metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]cadmium(II)

aSchool of Municipal and Environmental Engineering, Shandong Jianzhu University, Chemical Engineering and Materials Science, Jinan 250101, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: sunyoumin1975@163.com

(Received 28 April 2010; accepted 9 May 2010; online 15 May 2010)

The asymmetric unit of the title compound, [CdCl2(C17H14N4)], contains two independent mol­ecules in which the CdII ions are in distorted trigonal-bipyramidal CdN3Cl2 coordination environments. In the crystal structure, there is a ππ stacking inter­action involving a pyridine ring and a symmetry-related benzene ring, with a centroid–centroid distance of 3.5088 (19) Å.

Related literature

For a related structure, see: Wang et al. (2009[Wang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C17H14N4)]

  • Mr = 457.63

  • Triclinic, [P \overline 1]

  • a = 10.6268 (12) Å

  • b = 10.7903 (12) Å

  • c = 15.6828 (17) Å

  • α = 84.220 (2)°

  • β = 80.051 (2)°

  • γ = 74.864 (1)°

  • V = 1706.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.36 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.597, Tmax = 0.751

  • 9365 measured reflections

  • 6562 independent reflections

  • 5658 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.05

  • 6562 reflections

  • 437 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands, but to date only one other structure has been reported which contains the ligand 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (Wang et al., 2009). Herein we report the crystal structure of the title complex (I).

The asymmetric unit of the title complex in shown in Fig. 1. There are two independent molecules in the asymmetric unit. The CdII ions are coordinated by three N atoms and two chloride ligands in distorted trigonal bipyramidal geometries. This coordination geometry is essentially the same as in the previously reported CdII complex (Wang et al., 2009). Generally, the CdII ion assumes a six atom coordination mode but the coordination in the title complex may be attributed to the chelation mode of the 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand. In the crystal structure, there is a ππ stacking interaction involving the pyridine ring and a symmetry related benzene ring with the relevant distances being Cg1···Cg2i = 3.5088 (19) Å and Cg1···Cg2iperp = 3.461 Å (symmetry code: (i) 1-x, 2-y, -z; Cg1 and Cg2 are the centroids of C29-C33/N8 pyridine ring and C25-C30 benzene ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring).

Related literature top

For a related structure, see: Wang et al. (2009).

Experimental top

A 10 ml methanol solution of 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0539 g, 0.196 mmol) was added into 10 ml H2O solution containing CdCl22.56H2O (0.0459 g, 0.201 mmol), and the mixed soluton was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about a week.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl H and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for other H atoms.

Structure description top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands, but to date only one other structure has been reported which contains the ligand 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (Wang et al., 2009). Herein we report the crystal structure of the title complex (I).

The asymmetric unit of the title complex in shown in Fig. 1. There are two independent molecules in the asymmetric unit. The CdII ions are coordinated by three N atoms and two chloride ligands in distorted trigonal bipyramidal geometries. This coordination geometry is essentially the same as in the previously reported CdII complex (Wang et al., 2009). Generally, the CdII ion assumes a six atom coordination mode but the coordination in the title complex may be attributed to the chelation mode of the 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand. In the crystal structure, there is a ππ stacking interaction involving the pyridine ring and a symmetry related benzene ring with the relevant distances being Cg1···Cg2i = 3.5088 (19) Å and Cg1···Cg2iperp = 3.461 Å (symmetry code: (i) 1-x, 2-y, -z; Cg1 and Cg2 are the centroids of C29-C33/N8 pyridine ring and C25-C30 benzene ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring).

For a related structure, see: Wang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)-1,10- phenanthroline-κ2N,N']cadmium(II) top
Crystal data top
[CdCl2(C17H14N4)]Z = 4
Mr = 457.63F(000) = 904
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6268 (12) ÅCell parameters from 5552 reflections
b = 10.7903 (12) Åθ = 2.4–28.1°
c = 15.6828 (17) ŵ = 1.60 mm1
α = 84.220 (2)°T = 298 K
β = 80.051 (2)°Block, colorless
γ = 74.864 (1)°0.36 × 0.25 × 0.19 mm
V = 1706.9 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6562 independent reflections
Radiation source: fine-focus sealed tube5658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.597, Tmax = 0.751k = 1312
9365 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2293P]
where P = (Fo2 + 2Fc2)/3
6562 reflections(Δ/σ)max = 0.099
437 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[CdCl2(C17H14N4)]γ = 74.864 (1)°
Mr = 457.63V = 1706.9 (3) Å3
Triclinic, P1Z = 4
a = 10.6268 (12) ÅMo Kα radiation
b = 10.7903 (12) ŵ = 1.60 mm1
c = 15.6828 (17) ÅT = 298 K
α = 84.220 (2)°0.36 × 0.25 × 0.19 mm
β = 80.051 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5658 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.751Rint = 0.017
9365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
6562 reflectionsΔρmin = 0.57 e Å3
437 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0105 (3)0.8006 (3)0.1063 (2)0.0478 (7)
C20.0464 (3)0.9331 (3)0.1130 (2)0.0538 (8)
H20.07220.99190.06780.065*
C30.0501 (4)0.7214 (4)0.0295 (2)0.0601 (9)
H3A0.14410.70220.01340.090*
H3B0.00870.76810.01800.090*
H3C0.02280.64270.04330.090*
C40.1026 (4)1.0890 (3)0.2347 (3)0.0689 (11)
H4A0.11481.15490.18880.103*
H4B0.03761.10070.26670.103*
H4C0.18461.09420.27280.103*
C50.0030 (3)0.8096 (3)0.3282 (2)0.0390 (6)
C60.0555 (3)0.8921 (3)0.3966 (2)0.0487 (8)
H60.10490.97520.38560.058*
C70.0377 (3)0.8472 (3)0.4782 (2)0.0475 (8)
H70.07610.90030.52380.057*
C80.0372 (3)0.7223 (3)0.49604 (19)0.0393 (7)
C90.0894 (3)0.6466 (3)0.42457 (18)0.0359 (6)
C100.0607 (3)0.6677 (3)0.58028 (19)0.0466 (8)
H100.02490.71710.62800.056*
C110.1327 (3)0.5477 (3)0.5924 (2)0.0465 (7)
H110.14740.51590.64810.056*
C120.1647 (3)0.5155 (3)0.43745 (18)0.0358 (6)
C130.1877 (3)0.4668 (3)0.52115 (18)0.0399 (7)
C140.2625 (3)0.3394 (3)0.5303 (2)0.0466 (7)
H140.28070.30370.58460.056*
C150.2792 (3)0.3240 (3)0.3788 (2)0.0452 (7)
H150.31060.27440.33080.054*
C160.3081 (3)0.2685 (3)0.4597 (2)0.0500 (8)
H160.35800.18410.46510.060*
C170.3677 (3)0.7559 (3)0.4634 (2)0.0537 (8)
H17A0.42270.79340.49000.081*
H17B0.32780.70120.50570.081*
H17C0.30000.82280.44150.081*
C180.4929 (3)0.5453 (3)0.3842 (2)0.0495 (8)
H180.47450.48310.42660.059*
C190.4497 (3)0.6781 (3)0.3903 (2)0.0428 (7)
C200.5672 (3)0.5232 (3)0.3044 (2)0.0446 (7)
C210.6377 (4)0.3967 (3)0.2680 (3)0.0615 (10)
H21A0.60420.38800.21640.092*
H21B0.62400.32860.31000.092*
H21C0.73040.39210.25410.092*
C220.6184 (3)0.6828 (3)0.1799 (2)0.0416 (7)
C230.6857 (4)0.5978 (3)0.1149 (2)0.0562 (9)
H230.69980.50930.12580.067*
C240.7292 (3)0.6480 (3)0.0362 (2)0.0563 (9)
H240.77250.59280.00750.068*
C250.7108 (3)0.7799 (3)0.0189 (2)0.0442 (7)
C260.6429 (3)0.8578 (3)0.08726 (18)0.0378 (6)
C270.7545 (3)0.8400 (4)0.0627 (2)0.0538 (9)
H270.79750.78930.10880.065*
C280.7342 (3)0.9674 (4)0.0735 (2)0.0508 (8)
H280.76571.00350.12670.061*
C290.6659 (3)1.0500 (3)0.00618 (19)0.0431 (7)
C300.6183 (3)0.9951 (3)0.07433 (18)0.0372 (6)
C310.6410 (3)1.1837 (3)0.0158 (2)0.0512 (8)
H310.67081.22330.06810.061*
C320.5733 (3)1.2558 (3)0.0512 (2)0.0543 (8)
H320.55751.34490.04580.065*
C330.5276 (3)1.1942 (3)0.1286 (2)0.0493 (8)
H330.47911.24450.17360.059*
C340.0569 (3)0.9600 (3)0.1969 (2)0.0481 (8)
Cd10.48003 (2)0.95308 (2)0.270728 (13)0.03849 (8)
Cd20.14567 (2)0.54306 (2)0.234337 (13)0.03963 (8)
Cl10.60242 (9)1.01735 (10)0.36848 (6)0.0642 (2)
Cl20.24121 (8)1.03443 (9)0.30304 (5)0.0550 (2)
Cl30.35931 (8)0.52714 (9)0.14531 (6)0.0584 (2)
Cl40.01029 (9)0.42021 (9)0.18715 (5)0.0559 (2)
N10.0097 (2)0.8449 (2)0.24047 (17)0.0433 (6)
N20.0327 (3)0.7477 (2)0.18384 (17)0.0463 (6)
N30.0710 (2)0.6911 (2)0.34320 (15)0.0369 (5)
N40.2094 (2)0.4436 (2)0.36694 (15)0.0376 (5)
N50.4937 (2)0.7375 (2)0.31787 (16)0.0433 (6)
N60.5672 (2)0.6416 (2)0.26423 (16)0.0419 (6)
N70.5973 (2)0.8080 (2)0.16565 (15)0.0370 (5)
N80.5498 (2)1.0681 (2)0.14081 (16)0.0409 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (17)0.0536 (19)0.0458 (18)0.0113 (14)0.0139 (14)0.0090 (15)
C20.0459 (18)0.056 (2)0.055 (2)0.0098 (15)0.0118 (15)0.0182 (16)
C30.062 (2)0.068 (2)0.049 (2)0.0108 (18)0.0173 (17)0.0014 (17)
C40.076 (3)0.0362 (18)0.079 (3)0.0009 (17)0.008 (2)0.0052 (18)
C50.0349 (14)0.0368 (15)0.0448 (17)0.0063 (12)0.0079 (13)0.0035 (13)
C60.0477 (18)0.0375 (17)0.058 (2)0.0049 (14)0.0033 (15)0.0133 (15)
C70.0443 (17)0.0455 (18)0.053 (2)0.0130 (14)0.0031 (15)0.0191 (15)
C80.0359 (15)0.0468 (17)0.0385 (16)0.0162 (13)0.0001 (12)0.0112 (13)
C90.0327 (14)0.0409 (16)0.0369 (15)0.0125 (12)0.0043 (12)0.0087 (12)
C100.0434 (17)0.064 (2)0.0369 (16)0.0223 (16)0.0043 (13)0.0168 (15)
C110.0452 (17)0.067 (2)0.0331 (16)0.0233 (16)0.0056 (13)0.0040 (15)
C120.0320 (14)0.0416 (16)0.0366 (15)0.0134 (12)0.0062 (12)0.0016 (12)
C130.0341 (15)0.0522 (18)0.0371 (16)0.0176 (13)0.0062 (12)0.0004 (13)
C140.0400 (16)0.059 (2)0.0425 (18)0.0159 (14)0.0125 (14)0.0110 (15)
C150.0429 (17)0.0401 (17)0.0505 (19)0.0078 (13)0.0032 (14)0.0062 (14)
C160.0419 (17)0.0450 (18)0.062 (2)0.0092 (14)0.0122 (16)0.0068 (16)
C170.0515 (19)0.061 (2)0.0455 (19)0.0177 (16)0.0027 (15)0.0041 (16)
C180.0538 (19)0.0452 (18)0.056 (2)0.0240 (15)0.0173 (16)0.0109 (15)
C190.0390 (16)0.0489 (18)0.0430 (17)0.0175 (13)0.0064 (13)0.0037 (14)
C200.0441 (17)0.0384 (16)0.056 (2)0.0122 (13)0.0169 (15)0.0023 (14)
C210.079 (3)0.0358 (17)0.072 (2)0.0122 (17)0.020 (2)0.0031 (17)
C220.0387 (16)0.0397 (17)0.0466 (18)0.0106 (13)0.0026 (13)0.0076 (14)
C230.064 (2)0.0377 (17)0.064 (2)0.0087 (15)0.0013 (18)0.0145 (16)
C240.060 (2)0.055 (2)0.051 (2)0.0104 (17)0.0038 (17)0.0224 (17)
C250.0387 (16)0.0526 (19)0.0415 (17)0.0109 (14)0.0017 (13)0.0128 (14)
C260.0333 (14)0.0460 (17)0.0343 (15)0.0102 (12)0.0038 (12)0.0054 (13)
C270.0504 (19)0.074 (3)0.0352 (17)0.0124 (17)0.0019 (14)0.0157 (16)
C280.0451 (18)0.074 (2)0.0319 (16)0.0166 (16)0.0009 (13)0.0011 (15)
C290.0357 (15)0.059 (2)0.0357 (16)0.0151 (14)0.0066 (12)0.0013 (14)
C300.0325 (14)0.0450 (16)0.0358 (15)0.0119 (12)0.0056 (12)0.0029 (13)
C310.0485 (18)0.060 (2)0.0466 (19)0.0204 (16)0.0090 (15)0.0117 (16)
C320.057 (2)0.0468 (19)0.058 (2)0.0166 (16)0.0083 (17)0.0063 (16)
C330.057 (2)0.0434 (18)0.0464 (18)0.0148 (15)0.0002 (15)0.0054 (14)
C340.0359 (16)0.0398 (17)0.063 (2)0.0065 (13)0.0025 (15)0.0074 (15)
Cd10.04044 (13)0.03712 (13)0.03636 (13)0.01020 (9)0.00171 (9)0.00644 (9)
Cd20.04436 (13)0.03821 (13)0.03451 (13)0.00638 (9)0.00465 (9)0.00639 (9)
Cl10.0600 (5)0.0840 (7)0.0571 (5)0.0265 (5)0.0122 (4)0.0152 (5)
Cl20.0421 (4)0.0694 (6)0.0472 (5)0.0050 (4)0.0000 (3)0.0101 (4)
Cl30.0481 (4)0.0586 (5)0.0576 (5)0.0058 (4)0.0042 (4)0.0072 (4)
Cl40.0632 (5)0.0629 (5)0.0477 (5)0.0248 (4)0.0041 (4)0.0153 (4)
N10.0424 (14)0.0364 (13)0.0478 (15)0.0027 (11)0.0101 (12)0.0000 (11)
N20.0522 (15)0.0404 (14)0.0442 (15)0.0040 (12)0.0117 (12)0.0044 (12)
N30.0367 (12)0.0344 (13)0.0393 (13)0.0067 (10)0.0065 (10)0.0048 (10)
N40.0377 (12)0.0359 (13)0.0384 (13)0.0078 (10)0.0036 (10)0.0060 (10)
N50.0473 (14)0.0365 (13)0.0438 (15)0.0109 (11)0.0015 (12)0.0039 (11)
N60.0465 (14)0.0344 (13)0.0459 (15)0.0130 (11)0.0040 (12)0.0045 (11)
N70.0377 (12)0.0355 (13)0.0372 (13)0.0099 (10)0.0001 (10)0.0071 (10)
N80.0408 (13)0.0401 (14)0.0417 (14)0.0112 (11)0.0012 (11)0.0068 (11)
Geometric parameters (Å, º) top
C1—N21.322 (4)C19—N51.321 (4)
C1—C21.407 (5)C20—N61.366 (4)
C1—C31.485 (5)C20—C211.492 (4)
C2—C341.356 (5)C21—H21A0.9600
C2—H20.9300C21—H21B0.9600
C3—H3A0.9600C21—H21C0.9600
C3—H3B0.9600C22—N71.313 (4)
C3—H3C0.9600C22—C231.410 (4)
C4—C341.496 (5)C22—N61.414 (4)
C4—H4A0.9600C23—C241.353 (5)
C4—H4B0.9600C23—H230.9300
C4—H4C0.9600C24—C251.390 (5)
C5—N31.314 (4)C24—H240.9300
C5—C61.415 (4)C25—C261.406 (4)
C5—N11.410 (4)C25—C271.435 (5)
C6—C71.349 (5)C26—N71.354 (4)
C6—H60.9300C26—C301.435 (4)
C7—C81.403 (4)C27—C281.333 (5)
C7—H70.9300C27—H270.9300
C8—C91.401 (4)C28—C291.422 (4)
C8—C101.427 (4)C28—H280.9300
C9—N31.346 (4)C29—C311.395 (5)
C9—C121.445 (4)C29—C301.409 (4)
C10—C111.335 (5)C30—N81.357 (3)
C10—H100.9300C31—C321.357 (5)
C11—C131.434 (4)C31—H310.9300
C11—H110.9300C32—C331.397 (4)
C12—N41.360 (3)C32—H320.9300
C12—C131.401 (4)C33—N81.318 (4)
C13—C141.404 (4)C33—H330.9300
C14—C161.355 (5)C34—N11.372 (4)
C14—H140.9300Cd1—N52.344 (2)
C15—N41.322 (4)Cd1—N72.347 (2)
C15—C161.396 (5)Cd1—N82.386 (3)
C15—H150.9300Cd1—Cl12.4283 (9)
C16—H160.9300Cd1—Cl22.4393 (8)
C17—C191.499 (4)Cd2—N32.348 (2)
C17—H17A0.9600Cd2—N22.353 (3)
C17—H17B0.9600Cd2—N42.365 (2)
C17—H17C0.9600Cd2—Cl32.4254 (9)
C18—C201.366 (5)Cd2—Cl42.4365 (8)
C18—C191.394 (4)N1—N21.376 (3)
C18—H180.9300N5—N61.384 (3)
N2—C1—C2109.0 (3)C24—C23—H23120.8
N2—C1—C3120.3 (3)C22—C23—H23120.8
C2—C1—C3130.6 (3)C23—C24—C25121.7 (3)
C34—C2—C1107.9 (3)C23—C24—H24119.2
C34—C2—H2126.1C25—C24—H24119.2
C1—C2—H2126.1C24—C25—C26116.3 (3)
C1—C3—H3A109.5C24—C25—C27124.8 (3)
C1—C3—H3B109.5C26—C25—C27118.9 (3)
H3A—C3—H3B109.5N7—C26—C25122.2 (3)
C1—C3—H3C109.5N7—C26—C30118.1 (2)
H3A—C3—H3C109.5C25—C26—C30119.7 (3)
H3B—C3—H3C109.5C28—C27—C25121.0 (3)
C34—C4—H4A109.5C28—C27—H27119.5
C34—C4—H4B109.5C25—C27—H27119.5
H4A—C4—H4B109.5C27—C28—C29122.0 (3)
C34—C4—H4C109.5C27—C28—H28119.0
H4A—C4—H4C109.5C29—C28—H28119.0
H4B—C4—H4C109.5C31—C29—C30117.7 (3)
N3—C5—C6121.4 (3)C31—C29—C28123.4 (3)
N3—C5—N1114.9 (2)C30—C29—C28118.9 (3)
C6—C5—N1123.7 (3)N8—C30—C29122.1 (3)
C7—C6—C5118.4 (3)N8—C30—C26118.5 (2)
C7—C6—H6120.8C29—C30—C26119.5 (3)
C5—C6—H6120.8C32—C31—C29119.8 (3)
C6—C7—C8121.6 (3)C32—C31—H31120.1
C6—C7—H7119.2C29—C31—H31120.1
C8—C7—H7119.2C31—C32—C33119.0 (3)
C9—C8—C7116.1 (3)C31—C32—H32120.5
C9—C8—C10118.8 (3)C33—C32—H32120.5
C7—C8—C10125.0 (3)N8—C33—C32123.2 (3)
N3—C9—C8122.3 (3)N8—C33—H33118.4
N3—C9—C12118.0 (2)C32—C33—H33118.4
C8—C9—C12119.7 (3)C2—C34—N1106.0 (3)
C11—C10—C8121.7 (3)C2—C34—C4127.7 (3)
C11—C10—H10119.1N1—C34—C4126.2 (3)
C8—C10—H10119.1N5—Cd1—N766.71 (8)
C10—C11—C13121.3 (3)N5—Cd1—N8136.81 (8)
C10—C11—H11119.4N7—Cd1—N870.12 (8)
C13—C11—H11119.4N5—Cd1—Cl1101.73 (7)
N4—C12—C13122.5 (3)N7—Cd1—Cl1118.21 (6)
N4—C12—C9118.0 (2)N8—Cd1—Cl199.48 (6)
C13—C12—C9119.5 (3)N5—Cd1—Cl298.31 (7)
C12—C13—C14117.4 (3)N7—Cd1—Cl2126.95 (6)
C12—C13—C11118.9 (3)N8—Cd1—Cl2106.32 (6)
C14—C13—C11123.7 (3)Cl1—Cd1—Cl2114.58 (3)
C16—C14—C13119.9 (3)N3—Cd2—N266.81 (8)
C16—C14—H14120.1N3—Cd2—N470.35 (8)
C13—C14—H14120.1N2—Cd2—N4137.15 (8)
N4—C15—C16123.3 (3)N3—Cd2—Cl3120.27 (6)
N4—C15—H15118.4N2—Cd2—Cl399.63 (7)
C16—C15—H15118.4N4—Cd2—Cl3100.85 (6)
C14—C16—C15119.0 (3)N3—Cd2—Cl4124.42 (6)
C14—C16—H16120.5N2—Cd2—Cl497.38 (7)
C15—C16—H16120.5N4—Cd2—Cl4107.40 (6)
C19—C17—H17A109.5Cl3—Cd2—Cl4114.71 (3)
C19—C17—H17B109.5C34—N1—N2110.2 (3)
H17A—C17—H17B109.5C34—N1—C5133.2 (3)
C19—C17—H17C109.5N2—N1—C5116.6 (2)
H17A—C17—H17C109.5C1—N2—N1106.8 (3)
H17B—C17—H17C109.5C1—N2—Cd2133.9 (2)
C20—C18—C19107.4 (3)N1—N2—Cd2118.69 (18)
C20—C18—H18126.3C5—N3—C9120.2 (2)
C19—C18—H18126.3C5—N3—Cd2122.30 (19)
N5—C19—C18110.1 (3)C9—N3—Cd2117.18 (18)
N5—C19—C17119.5 (3)C15—N4—C12117.9 (3)
C18—C19—C17130.4 (3)C15—N4—Cd2125.92 (19)
C18—C20—N6106.0 (3)C12—N4—Cd2116.11 (18)
C18—C20—C21127.8 (3)C19—N5—N6106.0 (2)
N6—C20—C21126.2 (3)C19—N5—Cd1134.7 (2)
C20—C21—H21A109.5N6—N5—Cd1119.24 (17)
C20—C21—H21B109.5C20—N6—N5110.4 (2)
H21A—C21—H21B109.5C20—N6—C22133.3 (3)
C20—C21—H21C109.5N5—N6—C22116.2 (2)
H21A—C21—H21C109.5C22—N7—C26119.7 (2)
H21B—C21—H21C109.5C22—N7—Cd1122.74 (19)
N7—C22—C23121.7 (3)C26—N7—Cd1117.51 (18)
N7—C22—N6114.9 (2)C33—N8—C30118.2 (3)
C23—C22—N6123.5 (3)C33—N8—Cd1126.0 (2)
C24—C23—C22118.4 (3)C30—N8—Cd1115.84 (18)
N2—C1—C2—C340.7 (4)C6—C5—N3—C91.8 (4)
C3—C1—C2—C34176.7 (3)N1—C5—N3—C9179.9 (2)
N3—C5—C6—C71.4 (5)C6—C5—N3—Cd2171.8 (2)
N1—C5—C6—C7179.2 (3)N1—C5—N3—Cd26.3 (3)
C5—C6—C7—C80.4 (5)C8—C9—N3—C50.5 (4)
C6—C7—C8—C91.5 (4)C12—C9—N3—C5179.9 (2)
C6—C7—C8—C10179.9 (3)C8—C9—N3—Cd2173.3 (2)
C7—C8—C9—N31.1 (4)C12—C9—N3—Cd26.1 (3)
C10—C8—C9—N3179.7 (3)N2—Cd2—N3—C51.7 (2)
C7—C8—C9—C12178.3 (3)N4—Cd2—N3—C5179.3 (2)
C10—C8—C9—C120.3 (4)Cl3—Cd2—N3—C589.4 (2)
C9—C8—C10—C111.2 (4)Cl4—Cd2—N3—C581.2 (2)
C7—C8—C10—C11179.7 (3)N2—Cd2—N3—C9175.4 (2)
C8—C10—C11—C131.3 (5)N4—Cd2—N3—C95.52 (18)
N3—C9—C12—N41.9 (4)Cl3—Cd2—N3—C996.85 (19)
C8—C9—C12—N4177.5 (2)Cl4—Cd2—N3—C992.54 (19)
N3—C9—C12—C13178.9 (2)C16—C15—N4—C120.4 (4)
C8—C9—C12—C131.7 (4)C16—C15—N4—Cd2176.6 (2)
N4—C12—C13—C141.4 (4)C13—C12—N4—C151.3 (4)
C9—C12—C13—C14179.4 (2)C9—C12—N4—C15179.5 (3)
N4—C12—C13—C11177.6 (2)C13—C12—N4—Cd2176.0 (2)
C9—C12—C13—C111.6 (4)C9—C12—N4—Cd23.2 (3)
C10—C11—C13—C120.1 (4)N3—Cd2—N4—C15178.5 (3)
C10—C11—C13—C14179.1 (3)N2—Cd2—N4—C15177.2 (2)
C12—C13—C14—C160.6 (4)Cl3—Cd2—N4—C1560.0 (2)
C11—C13—C14—C16178.3 (3)Cl4—Cd2—N4—C1560.4 (2)
C13—C14—C16—C150.2 (4)N3—Cd2—N4—C124.46 (18)
N4—C15—C16—C140.3 (5)N2—Cd2—N4—C125.7 (2)
C20—C18—C19—N50.3 (4)Cl3—Cd2—N4—C12122.91 (18)
C20—C18—C19—C17178.7 (3)Cl4—Cd2—N4—C12116.68 (18)
C19—C18—C20—N60.1 (3)C18—C19—N5—N60.3 (3)
C19—C18—C20—C21178.4 (3)C17—C19—N5—N6178.8 (3)
N7—C22—C23—C240.1 (5)C18—C19—N5—Cd1177.2 (2)
N6—C22—C23—C24179.3 (3)C17—C19—N5—Cd11.9 (5)
C22—C23—C24—C251.0 (5)N7—Cd1—N5—C19179.4 (3)
C23—C24—C25—C260.9 (5)N8—Cd1—N5—C19177.5 (3)
C23—C24—C25—C27179.8 (3)Cl1—Cd1—N5—C1964.7 (3)
C24—C25—C26—N70.2 (4)Cl2—Cd1—N5—C1952.7 (3)
C27—C25—C26—N7179.1 (3)N7—Cd1—N5—N64.00 (19)
C24—C25—C26—C30179.2 (3)N8—Cd1—N5—N66.0 (3)
C27—C25—C26—C300.1 (4)Cl1—Cd1—N5—N6111.87 (19)
C24—C25—C27—C28179.1 (3)Cl2—Cd1—N5—N6130.76 (19)
C26—C25—C27—C281.6 (5)C18—C20—N6—N50.1 (3)
C25—C27—C28—C291.7 (5)C21—C20—N6—N5178.6 (3)
C27—C28—C29—C31178.8 (3)C18—C20—N6—C22175.3 (3)
C27—C28—C29—C300.0 (5)C21—C20—N6—C226.2 (5)
C31—C29—C30—N80.4 (4)C19—N5—N6—C200.2 (3)
C28—C29—C30—N8178.5 (3)Cd1—N5—N6—C20177.69 (18)
C31—C29—C30—C26179.4 (3)C19—N5—N6—C22176.3 (3)
C28—C29—C30—C261.7 (4)Cd1—N5—N6—C226.2 (3)
N7—C26—C30—N80.6 (4)N7—C22—N6—C20179.7 (3)
C25—C26—C30—N8178.4 (3)C23—C22—N6—C200.5 (5)
N7—C26—C30—C29179.3 (3)N7—C22—N6—N54.7 (4)
C25—C26—C30—C291.7 (4)C23—C22—N6—N5174.5 (3)
C30—C29—C31—C320.1 (4)C23—C22—N7—C261.3 (4)
C28—C29—C31—C32179.0 (3)N6—C22—N7—C26179.6 (2)
C29—C31—C32—C331.1 (5)C23—C22—N7—Cd1178.0 (2)
C31—C32—C33—N81.8 (5)N6—C22—N7—Cd11.1 (4)
C1—C2—C34—N11.3 (4)C25—C26—N7—C221.3 (4)
C1—C2—C34—C4175.3 (3)C30—C26—N7—C22179.7 (3)
C2—C34—N1—N21.4 (3)C25—C26—N7—Cd1178.0 (2)
C4—C34—N1—N2175.3 (3)C30—C26—N7—Cd10.9 (3)
C2—C34—N1—C5178.7 (3)N5—Cd1—N7—C221.5 (2)
C4—C34—N1—C54.6 (5)N8—Cd1—N7—C22180.0 (2)
N3—C5—N1—C34170.7 (3)Cl1—Cd1—N7—C2289.7 (2)
C6—C5—N1—C3411.3 (5)Cl2—Cd1—N7—C2284.2 (2)
N3—C5—N1—N29.2 (4)N5—Cd1—N7—C26177.9 (2)
C6—C5—N1—N2168.8 (3)N8—Cd1—N7—C260.70 (19)
C2—C1—N2—N10.1 (3)Cl1—Cd1—N7—C2691.0 (2)
C3—C1—N2—N1177.8 (3)Cl2—Cd1—N7—C2695.15 (19)
C2—C1—N2—Cd2171.1 (2)C32—C33—N8—C301.3 (5)
C3—C1—N2—Cd26.7 (5)C32—C33—N8—Cd1178.8 (2)
C34—N1—N2—C10.9 (3)C29—C30—N8—C330.2 (4)
C5—N1—N2—C1179.2 (3)C26—C30—N8—C33180.0 (3)
C34—N1—N2—Cd2171.84 (19)C29—C30—N8—Cd1179.9 (2)
C5—N1—N2—Cd28.1 (3)C26—C30—N8—Cd10.1 (3)
N3—Cd2—N2—C1173.9 (3)N5—Cd1—N8—C33178.4 (2)
N4—Cd2—N2—C1172.6 (3)N7—Cd1—N8—C33179.7 (3)
Cl3—Cd2—N2—C155.0 (3)Cl1—Cd1—N8—C3363.0 (3)
Cl4—Cd2—N2—C161.8 (3)Cl2—Cd1—N8—C3356.2 (3)
N3—Cd2—N2—N13.51 (19)N5—Cd1—N8—C301.5 (3)
N4—Cd2—N2—N12.2 (3)N7—Cd1—N8—C300.39 (18)
Cl3—Cd2—N2—N1115.4 (2)Cl1—Cd1—N8—C30117.09 (19)
Cl4—Cd2—N2—N1127.9 (2)Cl2—Cd1—N8—C30123.68 (18)

Experimental details

Crystal data
Chemical formula[CdCl2(C17H14N4)]
Mr457.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.6268 (12), 10.7903 (12), 15.6828 (17)
α, β, γ (°)84.220 (2), 80.051 (2), 74.864 (1)
V3)1706.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.36 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
9365, 6562, 5658
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.05
No. of reflections6562
No. of parameters437
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.57

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the the Shandong Province Natural Science Foundation (Nos ZR2009BM024 and Y2007B42), a Project of Shandong Province Higher Educational Science and Technology Program (No. J09LB08) and the Universities Outstanding Young Teachers Domestic Visiting Scholar Project of Shandong Province.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds