organic compounds
2,2-Dichloro-1-[(2R,5S)-5-ethyl-2-methyl-2-propyl-1,3-oxazolidin-3-yl]ethanone
aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: yefei@neau.edu.cn
In the title compound, C11H19Cl2NO2, the oxazolidine ring is in an with the O atom forming the flap. In the molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, forming chains.
Related literature
For general background to N-dichloroacetyl oxazolidine, see: Agami & Couty (2004); Abu-Qare & Duncan (2002); Guirado et al. (2003); Davies & Caseley (1999). For the bioactivity of related compounds, see: Del Buono et al. (2007); Hatzios & Burgos (2004). For details of the synthesis, see: Fu et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810016090/lh5034sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016090/lh5034Isup2.hkl
The title compound was prepared according to the literature procedure (Fu et al., 2009). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation in petroleum ether and ethyl acetate at room temperature. The title
spontaneously resolved from a during the crystallization.All H atoms were initially located in a different Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H = 0.96-0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.
The molecular structure of the title compound is shown in Fig. 1. In the
molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).For general background to N-dichloroacetyl oxazolidine, see: Agami & Couty (2004); Abu-Qare & Duncan (2002); Guirado et al. (2003); Davies & Caseley (1999). For the bioactivity of related compounds, see: Del Buono et al. (2007); Hatzios & Burgos (2004). For details of the synthesis, see: Fu et al. (2009).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H19Cl2NO2 | F(000) = 568.0 |
Mr = 268.17 | Dx = 1.271 Mg m−3 Dm = 1.271 Mg m−3 Dm measured by not measured |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3142 reflections |
a = 6.4834 (12) Å | θ = 2.8–20.6° |
b = 10.795 (2) Å | µ = 0.45 mm−1 |
c = 20.030 (4) Å | T = 293 K |
V = 1401.8 (5) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.24 × 0.20 mm |
Bruker SMART CCD diffractometer | 3499 independent reflections |
Radiation source: fine-focus sealed tube | 2117 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
φ and ω scans | θmax = 28.4°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.869, Tmax = 0.915 | k = −14→14 |
14134 measured reflections | l = −25→26 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.084 | H-atom parameters constrained |
wR(F2) = 0.258 | w = 1/[σ2(Fo2) + (0.165P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3499 reflections | Δρmax = 0.58 e Å−3 |
148 parameters | Δρmin = −0.39 e Å−3 |
0 restraints | Absolute structure: Flack (1983) 1468 Friedels |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (15) |
C11H19Cl2NO2 | V = 1401.8 (5) Å3 |
Mr = 268.17 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.4834 (12) Å | µ = 0.45 mm−1 |
b = 10.795 (2) Å | T = 293 K |
c = 20.030 (4) Å | 0.32 × 0.24 × 0.20 mm |
Bruker SMART CCD diffractometer | 3499 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2117 reflections with I > 2σ(I) |
Tmin = 0.869, Tmax = 0.915 | Rint = 0.058 |
14134 measured reflections |
R[F2 > 2σ(F2)] = 0.084 | H-atom parameters constrained |
wR(F2) = 0.258 | Δρmax = 0.58 e Å−3 |
S = 1.02 | Δρmin = −0.39 e Å−3 |
3499 reflections | Absolute structure: Flack (1983) 1468 Friedels |
148 parameters | Absolute structure parameter: 0.02 (15) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5074 (7) | 0.9192 (4) | 0.2071 (2) | 0.0675 (11) | |
H1 | 0.4966 | 0.8365 | 0.2270 | 0.081* | |
C2 | 0.5889 (7) | 1.0103 (3) | 0.2598 (2) | 0.0638 (10) | |
C3 | 0.7886 (9) | 0.8326 (4) | 0.3065 (3) | 0.0789 (13) | |
H3A | 0.6784 | 0.7758 | 0.3181 | 0.095* | |
H3B | 0.8454 | 0.8089 | 0.2636 | 0.095* | |
C4 | 0.9470 (13) | 0.8334 (4) | 0.3575 (3) | 0.105 (2) | |
H4 | 1.0627 | 0.8594 | 0.3293 | 0.126* | |
C5 | 1.0407 (13) | 0.7301 (5) | 0.3866 (4) | 0.122 (3) | |
H5A | 1.0922 | 0.6801 | 0.3500 | 0.147* | |
H5B | 0.9306 | 0.6828 | 0.4072 | 0.147* | |
C6 | 1.2052 (13) | 0.7357 (6) | 0.4353 (3) | 0.111 (2) | |
H6A | 1.3358 | 0.7362 | 0.4127 | 0.166* | |
H6B | 1.1976 | 0.6647 | 0.4640 | 0.166* | |
H6C | 1.1915 | 0.8098 | 0.4614 | 0.166* | |
C7 | 0.8170 (7) | 1.0342 (4) | 0.3589 (2) | 0.0680 (10) | |
C8 | 0.9703 (10) | 1.1251 (5) | 0.3287 (3) | 0.0925 (16) | |
H8A | 1.0635 | 1.1533 | 0.3627 | 0.139* | |
H8B | 0.8973 | 1.1946 | 0.3104 | 0.139* | |
H8C | 1.0470 | 1.0847 | 0.2939 | 0.139* | |
C9 | 0.6750 (10) | 1.1009 (5) | 0.4051 (3) | 0.0875 (14) | |
H9A | 0.7550 | 1.1310 | 0.4427 | 0.105* | |
H9B | 0.6205 | 1.1727 | 0.3819 | 0.105* | |
C10 | 0.4982 (11) | 1.0277 (6) | 0.4315 (3) | 0.1013 (18) | |
H10A | 0.5481 | 0.9494 | 0.4488 | 0.122* | |
H10B | 0.4023 | 1.0103 | 0.3955 | 0.122* | |
C11 | 0.3855 (15) | 1.0989 (8) | 0.4874 (4) | 0.127 (3) | |
H11A | 0.4781 | 1.1119 | 0.5242 | 0.190* | |
H11B | 0.2688 | 1.0516 | 0.5023 | 0.190* | |
H11C | 0.3396 | 1.1775 | 0.4707 | 0.190* | |
Cl1 | 0.6885 (3) | 0.91462 (14) | 0.14073 (7) | 0.0996 (5) | |
Cl2 | 0.2642 (2) | 0.96549 (13) | 0.17873 (9) | 0.1008 (5) | |
N1 | 0.7143 (5) | 0.9597 (3) | 0.30507 (18) | 0.0629 (8) | |
O1 | 0.9265 (6) | 0.9417 (3) | 0.39428 (17) | 0.0793 (9) | |
O2 | 0.5407 (6) | 1.1193 (3) | 0.2580 (2) | 0.0859 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.072 (2) | 0.0401 (18) | 0.090 (3) | 0.0031 (17) | −0.013 (2) | 0.0002 (18) |
C2 | 0.071 (2) | 0.0396 (17) | 0.081 (3) | 0.0077 (17) | 0.000 (2) | −0.0023 (17) |
C3 | 0.093 (3) | 0.0354 (18) | 0.108 (3) | 0.014 (2) | −0.021 (3) | −0.0090 (18) |
C4 | 0.154 (5) | 0.046 (2) | 0.114 (4) | 0.033 (3) | −0.043 (4) | −0.013 (3) |
C5 | 0.149 (6) | 0.059 (3) | 0.160 (6) | 0.031 (4) | −0.071 (5) | −0.020 (3) |
C6 | 0.127 (5) | 0.070 (3) | 0.134 (5) | 0.010 (4) | −0.031 (4) | 0.013 (3) |
C7 | 0.084 (3) | 0.0379 (17) | 0.082 (3) | 0.0039 (18) | −0.010 (2) | −0.0029 (16) |
C8 | 0.101 (4) | 0.052 (2) | 0.124 (4) | −0.020 (3) | −0.013 (3) | 0.003 (3) |
C9 | 0.109 (4) | 0.060 (3) | 0.093 (3) | 0.006 (3) | 0.003 (3) | −0.010 (2) |
C10 | 0.105 (4) | 0.075 (3) | 0.124 (5) | 0.010 (3) | 0.006 (3) | 0.000 (3) |
C11 | 0.149 (6) | 0.124 (6) | 0.107 (4) | 0.021 (5) | 0.035 (4) | −0.005 (4) |
Cl1 | 0.1169 (11) | 0.0780 (8) | 0.1038 (9) | −0.0063 (8) | 0.0152 (9) | −0.0185 (7) |
Cl2 | 0.0899 (8) | 0.0761 (8) | 0.1365 (12) | 0.0154 (7) | −0.0350 (8) | −0.0093 (7) |
N1 | 0.0715 (19) | 0.0298 (13) | 0.087 (2) | 0.0036 (14) | −0.0060 (17) | −0.0042 (13) |
O1 | 0.102 (2) | 0.0413 (14) | 0.095 (2) | 0.0055 (15) | −0.0232 (19) | −0.0079 (14) |
O2 | 0.114 (3) | 0.0338 (13) | 0.110 (2) | 0.0152 (16) | −0.023 (2) | −0.0013 (14) |
C1—C2 | 1.536 (6) | C6—H6C | 0.9600 |
C1—Cl2 | 1.750 (4) | C7—O1 | 1.416 (5) |
C1—Cl1 | 1.775 (5) | C7—C9 | 1.491 (7) |
C1—H1 | 0.9800 | C7—N1 | 1.501 (5) |
C2—O2 | 1.218 (5) | C7—C8 | 1.523 (7) |
C2—N1 | 1.335 (6) | C8—H8A | 0.9600 |
C3—C4 | 1.448 (8) | C8—H8B | 0.9600 |
C3—N1 | 1.454 (5) | C8—H8C | 0.9600 |
C3—H3A | 0.9700 | C9—C10 | 1.490 (9) |
C3—H3B | 0.9700 | C9—H9A | 0.9700 |
C4—O1 | 1.388 (6) | C9—H9B | 0.9700 |
C4—C5 | 1.397 (7) | C10—C11 | 1.542 (9) |
C4—H4 | 0.9800 | C10—H10A | 0.9700 |
C5—C6 | 1.446 (10) | C10—H10B | 0.9700 |
C5—H5A | 0.9700 | C11—H11A | 0.9600 |
C5—H5B | 0.9700 | C11—H11B | 0.9600 |
C6—H6A | 0.9600 | C11—H11C | 0.9600 |
C6—H6B | 0.9600 | ||
C2—C1—Cl2 | 110.5 (3) | O1—C7—N1 | 101.8 (3) |
C2—C1—Cl1 | 107.8 (3) | C9—C7—N1 | 115.5 (4) |
Cl2—C1—Cl1 | 111.1 (3) | O1—C7—C8 | 109.0 (4) |
C2—C1—H1 | 109.1 | C9—C7—C8 | 109.8 (4) |
Cl2—C1—H1 | 109.1 | N1—C7—C8 | 110.5 (4) |
Cl1—C1—H1 | 109.1 | C7—C8—H8A | 109.5 |
O2—C2—N1 | 124.9 (4) | C7—C8—H8B | 109.5 |
O2—C2—C1 | 120.7 (4) | H8A—C8—H8B | 109.5 |
N1—C2—C1 | 114.5 (3) | C7—C8—H8C | 109.5 |
C4—C3—N1 | 104.1 (4) | H8A—C8—H8C | 109.5 |
C4—C3—H3A | 110.9 | H8B—C8—H8C | 109.5 |
N1—C3—H3A | 110.9 | C10—C9—C7 | 116.0 (5) |
C4—C3—H3B | 110.9 | C10—C9—H9A | 108.3 |
N1—C3—H3B | 110.9 | C7—C9—H9A | 108.3 |
H3A—C3—H3B | 108.9 | C10—C9—H9B | 108.3 |
O1—C4—C5 | 119.5 (5) | C7—C9—H9B | 108.3 |
O1—C4—C3 | 108.1 (4) | H9A—C9—H9B | 107.4 |
C5—C4—C3 | 126.8 (5) | C9—C10—C11 | 111.0 (6) |
O1—C4—H4 | 97.9 | C9—C10—H10A | 109.4 |
C5—C4—H4 | 97.9 | C11—C10—H10A | 109.4 |
C3—C4—H4 | 97.9 | C9—C10—H10B | 109.4 |
C4—C5—C6 | 124.7 (6) | C11—C10—H10B | 109.4 |
C4—C5—H5A | 106.2 | H10A—C10—H10B | 108.0 |
C6—C5—H5A | 106.2 | C10—C11—H11A | 109.5 |
C4—C5—H5B | 106.2 | C10—C11—H11B | 109.5 |
C6—C5—H5B | 106.2 | H11A—C11—H11B | 109.5 |
H5A—C5—H5B | 106.3 | C10—C11—H11C | 109.5 |
C5—C6—H6A | 109.5 | H11A—C11—H11C | 109.5 |
C5—C6—H6B | 109.5 | H11B—C11—H11C | 109.5 |
H6A—C6—H6B | 109.5 | C2—N1—C3 | 127.0 (3) |
C5—C6—H6C | 109.5 | C2—N1—C7 | 122.6 (3) |
H6A—C6—H6C | 109.5 | C3—N1—C7 | 110.1 (3) |
H6B—C6—H6C | 109.5 | C4—O1—C7 | 112.1 (3) |
O1—C7—C9 | 109.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2i | 0.98 | 2.38 | 3.327 (5) | 163 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H19Cl2NO2 |
Mr | 268.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 6.4834 (12), 10.795 (2), 20.030 (4) |
V (Å3) | 1401.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.32 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.869, 0.915 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14134, 3499, 2117 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.084, 0.258, 1.02 |
No. of reflections | 3499 |
No. of parameters | 148 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.39 |
Absolute structure | Flack (1983) 1468 Friedels |
Absolute structure parameter | 0.02 (15) |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2i | 0.98 | 2.38 | 3.327 (5) | 163 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Innovation Foundation for Young Scholars of Harbin (No.2007RFQXN017),the China Postdoctoral Science Foundation (20080430951), the Heilongjiang Province Postdoctoral Science Foundation and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.
References
Abu-Qare, A. W. & Duncan, H. J. (2002). Chemosphere, 48, 965–974. Web of Science CrossRef PubMed CAS Google Scholar
Agami, C. & Couty, F. (2004). Eur. J. Org. Chem. 69, 677–685. Web of Science CrossRef Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Davies, J. & Caseley, J. C. (1999). Pestic. Sci. 55, 1043–1046. CrossRef CAS Google Scholar
Del Buono, D., Scarponi, L. & Espen, L. (2007). Phytochemistry, 68, 2614–2618. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, Y., Fu, H. G., Ye, F., Mao, J. D. & Wen, X. T. (2009). Synth. Commun. 39, 2454–2463. Web of Science CrossRef CAS Google Scholar
Guirado, A., Andreu, R. & Galvez, J. (2003). Tetrahedron Lett. 44, 3809–3841. Web of Science CrossRef CAS Google Scholar
Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–467. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.
The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).