

  • Triclinic, [P \overline 1]

  • a = 4.997 (2) Å

  • b = 5.351 (2) Å

  • c = 7.2967 (16) Å

  • α = 103.912 (13)°

  • β = 98.69 (2)°

  • γ = 93.136 (14)°

  • V = 186.36 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 290 K

  • 0.27 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2155 measured reflections

  • 1078 independent reflections

  • 755 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.148

  • S = 1.03

  • 1078 reflections

  • 75 parameters

  • 88 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.96 2.77 (2) 167
O2—H2A⋯O1ii 0.82 2.05 2.79 (2) 149
O2—H2A⋯O3iii 0.82 2.00 2.73 (2) 149
N1—H1A⋯O3iv 0.86 2.14 2.97 (3) 160.7
N1—H1B⋯O1v 0.86 2.30 2.97 (2) 135.7
N1—H1B⋯O3vi 0.86 2.18 2.90 (2) 140.8
Symmetry codes: (i) -x, -y-1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z-1; (v) -x-1, -y, -z; (vi) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound possesses two distinct functional groups: boronic acid and amide. Compounds containing the boronic acid moiety are important as precursors for organic transformations (Miyaura & Suzuki, 1995; Suzuki, 1999;) and recently attention has been focused on these types of compounds as potential pharmaceutical agents (Adams & Kauffman, 2004; Barth et al., 2005; Minkkilä et al., 2008). Amides are versatile precursors to many other functional groups and undergo many chemical reactions, usually through an attack on the carbonyl group. The title compound is a commercial product and we solved its crystal structure to verify the repeatability of the weak interactions already observed in the structures of terephthalamide and phenylboronic acid Cobbledick & Small, 1972; Rodríguez-Cuamatzi, P. et al., 2004. Self assembling based on hydrogen-bonding motifs is of general interest for crystal engineering, structural chemistry and biology (Maly et al., 2006; Desiraju, 1995).

The crystal structure of the studied compound contains molecules linked together by hydrogen bonds in sheets similar to those of terephthalamide (Cobbledick & Small, 1972) and 1,4-phenilboronic acid (Rodríguez-Cuamatzi et al., 2004) (Fig. 1). More over all tree compounds have similar triclinic lattice parameters and crystallize in the centrosymmetric P-1 space group. In the title compound, the location of the molecule on a center of symmetry leads to a statistical disorder of the B(OH)2 and CONH2 groups (Fig. 1). The B(OH)2 and CONH2 groups are out of the mean plane of the benzene ring by 23.9 (5)° and 24.6 (6)° respectively. Similar angle is reported for the amide group in terephthalamide (23°) while the one for 1,4 phenilboronic acid is greater (~35°). It should be noted that C—C (phenyl-amide) and C—B distances of 1.505 (6) Å and 1.546 (6)Å are restrained to match those in the terephthalamide molecule C—C (phenyl-amide) distance of 1.489 (5) Å and that of the 1,4-phenilboronic acid molecule with C—B of 1.564 (3) Å.

Both amide and boronic acid groups are involved in hydrogen bonds to form ring motifs marked by I and II (Fig. 2). Type I, R22(8) (Bernstein et al. 1995) connects opposite sides of molecules to chains. Type II links the chains to form sheets parallel to bc. However, two type of motifs linking the chains can be proposed: R44(8) (Fig. 2a) and R34(8) (Fig. 2b). Indeed, hydrogen bonding pattern can vary depending on the position of the hydrogen atoms attached to the B(OH)2 moiety (Fig. 3). The current position of H atoms for the B(OH)2 group (syn, anti) results from a SHELX AFIX 147 instruction. As a result the bonding interaction between the B(OH)2 and amide groups is forbidden, due to the short contact between hydrogen atoms linked to O1 and N1 (H1···H1A 1.272 Å). Thus the hydrogen bonding interactions in the chains are limited to "boronic-boronic" and "amid-amide". An alternative (anti, syn) positioning for H attached to O will permit hydrogen bonding between B(OH)2 and amid groups but an Fo map (Fig. 4) does not suggest an (anti, syn) conformation for the H atoms.

Related literature top

For general background to the use of boronic acids in organic synthesis, as pharmaceutical agents and in crystal engineering see: Miyaura & Suzuki (1995); Suzuki (1999); Adams & Kauffman (2004); Barth et al. (2005); Minkkilä et al. (2008); Maly et al. (2006); Desiraju (1995). For related structures, see: Cobbledick & Small (1972); Rodríguez-Cuamatzi et al. (2004). For related literature [on what subject?], see: James et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

The studied compound is a commercial product (Frontier Scientific). Colorless crystals of C7H8NBO3, were obtained after several days staying from 50% water:ethanol solution at 277K.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O or N). Disorder refinement required the introduction of appropriate series of restraints on bond lengths and planarity.

Structure description top

The title compound possesses two distinct functional groups: boronic acid and amide. Compounds containing the boronic acid moiety are important as precursors for organic transformations (Miyaura & Suzuki, 1995; Suzuki, 1999;) and recently attention has been focused on these types of compounds as potential pharmaceutical agents (Adams & Kauffman, 2004; Barth et al., 2005; Minkkilä et al., 2008). Amides are versatile precursors to many other functional groups and undergo many chemical reactions, usually through an attack on the carbonyl group. The title compound is a commercial product and we solved its crystal structure to verify the repeatability of the weak interactions already observed in the structures of terephthalamide and phenylboronic acid Cobbledick & Small, 1972; Rodríguez-Cuamatzi, P. et al., 2004. Self assembling based on hydrogen-bonding motifs is of general interest for crystal engineering, structural chemistry and biology (Maly et al., 2006; Desiraju, 1995).

The crystal structure of the studied compound contains molecules linked together by hydrogen bonds in sheets similar to those of terephthalamide (Cobbledick & Small, 1972) and 1,4-phenilboronic acid (Rodríguez-Cuamatzi et al., 2004) (Fig. 1). More over all tree compounds have similar triclinic lattice parameters and crystallize in the centrosymmetric P-1 space group. In the title compound, the location of the molecule on a center of symmetry leads to a statistical disorder of the B(OH)2 and CONH2 groups (Fig. 1). The B(OH)2 and CONH2 groups are out of the mean plane of the benzene ring by 23.9 (5)° and 24.6 (6)° respectively. Similar angle is reported for the amide group in terephthalamide (23°) while the one for 1,4 phenilboronic acid is greater (~35°). It should be noted that C—C (phenyl-amide) and C—B distances of 1.505 (6) Å and 1.546 (6)Å are restrained to match those in the terephthalamide molecule C—C (phenyl-amide) distance of 1.489 (5) Å and that of the 1,4-phenilboronic acid molecule with C—B of 1.564 (3) Å.

Both amide and boronic acid groups are involved in hydrogen bonds to form ring motifs marked by I and II (Fig. 2). Type I, R22(8) (Bernstein et al. 1995) connects opposite sides of molecules to chains. Type II links the chains to form sheets parallel to bc. However, two type of motifs linking the chains can be proposed: R44(8) (Fig. 2a) and R34(8) (Fig. 2b). Indeed, hydrogen bonding pattern can vary depending on the position of the hydrogen atoms attached to the B(OH)2 moiety (Fig. 3). The current position of H atoms for the B(OH)2 group (syn, anti) results from a SHELX AFIX 147 instruction. As a result the bonding interaction between the B(OH)2 and amide groups is forbidden, due to the short contact between hydrogen atoms linked to O1 and N1 (H1···H1A 1.272 Å). Thus the hydrogen bonding interactions in the chains are limited to "boronic-boronic" and "amid-amide". An alternative (anti, syn) positioning for H attached to O will permit hydrogen bonding between B(OH)2 and amid groups but an Fo map (Fig. 4) does not suggest an (anti, syn) conformation for the H atoms.

For general background to the use of boronic acids in organic synthesis, as pharmaceutical agents and in crystal engineering see: Miyaura & Suzuki (1995); Suzuki (1999); Adams & Kauffman (2004); Barth et al. (2005); Minkkilä et al. (2008); Maly et al. (2006); Desiraju (1995). For related structures, see: Cobbledick & Small (1972); Rodríguez-Cuamatzi et al. (2004). For related literature [on what subject?], see: James et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Two possible ways of molecular arrangement in the unit cell, showing the hydrogen-bonding interactions as dashed lines: type I connects opposite sides of molecules to chains and II links the chains together.
[Figure 3] Fig. 3. Possible conformations of the B(OH)2 functional group.
[Figure 4] Fig. 4. Fo electron density viewed perpendicular to the mean plane of the molecule.
(4-carbamoylphenyl)boronic acid top
Crystal data top
C7H8BNO3Z = 1
Mr = 164.95F(000) = 86
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 4.997 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.351 (2) ÅCell parameters from 22 reflections
c = 7.2967 (16) Åθ = 18.0–19.8°
α = 103.912 (13)°µ = 0.11 mm1
β = 98.69 (2)°T = 290 K
γ = 93.136 (14)°Prismatic, colorless
V = 186.36 (11) Å30.27 × 0.25 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.9°
Graphite monochromatorh = 77
Non–profiled ω/2θ scansk = 77
2155 measured reflectionsl = 1010
1078 independent reflections3 standard reflections every 120 min
755 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.0033P]
where P = (Fo2 + 2Fc2)/3
1078 reflections(Δ/σ)max = 0.001
75 parametersΔρmax = 0.28 e Å3
88 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H8BNO3γ = 93.136 (14)°
Mr = 164.95V = 186.36 (11) Å3
Triclinic, P1Z = 1
a = 4.997 (2) ÅMo Kα radiation
b = 5.351 (2) ŵ = 0.11 mm1
c = 7.2967 (16) ÅT = 290 K
α = 103.912 (13)°0.27 × 0.25 × 0.25 mm
β = 98.69 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
2155 measured reflections3 standard reflections every 120 min
1078 independent reflections intensity decay: 2%
755 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05388 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
1078 reflectionsΔρmin = 0.23 e Å3
75 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.001 (3)0.298 (2)0.2892 (18)0.0268 (10)0.50
O10.243 (3)0.393 (3)0.318 (3)0.0399 (19)0.50
H10.21840.45840.40920.060*0.50
O20.236 (2)0.334 (2)0.404 (2)0.0351 (15)0.50
H2A0.36690.31580.35100.053*0.50
C10.0096 (17)0.113 (2)0.1593 (16)0.0246 (10)0.50
C20.2061 (18)0.068 (2)0.1647 (17)0.0314 (10)0.50
H20.35120.10210.26610.038*0.50
C30.207 (2)0.197 (2)0.0217 (17)0.0314 (10)0.50
H30.35290.31660.02820.038*0.50
C40.0069 (18)0.150 (2)0.1318 (16)0.0246 (10)0.50
C50.2219 (19)0.029 (2)0.1375 (17)0.0314 (10)0.50
H50.36700.06340.23890.038*0.50
C60.223 (2)0.158 (2)0.0057 (17)0.0314 (10)0.50
H60.36850.27760.00100.038*0.50
C70.016 (2)0.256 (2)0.3128 (15)0.0268 (10)0.50
O30.237 (3)0.341 (3)0.344 (3)0.0399 (19)0.50
N10.212 (3)0.283 (3)0.415 (3)0.0351 (15)0.50
H1A0.21120.36060.50510.042*0.50
H1B0.36310.22370.39160.042*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0340 (13)0.027 (3)0.024 (2)0.0062 (15)0.0098 (12)0.011 (2)
O10.0295 (7)0.054 (5)0.048 (4)0.002 (2)0.0081 (18)0.035 (4)
O20.0282 (18)0.046 (4)0.0412 (16)0.006 (2)0.0081 (15)0.029 (3)
C10.0301 (11)0.028 (3)0.020 (3)0.0076 (11)0.0089 (11)0.0097 (19)
C20.0331 (11)0.038 (3)0.024 (3)0.0005 (12)0.0004 (12)0.0137 (19)
C30.0329 (11)0.034 (3)0.030 (3)0.0018 (12)0.0048 (12)0.015 (2)
C40.0301 (11)0.028 (3)0.020 (3)0.0076 (11)0.0089 (11)0.0097 (19)
C50.0331 (11)0.038 (3)0.024 (3)0.0005 (12)0.0004 (12)0.0137 (19)
C60.0329 (11)0.034 (3)0.030 (3)0.0018 (12)0.0048 (12)0.015 (2)
C70.0340 (13)0.027 (3)0.024 (2)0.0062 (15)0.0098 (12)0.011 (2)
O30.0295 (7)0.054 (5)0.048 (4)0.002 (2)0.0081 (18)0.035 (4)
N10.0282 (18)0.046 (4)0.0412 (16)0.006 (2)0.0081 (15)0.029 (3)
Geometric parameters (Å, º) top
B1—O11.351 (8)C3—C41.391 (8)
B1—O21.393 (8)C3—H30.9300
B1—C41.546 (6)C4—C51.391 (8)
O1—H10.8200C5—C61.384 (8)
O2—H2A0.8200C5—H50.9300
C1—C61.388 (8)C6—H60.9300
C1—C21.397 (8)C7—O31.246 (7)
C1—C71.505 (6)C7—N11.298 (7)
C2—C31.384 (8)N1—H1A0.8600
C2—H20.9300N1—H1B0.8600
O1—B1—O2118.9 (15)C5—C4—B1122.2 (8)
O1—B1—C4119.4 (13)C6—C5—C4120.8 (5)
O2—B1—C4121.6 (12)C6—C5—H5119.6
C6—C1—C2117.8 (5)C4—C5—H5119.6
C6—C1—C7120.0 (7)C5—C6—C1121.2 (6)
C2—C1—C7122.2 (7)C5—C6—H6119.4
C3—C2—C1121.1 (5)C1—C6—H6119.4
C3—C2—H2119.5O3—C7—N1120.8 (16)
C1—C2—H2119.5O3—C7—C1120.4 (13)
C2—C3—C4120.8 (5)N1—C7—C1118.8 (13)
C2—C3—H3119.6C7—N1—H1A120.0
C4—C3—H3119.6C7—N1—H1B120.0
C3—C4—C5118.2 (5)H1A—N1—H1B120.0
C3—C4—B1119.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.77 (2)167
O2—H2A···O1ii0.822.052.79 (2)149
O2—H2A···O3iii0.822.002.73 (2)149
N1—H1A···O3iv0.862.142.97 (3)160.7
N1—H1B···O1v0.862.302.97 (2)135.7
N1—H1B···O3vi0.862.182.90 (2)140.8
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y+1, z1; (v) x1, y, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H8BNO3
Mr164.95
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)4.997 (2), 5.351 (2), 7.2967 (16)
α, β, γ (°)103.912 (13), 98.69 (2), 93.136 (14)
V3)186.36 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2155, 1078, 755
Rint0.054
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.03
No. of reflections1078
No. of parameters75
No. of restraints88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.77 (2)166.9
O2—H2A···O1ii0.822.052.79 (2)148.6
O2—H2A···O3iii0.822.002.73 (2)148.8
N1—H1A···O3iv0.862.142.97 (3)160.7
N1—H1B···O1v0.862.302.97 (2)135.7
N1—H1B···O3vi0.862.182.90 (2)140.8
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y+1, z1; (v) x1, y, z; (vi) x1, y, z.
 

Acknowledgements

The authors wish to acknowledge NSFB grants RNI09/01 and DOO2/305.

References

First citationAdams, J. & Kauffman, M. (2004). Cancer Investig. 22, 304–311.  Web of Science CrossRef CAS Google Scholar
First citationBarth, R. F., Coderre, J. A., Gra, M., Vicente, H. & Blue, T. E. (2005). Clin. Cancer Res. 11, 3987–4002.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCobbledick, R. E. & Small, R. W. H. (1972). Acta Cryst. B28, 2893–2896.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJames, T. D., Phillips, M. D. & Shinkai, S. (2006). Boronic Acids in Saccharide Recognition. London: Royal Society of Chemistry.  Google Scholar
First citationMaly, K. E., Malek, N., Fournier, J.-H., Rodríguez-Cuamatzi, P., Maris, Th. & Wuest, J. D. (2006). Pure Appl. Chem. 78, 1305–1321.  Web of Science CrossRef CAS Google Scholar
First citationMinkkilä, A., Saario, S. M., Käsnänen, H., Leppänen, J., Poso, A. & Nevalainen, T. (2008). J. Med. Chem. 51, 7057–7060.  Web of Science PubMed Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316–o1318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. 576, 147–168.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds