organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Phenanthroline–di­thio­oxamide (2/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2010; accepted 5 May 2010; online 12 May 2010)

The asymmetric unit of the title compound, C12H8N2·0.5C2H4N2S2, contains one 1,10-phenanthroline mol­ecule and a half-mol­ecule of dithio­oxamide, which lies across a crystallographic inversion center. The 1,10-phenanthroline unit is not strictly planar, with dihedral angles between the central benzene ring and the pyridine rings of 1.42 (10) and 1.40 (10)°. In the crystal structure, two 1,10-phenanthroline mol­ecules are linked together by one dithio­oxamide via inter­molecular N—H⋯N hydrogen bonds.

Related literature

For background to the chemistry of 1,10-phenanthroline, see: Goswami et al. (2005[Goswami, S., Mukherjee, R. & Ray, J. (2005). Org. Lett. 7, 1283-1285.]); Han et al. (2009[Han, J., Xing, Y., Wang, C., Hou, P., Bai, F., Zeng, X., Zhang, X. & Ge, M. (2009). J. Coord. Chem. 62, 745-756.]); Ishida et al. (2010[Ishida, M., Naruta, Y. & Tani, F. (2010). Angew. Chem. Int. Ed. 49, 91-94.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Chantrapromma, S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o424.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2·0.5C2H4N2S2

  • Mr = 240.30

  • Monoclinic, P 21 /c

  • a = 10.5481 (3) Å

  • b = 10.0544 (3) Å

  • c = 13.9960 (4) Å

  • β = 130.145 (2)°

  • V = 1134.65 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.28 × 0.26 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.974

  • 22512 measured reflections

  • 3374 independent reflections

  • 2307 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.160

  • S = 1.07

  • 3374 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N1i 0.81 (3) 2.08 (3) 2.876 (3) 167 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,10-Phenanthroline plays a very important role in the field of molecular recognition and supramolecular chemistry (Goswami et al., 2005). We have used 1,10-phenanthroline in the recognition of urea by designed synthetic receptors (Goswami et al., 2005). The title compound is also used in supramolecular co-ordination chemistry (Ishida et al., 2010; Han et al., 2009). Here we report the co-crystal of the 1,10-phenanthroline and guest molecule dithiooxamide.

The asymmetric unit (Fig. 1), consists of one 1,10-phenanthroline and a half dithiooxamide. The dithiooxamide lies across a crystallographic inversion center [symmetry code = -x+2, -y+2, -z+1]. The 1,10-phenanthroline unit is not strictly planar, with dihedral angles between the central ring and the C1–C4/C12/N1 and C7–C10/N2/C11 rings of 1.42 (10) and 1.40 (10)°, respectively. The bond lengths are within normal ranges (Allen et al., 1987) and are comparable to those observed for closely related structure (Fun et al., 2010).

In the crystal structure (Fig. 2), two 1,10-phenanthroline molecules are linked together by one dithiooxamide via intermolecular N3—H3C···N1(-x+1, y+1/2, -z+1/2) hydrogen bonds (Table 1).

Related literature top

For background to the chemistry of 1,10-phenanthroline, see: Goswami et al. (2005); Han et al. (2009); Ishida et al. (2010). For a related structure, see: Fun et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of commercially available 1,10-phenanthroline and dithiooxamide (1:1) was dissolved in methanol-chloroform (v/v 2:1). Single crystals were grown by slow evaporation of the solvent.

Refinement top

H3B and H3C were located in a difference Fourier map and refined freely [N–H = 0.82 (2) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å]. In the final difference Fourier map, the highest peak and the deepest hole are 0.77 and 0.60 Å, respectively, from atom S1.

Structure description top

1,10-Phenanthroline plays a very important role in the field of molecular recognition and supramolecular chemistry (Goswami et al., 2005). We have used 1,10-phenanthroline in the recognition of urea by designed synthetic receptors (Goswami et al., 2005). The title compound is also used in supramolecular co-ordination chemistry (Ishida et al., 2010; Han et al., 2009). Here we report the co-crystal of the 1,10-phenanthroline and guest molecule dithiooxamide.

The asymmetric unit (Fig. 1), consists of one 1,10-phenanthroline and a half dithiooxamide. The dithiooxamide lies across a crystallographic inversion center [symmetry code = -x+2, -y+2, -z+1]. The 1,10-phenanthroline unit is not strictly planar, with dihedral angles between the central ring and the C1–C4/C12/N1 and C7–C10/N2/C11 rings of 1.42 (10) and 1.40 (10)°, respectively. The bond lengths are within normal ranges (Allen et al., 1987) and are comparable to those observed for closely related structure (Fun et al., 2010).

In the crystal structure (Fig. 2), two 1,10-phenanthroline molecules are linked together by one dithiooxamide via intermolecular N3—H3C···N1(-x+1, y+1/2, -z+1/2) hydrogen bonds (Table 1).

For background to the chemistry of 1,10-phenanthroline, see: Goswami et al. (2005); Han et al. (2009); Ishida et al. (2010). For a related structure, see: Fun et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A [S1A, C13A and N3A] were generated by symmetry code -x+2, -y+2, -z+1.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1,10-Phenanthroline–dithiooxamide (2/1) top
Crystal data top
C12H8N2·0.5C2H4N2S2F(000) = 500
Mr = 240.30Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5115 reflections
a = 10.5481 (3) Åθ = 2.5–30.1°
b = 10.0544 (3) ŵ = 0.26 mm1
c = 13.9960 (4) ÅT = 100 K
β = 130.145 (2)°Block, orange
V = 1134.65 (6) Å30.28 × 0.26 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 30.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.931, Tmax = 0.974k = 1413
22512 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.8154P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C12H8N2·0.5C2H4N2S2V = 1134.65 (6) Å3
Mr = 240.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5481 (3) ŵ = 0.26 mm1
b = 10.0544 (3) ÅT = 100 K
c = 13.9960 (4) Å0.28 × 0.26 × 0.10 mm
β = 130.145 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2307 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.974Rint = 0.074
22512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.24 e Å3
3374 reflectionsΔρmin = 0.40 e Å3
162 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3548 (2)0.2611 (2)0.34019 (17)0.0185 (4)
N20.5551 (2)0.4592 (2)0.36522 (18)0.0217 (4)
N30.8022 (2)0.9404 (2)0.36819 (19)0.0201 (4)
C10.2582 (3)0.1675 (2)0.3304 (2)0.0217 (5)
H1A0.15910.14820.25120.026*
C20.2959 (3)0.0962 (2)0.4317 (2)0.0234 (5)
H2A0.22410.03130.41980.028*
C30.4421 (3)0.1243 (3)0.5494 (2)0.0247 (5)
H3A0.46980.07910.61860.030*
C40.5493 (3)0.2219 (2)0.5643 (2)0.0193 (5)
C50.7051 (3)0.2534 (3)0.6845 (2)0.0240 (5)
H5A0.73820.20720.75490.029*
C60.8035 (3)0.3489 (3)0.6961 (2)0.0236 (5)
H6A0.90440.36700.77460.028*
C70.7561 (3)0.4235 (2)0.5902 (2)0.0193 (5)
C80.8544 (3)0.5272 (3)0.6009 (2)0.0248 (5)
H8A0.95280.55080.67900.030*
C90.8045 (3)0.5928 (3)0.4964 (3)0.0277 (6)
H9A0.86880.66040.50150.033*
C100.6528 (3)0.5553 (3)0.3803 (2)0.0267 (5)
H10A0.61900.60110.30950.032*
C110.6054 (3)0.3938 (2)0.4689 (2)0.0182 (5)
C120.4998 (3)0.2896 (2)0.4565 (2)0.0170 (4)
C130.9644 (3)0.9392 (2)0.4567 (2)0.0196 (5)
S11.08871 (7)0.81821 (6)0.47638 (6)0.02354 (18)
H3C0.752 (4)0.884 (3)0.314 (3)0.030 (8)*
H3B0.754 (4)1.004 (3)0.366 (3)0.032 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0163 (8)0.0198 (10)0.0163 (9)0.0001 (7)0.0091 (7)0.0012 (7)
N20.0213 (9)0.0205 (10)0.0208 (9)0.0015 (8)0.0125 (8)0.0007 (8)
N30.0170 (9)0.0203 (11)0.0173 (9)0.0006 (8)0.0085 (8)0.0037 (8)
C10.0182 (9)0.0207 (12)0.0216 (11)0.0002 (9)0.0108 (9)0.0009 (9)
C20.0224 (10)0.0200 (12)0.0290 (12)0.0002 (9)0.0171 (10)0.0038 (10)
C30.0234 (11)0.0260 (13)0.0237 (12)0.0047 (9)0.0148 (10)0.0081 (10)
C40.0183 (9)0.0211 (12)0.0172 (10)0.0025 (8)0.0108 (8)0.0014 (9)
C50.0203 (10)0.0314 (14)0.0149 (10)0.0062 (9)0.0090 (9)0.0033 (10)
C60.0184 (10)0.0304 (14)0.0152 (10)0.0028 (9)0.0078 (9)0.0042 (9)
C70.0154 (9)0.0196 (12)0.0200 (11)0.0023 (8)0.0101 (8)0.0039 (9)
C80.0147 (9)0.0235 (13)0.0285 (12)0.0012 (8)0.0104 (9)0.0049 (10)
C90.0230 (11)0.0205 (13)0.0401 (15)0.0037 (9)0.0206 (11)0.0027 (11)
C100.0255 (11)0.0250 (13)0.0280 (12)0.0015 (10)0.0166 (10)0.0028 (10)
C110.0165 (9)0.0186 (12)0.0177 (10)0.0012 (8)0.0103 (8)0.0010 (9)
C120.0172 (9)0.0160 (11)0.0164 (10)0.0021 (8)0.0102 (8)0.0007 (8)
C130.0205 (10)0.0239 (13)0.0157 (10)0.0008 (9)0.0122 (9)0.0015 (9)
S10.0235 (3)0.0213 (3)0.0248 (3)0.0033 (2)0.0151 (2)0.0009 (2)
Geometric parameters (Å, º) top
N1—C11.328 (3)C5—C61.344 (4)
N1—C121.364 (3)C5—H5A0.9300
N2—C101.326 (3)C6—C71.433 (3)
N2—C111.352 (3)C6—H6A0.9300
N3—C131.315 (3)C7—C81.408 (3)
N3—H3C0.81 (3)C7—C111.420 (3)
N3—H3B0.81 (3)C8—C91.364 (4)
C1—C21.398 (3)C8—H8A0.9300
C1—H1A0.9300C9—C101.411 (3)
C2—C31.377 (3)C9—H9A0.9300
C2—H2A0.9300C10—H10A0.9300
C3—C41.407 (3)C11—C121.456 (3)
C3—H3A0.9300C13—C13i1.535 (5)
C4—C121.412 (3)C13—S11.676 (2)
C4—C51.438 (3)
C1—N1—C12117.8 (2)C7—C6—H6A119.3
C10—N2—C11117.2 (2)C8—C7—C11117.5 (2)
C13—N3—H3C123 (2)C8—C7—C6122.4 (2)
C13—N3—H3B117 (2)C11—C7—C6120.1 (2)
H3C—N3—H3B120 (3)C9—C8—C7119.7 (2)
N1—C1—C2124.2 (2)C9—C8—H8A120.1
N1—C1—H1A117.9C7—C8—H8A120.1
C2—C1—H1A117.9C8—C9—C10118.2 (2)
C3—C2—C1118.3 (2)C8—C9—H9A120.9
C3—C2—H2A120.8C10—C9—H9A120.9
C1—C2—H2A120.8N2—C10—C9124.5 (2)
C2—C3—C4119.6 (2)N2—C10—H10A117.8
C2—C3—H3A120.2C9—C10—H10A117.8
C4—C3—H3A120.2N2—C11—C7122.9 (2)
C3—C4—C12118.0 (2)N2—C11—C12118.79 (19)
C3—C4—C5122.0 (2)C7—C11—C12118.3 (2)
C12—C4—C5120.0 (2)N1—C12—C4122.1 (2)
C6—C5—C4120.7 (2)N1—C12—C11118.4 (2)
C6—C5—H5A119.7C4—C12—C11119.46 (19)
C4—C5—H5A119.7N3—C13—C13i114.4 (3)
C5—C6—C7121.4 (2)N3—C13—S1124.50 (19)
C5—C6—H6A119.3C13i—C13—S1121.1 (2)
C12—N1—C1—C20.2 (3)C10—N2—C11—C12178.7 (2)
N1—C1—C2—C30.2 (4)C8—C7—C11—N20.9 (3)
C1—C2—C3—C40.7 (4)C6—C7—C11—N2179.0 (2)
C2—C3—C4—C121.3 (4)C8—C7—C11—C12178.2 (2)
C2—C3—C4—C5178.6 (2)C6—C7—C11—C121.9 (3)
C3—C4—C5—C6178.7 (2)C1—N1—C12—C40.8 (3)
C12—C4—C5—C61.4 (4)C1—N1—C12—C11178.8 (2)
C4—C5—C6—C70.8 (4)C3—C4—C12—N11.3 (3)
C5—C6—C7—C8177.7 (2)C5—C4—C12—N1178.6 (2)
C5—C6—C7—C112.4 (3)C3—C4—C12—C11178.2 (2)
C11—C7—C8—C91.3 (3)C5—C4—C12—C111.8 (3)
C6—C7—C8—C9178.6 (2)N2—C11—C12—N10.7 (3)
C7—C8—C9—C101.2 (4)C7—C11—C12—N1179.81 (19)
C11—N2—C10—C90.3 (4)N2—C11—C12—C4178.9 (2)
C8—C9—C10—N20.7 (4)C7—C11—C12—C40.2 (3)
C10—N2—C11—C70.4 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N1ii0.81 (3)2.08 (3)2.876 (3)167 (4)
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8N2·0.5C2H4N2S2
Mr240.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5481 (3), 10.0544 (3), 13.9960 (4)
β (°) 130.145 (2)
V3)1134.65 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.28 × 0.26 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
22512, 3374, 2307
Rint0.074
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.160, 1.07
No. of reflections3374
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N1i0.81 (3)2.08 (3)2.876 (3)167 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. SG and ACM thank the CSIR [No. 01 (2292)/09/ EMR-II], Government of India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Mukherjee, R. & Ray, J. (2005). Org. Lett. 7, 1283–1285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, J., Xing, Y., Wang, C., Hou, P., Bai, F., Zeng, X., Zhang, X. & Ge, M. (2009). J. Coord. Chem. 62, 745–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshida, M., Naruta, Y. & Tani, F. (2010). Angew. Chem. Int. Ed. 49, 91–94.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds