organic compounds
N,N′-Bis(4-fluorophenyl)urea
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
The 13H10F2N2O, contains one and a half N,N′-bis(4-fluorophenyl)urea molecules. One of the molecules has crystallographic twofold rotation symmetry. The benzene rings are twisted from each other by dihedral angles of 29.69 (6)° for the molecule in a general position and 89.83 (6)° for the symmetry-generated molecule. In the a pair of intermolecular N—H⋯O hydrogen bonds link symmetry-related molecules into chains along the b axis, forming R21(6) ring motifs.
of the title compound, CRelated literature
For background to and the biological activity of bis-arylureas, see: Khire et al. (2004); McDonnell et al. (2008); Francisco et al. (2004); Bigi et al. (1998). For the synthetic method, see: Sarveswari & Raja (2006). For a related structure, see: Jai-nhuknan et al. (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810016399/lh5040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016399/lh5040Isup2.hkl
The compound N,N'-bis-(4-fluorophenyl)urea was synthesized using the method available in the literature (Sarveswari & Raja, 2006) and the obtained crude product was recrystallized from absolute ethanol. M.P.: 519 K. Yield: 56%.
H1NA, H1NB and H2NA were located from a difference Fourier map and refined freely [N–H = 0.83 (2) to 0.88 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). In the final difference Fourier map, the highest peak is 0.20 Å from atom O1B and the deepest hole is 0.45 Å from atom C7B.
The synthesis of bis-arylureas has received considerable attention due to their wide range of biological applications. They act as potential Raf kinase inhibitors (Khire et al., 2004) and antagonists of human vanilloid receptor 1 (VR 1) (McDonnell et al., 2008). Phenyl thiazolylurea derivatives have been reported as inhibitors of Murine receptor A and Murine receptor B (Francisco et al., 2004). Some substituted ureas are used as antidiabetic and tranquilizing drugs, antioxidants in gasoline, corrosion inhibitor and herbicides (Bigi et al., 1998).
The
of the title compound (Fig. 1), comprises of one and a half N,N'-bis-(4-fluorophenyl)urea molecules. The half molecule has a twofold rotation symmetry, generated by symmetry code -x, y, -z+3/2. In the molecule with suffix A, both benzene rings (C1A–C6A and C8A–C13A) are twisted from each other with a dihedral angle of 29.69 (6)° whereas in molecule with suffix B, the dihedral angle between the benzene rings (C1B–C6B and C1BA–C6BA) is 89.83 (6)°. The structure is comparable to the related structure (Jai-nhuknan et al., 1997).In the crystal packing (Fig. 2), intermolecular N1A—H1NA···O1A and N2A—H2NA···O1A hydrogen bonds (Table 1) link the adjacent molecules into chains along the b axis, forming R21(6) ring motifs (Bernstein et al., 1995).
For background to and the biological activity of bis-arylureas, see: Khire et al. (2004); McDonnell et al. (2008); Francisco et al. (2004); Bigi et al. (1998). For the synthetic method, see: Sarveswari & Raja (2006). For a related structure, see: Jai-nhuknan et al. (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C13H10F2N2O | F(000) = 1536 |
Mr = 248.23 | Dx = 1.503 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3635 reflections |
a = 67.541 (4) Å | θ = 2.4–32.1° |
b = 4.5750 (3) Å | µ = 0.12 mm−1 |
c = 10.7098 (6) Å | T = 100 K |
β = 95.969 (2)° | Block, brown |
V = 3291.4 (3) Å3 | 0.59 × 0.12 × 0.09 mm |
Z = 12 |
Bruker APEXII DUO CCD area-detector diffractometer | 5986 independent reflections |
Radiation source: fine-focus sealed tube | 4304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 32.7°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −102→102 |
Tmin = 0.932, Tmax = 0.990 | k = −6→6 |
21915 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0899P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3 |
5986 reflections | (Δ/σ)max < 0.001 |
257 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C13H10F2N2O | V = 3291.4 (3) Å3 |
Mr = 248.23 | Z = 12 |
Monoclinic, C2/c | Mo Kα radiation |
a = 67.541 (4) Å | µ = 0.12 mm−1 |
b = 4.5750 (3) Å | T = 100 K |
c = 10.7098 (6) Å | 0.59 × 0.12 × 0.09 mm |
β = 95.969 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 5986 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4304 reflections with I > 2σ(I) |
Tmin = 0.932, Tmax = 0.990 | Rint = 0.050 |
21915 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.159 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.69 e Å−3 |
5986 reflections | Δρmin = −0.51 e Å−3 |
257 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1A | 0.244179 (12) | 0.5229 (2) | 0.33663 (8) | 0.02522 (19) | |
O1A | 0.167883 (13) | 0.5447 (2) | 0.62122 (9) | 0.0198 (2) | |
N1A | 0.180685 (15) | 0.9777 (2) | 0.55991 (10) | 0.0162 (2) | |
N2A | 0.153498 (15) | 0.9743 (3) | 0.67129 (11) | 0.0175 (2) | |
C1A | 0.209007 (17) | 0.6417 (3) | 0.56407 (11) | 0.0163 (2) | |
H1AA | 0.2064 | 0.5746 | 0.6426 | 0.020* | |
C2A | 0.225076 (17) | 0.5295 (3) | 0.50863 (12) | 0.0180 (2) | |
H2AA | 0.2332 | 0.3860 | 0.5486 | 0.022* | |
C3A | 0.228714 (17) | 0.6362 (3) | 0.39263 (12) | 0.0178 (2) | |
C4A | 0.217243 (18) | 0.8517 (3) | 0.33077 (11) | 0.0184 (2) | |
H4AA | 0.2203 | 0.9236 | 0.2539 | 0.022* | |
C5A | 0.200924 (18) | 0.9591 (3) | 0.38612 (11) | 0.0172 (2) | |
H5AA | 0.1928 | 1.1008 | 0.3451 | 0.021* | |
C6A | 0.196784 (16) | 0.8543 (3) | 0.50280 (10) | 0.0142 (2) | |
C7A | 0.167422 (16) | 0.8158 (3) | 0.61783 (11) | 0.0150 (2) | |
C8A | 0.138631 (16) | 0.8455 (3) | 0.73842 (11) | 0.0154 (2) | |
C9A | 0.143599 (18) | 0.6409 (3) | 0.83227 (12) | 0.0187 (2) | |
H9AA | 0.1568 | 0.5838 | 0.8508 | 0.022* | |
C10A | 0.128905 (18) | 0.5208 (3) | 0.89873 (12) | 0.0207 (3) | |
H10A | 0.1320 | 0.3818 | 0.9610 | 0.025* | |
C11A | 0.109514 (19) | 0.6143 (3) | 0.86946 (12) | 0.0209 (3) | |
C12A | 0.104185 (18) | 0.8202 (3) | 0.77910 (12) | 0.0219 (3) | |
H12A | 0.0910 | 0.8809 | 0.7630 | 0.026* | |
C13A | 0.118945 (18) | 0.9362 (3) | 0.71211 (12) | 0.0193 (2) | |
H13A | 0.1157 | 1.0745 | 0.6497 | 0.023* | |
F2A | 0.095139 (12) | 0.4948 (2) | 0.93363 (9) | 0.0309 (2) | |
F1B | 0.072613 (12) | 0.6424 (2) | 1.16351 (8) | 0.0289 (2) | |
O1B | 0.0000 | 0.6661 (3) | 0.7500 | 0.0262 (3) | |
N1B | 0.013863 (16) | 1.0982 (3) | 0.82126 (11) | 0.0193 (2) | |
C1B | 0.024299 (18) | 0.7613 (3) | 0.99248 (12) | 0.0200 (2) | |
H1BA | 0.0112 | 0.6961 | 0.9919 | 0.024* | |
C2B | 0.03907 (2) | 0.6455 (3) | 1.07851 (12) | 0.0213 (3) | |
H2BA | 0.0362 | 0.4998 | 1.1343 | 0.026* | |
C3B | 0.058161 (18) | 0.7529 (3) | 1.07883 (12) | 0.0210 (3) | |
C4B | 0.063141 (18) | 0.9679 (3) | 0.99790 (12) | 0.0212 (3) | |
H4BA | 0.0761 | 1.0385 | 1.0018 | 0.025* | |
C5B | 0.048369 (18) | 1.0776 (3) | 0.91008 (12) | 0.0194 (2) | |
H5BA | 0.0515 | 1.2200 | 0.8533 | 0.023* | |
C6B | 0.028914 (17) | 0.9741 (3) | 0.90722 (12) | 0.0170 (2) | |
C7B | 0.0000 | 0.9380 (4) | 0.7500 | 0.0181 (3) | |
H1NA | 0.1792 (3) | 1.157 (5) | 0.5567 (17) | 0.028 (5)* | |
H1NB | 0.0136 (3) | 1.289 (6) | 0.8078 (19) | 0.043 (6)* | |
H2NA | 0.1535 (2) | 1.160 (4) | 0.6624 (16) | 0.022 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.0210 (3) | 0.0251 (5) | 0.0312 (4) | 0.0051 (3) | 0.0105 (3) | −0.0019 (4) |
O1A | 0.0215 (4) | 0.0090 (4) | 0.0302 (5) | −0.0003 (3) | 0.0084 (3) | −0.0003 (4) |
N1A | 0.0180 (4) | 0.0082 (5) | 0.0231 (5) | 0.0010 (4) | 0.0059 (4) | 0.0014 (4) |
N2A | 0.0184 (4) | 0.0094 (5) | 0.0258 (5) | 0.0014 (4) | 0.0076 (4) | 0.0010 (4) |
C1A | 0.0170 (5) | 0.0144 (6) | 0.0175 (5) | 0.0004 (4) | 0.0018 (4) | 0.0011 (4) |
C2A | 0.0159 (5) | 0.0147 (6) | 0.0232 (6) | 0.0025 (4) | 0.0015 (4) | 0.0012 (5) |
C3A | 0.0148 (5) | 0.0171 (6) | 0.0220 (5) | 0.0005 (4) | 0.0040 (4) | −0.0041 (5) |
C4A | 0.0195 (5) | 0.0187 (6) | 0.0174 (5) | −0.0004 (5) | 0.0046 (4) | 0.0001 (5) |
C5A | 0.0183 (5) | 0.0151 (6) | 0.0181 (5) | 0.0007 (5) | 0.0021 (4) | 0.0006 (4) |
C6A | 0.0150 (4) | 0.0106 (5) | 0.0170 (5) | −0.0005 (4) | 0.0017 (4) | −0.0015 (4) |
C7A | 0.0153 (4) | 0.0119 (5) | 0.0178 (5) | 0.0006 (4) | 0.0015 (4) | −0.0001 (4) |
C8A | 0.0157 (4) | 0.0114 (5) | 0.0195 (5) | −0.0011 (4) | 0.0039 (4) | −0.0013 (4) |
C9A | 0.0178 (5) | 0.0176 (6) | 0.0205 (5) | −0.0003 (5) | 0.0016 (4) | 0.0011 (5) |
C10A | 0.0212 (5) | 0.0207 (7) | 0.0205 (6) | 0.0006 (5) | 0.0039 (4) | 0.0035 (5) |
C11A | 0.0201 (5) | 0.0200 (6) | 0.0239 (6) | −0.0038 (5) | 0.0078 (4) | −0.0015 (5) |
C12A | 0.0161 (5) | 0.0215 (7) | 0.0286 (6) | 0.0010 (5) | 0.0044 (4) | 0.0005 (5) |
C13A | 0.0174 (5) | 0.0168 (6) | 0.0238 (6) | 0.0019 (5) | 0.0030 (4) | 0.0020 (5) |
F2A | 0.0247 (4) | 0.0319 (5) | 0.0384 (5) | −0.0037 (4) | 0.0150 (3) | 0.0060 (4) |
F1B | 0.0284 (4) | 0.0301 (5) | 0.0263 (4) | 0.0062 (4) | −0.0060 (3) | 0.0031 (4) |
O1B | 0.0302 (7) | 0.0107 (6) | 0.0351 (7) | 0.000 | −0.0093 (6) | 0.000 |
N1B | 0.0177 (4) | 0.0112 (5) | 0.0280 (5) | −0.0008 (4) | −0.0017 (4) | 0.0004 (4) |
C1B | 0.0194 (5) | 0.0172 (6) | 0.0235 (6) | −0.0020 (5) | 0.0031 (4) | −0.0001 (5) |
C2B | 0.0275 (6) | 0.0165 (6) | 0.0200 (5) | −0.0009 (5) | 0.0029 (4) | 0.0015 (5) |
C3B | 0.0216 (5) | 0.0203 (6) | 0.0201 (5) | 0.0039 (5) | −0.0024 (4) | −0.0008 (5) |
C4B | 0.0168 (5) | 0.0223 (7) | 0.0244 (6) | −0.0004 (5) | 0.0011 (4) | −0.0012 (5) |
C5B | 0.0184 (5) | 0.0180 (6) | 0.0218 (5) | −0.0010 (5) | 0.0022 (4) | 0.0007 (5) |
C6B | 0.0171 (5) | 0.0123 (6) | 0.0213 (5) | 0.0007 (4) | 0.0010 (4) | −0.0016 (4) |
C7B | 0.0170 (7) | 0.0136 (8) | 0.0234 (8) | 0.000 | 0.0005 (6) | 0.000 |
F1A—C3A | 1.3601 (13) | C10A—H10A | 0.9300 |
O1A—C7A | 1.2412 (15) | C11A—F2A | 1.3611 (14) |
N1A—C7A | 1.3606 (15) | C11A—C12A | 1.371 (2) |
N1A—C6A | 1.4190 (15) | C12A—C13A | 1.3925 (17) |
N1A—H1NA | 0.83 (2) | C12A—H12A | 0.9300 |
N2A—C7A | 1.3602 (15) | C13A—H13A | 0.9300 |
N2A—C8A | 1.4223 (15) | F1B—C3B | 1.3589 (15) |
N2A—H2NA | 0.85 (2) | O1B—C7B | 1.244 (2) |
C1A—C2A | 1.3886 (16) | N1B—C7B | 1.3593 (15) |
C1A—C6A | 1.3948 (17) | N1B—C6B | 1.4173 (16) |
C1A—H1AA | 0.9300 | N1B—H1NB | 0.88 (3) |
C2A—C3A | 1.3805 (18) | C1B—C2B | 1.3902 (18) |
C2A—H2AA | 0.9300 | C1B—C6B | 1.3921 (18) |
C3A—C4A | 1.3799 (18) | C1B—H1BA | 0.9300 |
C4A—C5A | 1.3941 (16) | C2B—C3B | 1.3798 (19) |
C4A—H4AA | 0.9300 | C2B—H2BA | 0.9300 |
C5A—C6A | 1.3937 (16) | C3B—C4B | 1.376 (2) |
C5A—H5AA | 0.9300 | C4B—C5B | 1.3916 (18) |
C8A—C9A | 1.3888 (18) | C4B—H4BA | 0.9300 |
C8A—C13A | 1.3935 (16) | C5B—C6B | 1.3942 (17) |
C9A—C10A | 1.3929 (17) | C5B—H5BA | 0.9300 |
C9A—H9AA | 0.9300 | C7B—N1Bi | 1.3593 (15) |
C10A—C11A | 1.3824 (18) | ||
C7A—N1A—C6A | 123.39 (11) | C9A—C10A—H10A | 121.0 |
C7A—N1A—H1NA | 118.3 (13) | F2A—C11A—C12A | 118.92 (12) |
C6A—N1A—H1NA | 118.3 (13) | F2A—C11A—C10A | 118.03 (12) |
C7A—N2A—C8A | 123.17 (11) | C12A—C11A—C10A | 123.05 (12) |
C7A—N2A—H2NA | 118.4 (11) | C11A—C12A—C13A | 118.42 (12) |
C8A—N2A—H2NA | 118.4 (11) | C11A—C12A—H12A | 120.8 |
C2A—C1A—C6A | 120.49 (11) | C13A—C12A—H12A | 120.8 |
C2A—C1A—H1AA | 119.8 | C12A—C13A—C8A | 120.09 (12) |
C6A—C1A—H1AA | 119.8 | C12A—C13A—H13A | 120.0 |
C3A—C2A—C1A | 118.30 (11) | C8A—C13A—H13A | 120.0 |
C3A—C2A—H2AA | 120.8 | C7B—N1B—C6B | 123.66 (12) |
C1A—C2A—H2AA | 120.8 | C7B—N1B—H1NB | 116.0 (14) |
F1A—C3A—C4A | 118.63 (11) | C6B—N1B—H1NB | 120.2 (14) |
F1A—C3A—C2A | 118.60 (11) | C2B—C1B—C6B | 120.46 (11) |
C4A—C3A—C2A | 122.77 (11) | C2B—C1B—H1BA | 119.8 |
C3A—C4A—C5A | 118.48 (11) | C6B—C1B—H1BA | 119.8 |
C3A—C4A—H4AA | 120.8 | C3B—C2B—C1B | 118.17 (13) |
C5A—C4A—H4AA | 120.8 | C3B—C2B—H2BA | 120.9 |
C6A—C5A—C4A | 120.08 (12) | C1B—C2B—H2BA | 120.9 |
C6A—C5A—H5AA | 120.0 | F1B—C3B—C4B | 118.73 (12) |
C4A—C5A—H5AA | 120.0 | F1B—C3B—C2B | 118.40 (13) |
C5A—C6A—C1A | 119.84 (11) | C4B—C3B—C2B | 122.87 (12) |
C5A—C6A—N1A | 118.94 (11) | C3B—C4B—C5B | 118.59 (12) |
C1A—C6A—N1A | 121.14 (10) | C3B—C4B—H4BA | 120.7 |
O1A—C7A—N2A | 122.47 (11) | C5B—C4B—H4BA | 120.7 |
O1A—C7A—N1A | 122.79 (11) | C4B—C5B—C6B | 120.01 (13) |
N2A—C7A—N1A | 114.74 (11) | C4B—C5B—H5BA | 120.0 |
C9A—C8A—C13A | 120.06 (11) | C6B—C5B—H5BA | 120.0 |
C9A—C8A—N2A | 121.00 (10) | C1B—C6B—C5B | 119.87 (12) |
C13A—C8A—N2A | 118.90 (11) | C1B—C6B—N1B | 120.79 (11) |
C8A—C9A—C10A | 120.28 (11) | C5B—C6B—N1B | 119.26 (12) |
C8A—C9A—H9AA | 119.9 | O1B—C7B—N1Bi | 122.63 (9) |
C10A—C9A—H9AA | 119.9 | O1B—C7B—N1B | 122.63 (8) |
C11A—C10A—C9A | 118.08 (12) | N1Bi—C7B—N1B | 114.74 (17) |
C11A—C10A—H10A | 121.0 |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1Aii | 0.83 (2) | 2.08 (2) | 2.8331 (13) | 151.7 (18) |
N1B—H1NB···O1Bii | 0.89 (3) | 2.02 (3) | 2.8392 (18) | 153.3 (19) |
N2A—H2NA···O1Aii | 0.855 (18) | 2.080 (17) | 2.8547 (16) | 150.5 (13) |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C13H10F2N2O |
Mr | 248.23 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 67.541 (4), 4.5750 (3), 10.7098 (6) |
β (°) | 95.969 (2) |
V (Å3) | 3291.4 (3) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.59 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.932, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21915, 5986, 4304 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.761 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.159, 1.05 |
No. of reflections | 5986 |
No. of parameters | 257 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.69, −0.51 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1Ai | 0.83 (2) | 2.08 (2) | 2.8331 (13) | 151.7 (18) |
N1B—H1NB···O1Bi | 0.89 (3) | 2.02 (3) | 2.8392 (18) | 153.3 (19) |
N2A—H2NA···O1Ai | 0.855 (18) | 2.080 (17) | 2.8547 (16) | 150.5 (13) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bigi, F., Maggi, R., Sartori, G. & Zambonin, E. (1998). Chem. Commun. 4, 513–514. Web of Science CrossRef Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Francisco, G. D., Li, Z., Albright, J. D., Eudy, N. H., Katz, A. H., Petersen, P. J., Labthavikul, P., Singh, G., Yang, Y., Rasmussen, B. A., Lin, Y. I. & Mansour, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 235–238. Web of Science CrossRef PubMed CAS Google Scholar
Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett. 14, 783–786. Web of Science CrossRef PubMed CAS Google Scholar
McDonnell, M. E., Zhang, S. P., Nasser, N., Dubin, A. E. & Dax, S. L. (2008). Bioorg. Med. Chem. Lett. 14, 531–534. Web of Science CrossRef Google Scholar
Sarveswari, S. & Raja, T. K. (2006). Indian J. Chem. Sect. B, 45, 546–547. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of bis-arylureas has received considerable attention due to their wide range of biological applications. They act as potential Raf kinase inhibitors (Khire et al., 2004) and antagonists of human vanilloid receptor 1 (VR 1) (McDonnell et al., 2008). Phenyl thiazolylurea derivatives have been reported as inhibitors of Murine receptor A and Murine receptor B (Francisco et al., 2004). Some substituted ureas are used as antidiabetic and tranquilizing drugs, antioxidants in gasoline, corrosion inhibitor and herbicides (Bigi et al., 1998).
The asymmetric unit of the title compound (Fig. 1), comprises of one and a half N,N'-bis-(4-fluorophenyl)urea molecules. The half molecule has a twofold rotation symmetry, generated by symmetry code -x, y, -z+3/2. In the molecule with suffix A, both benzene rings (C1A–C6A and C8A–C13A) are twisted from each other with a dihedral angle of 29.69 (6)° whereas in molecule with suffix B, the dihedral angle between the benzene rings (C1B–C6B and C1BA–C6BA) is 89.83 (6)°. The structure is comparable to the related structure (Jai-nhuknan et al., 1997).
In the crystal packing (Fig. 2), intermolecular N1A—H1NA···O1A and N2A—H2NA···O1A hydrogen bonds (Table 1) link the adjacent molecules into chains along the b axis, forming R21(6) ring motifs (Bernstein et al., 1995).