organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Fluoro­phen­yl)-1-(2-nitro­phen­yl)prop-2-en-1-one

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: weichidu@163.com

(Received 2 May 2010; accepted 16 May 2010; online 22 May 2010)

The title compound, C15H10FNO3, was prepared from 2-nitro­acetphenone and 4-fluoro­benzaldehyde by an Aldol condensation reaction. The dihedral angle formed by the two benzene rings is 67.37 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For the biological activities of chalcones, see: Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]); De Vincenzo et al.(2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]); Dimmock et al. (1998[Dimmock, J. R. et al. (1998). J. Med. Chem. 41, 1014-1026.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. A64, o954-o955.]); Guo et al. (2009[Guo, H.-M., Liu, L.-Q., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3117.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FNO3

  • Mr = 271.24

  • Monoclinic, P 21 /n

  • a = 7.7698 (16) Å

  • b = 17.072 (3) Å

  • c = 9.759 (2) Å

  • β = 96.72 (3)°

  • V = 1285.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 12293 measured reflections

  • 2921 independent reflections

  • 2218 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 1.13

  • 2921 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.93 2.57 3.500 (2) 177
C5—H5A⋯F1ii 0.93 2.54 3.396 (2) 153
C9—H9A⋯O3iii 0.93 2.57 3.411 (2) 150
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+2; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological activities which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). Of particular interest, the effectiveness of chalcones against cancer has been investigated (De Vincenzo et al.,2000; Dimmock et al.,1998). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the title molecule (Fig. 1) the dihedral angle formed by the two benzene rings is 67.44 (3)°. The nitro group is twisted from the attached benzene ring forming a dihedral angle of 53.73 (5)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in related structures (Fun et al.,2008; Guo et al.,2009). The crystal structure is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds.

Related literature top

For the biological activities of chalcones, see: Hsieh et al. (1998); Anto et al. (1994); De Vincenzo et al.(2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2009).

Experimental top

A mixture of 2-nitroacetphenone (0.02 mol), 4-fluorobenzaldehyde (0.02 mol) and 8% NaOH(5 ml) was stirred in ethanol(30 ml) for 4 h to afford the title compound (yield 65%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological activities which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). Of particular interest, the effectiveness of chalcones against cancer has been investigated (De Vincenzo et al.,2000; Dimmock et al.,1998). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the title molecule (Fig. 1) the dihedral angle formed by the two benzene rings is 67.44 (3)°. The nitro group is twisted from the attached benzene ring forming a dihedral angle of 53.73 (5)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in related structures (Fun et al.,2008; Guo et al.,2009). The crystal structure is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds.

For the biological activities of chalcones, see: Hsieh et al. (1998); Anto et al. (1994); De Vincenzo et al.(2000); Dimmock et al. (1998). For related structures, see: Fun et al. (2008); Guo et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(E)-3-(4-Fluorophenyl)-1-(2-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10FNO3F(000) = 560
Mr = 271.24Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2218 reflections
a = 7.7698 (16) Åθ = 3.2–27.5°
b = 17.072 (3) ŵ = 0.11 mm1
c = 9.759 (2) ÅT = 293 K
β = 96.72 (3)°Bar, colourless
V = 1285.6 (5) Å30.3 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2218 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
φ and ω scansh = 910
12293 measured reflectionsk = 2222
2921 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.2079P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H10FNO3V = 1285.6 (5) Å3
Mr = 271.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7698 (16) ŵ = 0.11 mm1
b = 17.072 (3) ÅT = 293 K
c = 9.759 (2) Å0.3 × 0.3 × 0.2 mm
β = 96.72 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2218 reflections with I > 2σ(I)
12293 measured reflectionsRint = 0.021
2921 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.13Δρmax = 0.24 e Å3
2921 reflectionsΔρmin = 0.19 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.08601 (15)0.10025 (8)0.43283 (13)0.0659 (4)
C70.22626 (19)0.11601 (9)0.49650 (15)0.0449 (3)
C90.18075 (19)0.04525 (9)0.70546 (15)0.0469 (3)
H9A0.08710.02260.65170.056*
C60.36095 (18)0.15551 (8)0.42269 (14)0.0418 (3)
C80.27359 (19)0.09685 (9)0.64309 (15)0.0472 (4)
H8A0.36890.12090.69240.057*
C150.1386 (2)0.05036 (9)0.88492 (16)0.0495 (4)
H15A0.07250.07940.81730.059*
F10.27941 (18)0.06060 (9)1.24775 (11)0.0933 (4)
N10.13799 (19)0.23833 (8)0.29207 (17)0.0589 (4)
C100.21056 (19)0.02052 (9)0.84967 (15)0.0449 (3)
C110.3057 (2)0.06445 (10)0.95326 (16)0.0522 (4)
H11A0.35360.11220.93170.063*
C10.31757 (19)0.20928 (9)0.31805 (16)0.0471 (4)
C50.5339 (2)0.13342 (10)0.44662 (16)0.0521 (4)
H5A0.56850.09770.51650.063*
C140.1637 (2)0.07817 (11)1.01808 (18)0.0569 (4)
H14A0.11790.12611.04080.068*
C120.3287 (2)0.03713 (12)1.08766 (17)0.0595 (5)
H12A0.39110.06611.15740.071*
C130.2572 (2)0.03371 (12)1.11546 (16)0.0593 (5)
C40.6559 (2)0.16380 (12)0.36778 (19)0.0634 (5)
H4A0.77140.14870.38570.076*
O20.07277 (18)0.26603 (9)0.38907 (18)0.0830 (5)
C20.4367 (2)0.23925 (11)0.2374 (2)0.0643 (5)
H2A0.40260.27450.16670.077*
C30.6067 (3)0.21593 (13)0.2637 (2)0.0702 (5)
H3A0.68880.23560.21060.084*
O10.0655 (2)0.23414 (11)0.17437 (17)0.0930 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0545 (7)0.0779 (9)0.0612 (7)0.0237 (6)0.0098 (5)0.0163 (6)
C70.0435 (8)0.0443 (8)0.0459 (8)0.0029 (6)0.0003 (6)0.0010 (6)
C90.0446 (8)0.0472 (8)0.0477 (8)0.0016 (6)0.0013 (6)0.0025 (6)
C60.0411 (7)0.0437 (7)0.0396 (7)0.0021 (6)0.0009 (5)0.0065 (6)
C80.0424 (7)0.0526 (9)0.0455 (8)0.0057 (6)0.0006 (6)0.0017 (6)
C150.0508 (8)0.0491 (8)0.0488 (8)0.0039 (6)0.0063 (7)0.0005 (6)
F10.1009 (9)0.1298 (11)0.0478 (6)0.0207 (8)0.0028 (6)0.0285 (6)
N10.0533 (8)0.0473 (8)0.0755 (10)0.0011 (6)0.0049 (7)0.0163 (7)
C100.0432 (7)0.0503 (8)0.0417 (7)0.0059 (6)0.0076 (6)0.0004 (6)
C110.0486 (8)0.0571 (9)0.0515 (8)0.0001 (7)0.0084 (7)0.0037 (7)
C10.0458 (8)0.0396 (7)0.0560 (9)0.0011 (6)0.0070 (6)0.0006 (6)
C50.0474 (8)0.0621 (10)0.0456 (8)0.0040 (7)0.0002 (6)0.0042 (7)
C140.0590 (9)0.0554 (9)0.0577 (9)0.0109 (7)0.0126 (8)0.0124 (7)
C120.0538 (9)0.0791 (12)0.0448 (8)0.0068 (8)0.0020 (7)0.0115 (8)
C130.0555 (9)0.0819 (12)0.0411 (8)0.0204 (9)0.0075 (7)0.0121 (8)
C40.0413 (8)0.0821 (13)0.0678 (11)0.0007 (8)0.0105 (8)0.0142 (9)
O20.0623 (8)0.0779 (10)0.1116 (12)0.0149 (7)0.0225 (8)0.0109 (8)
C20.0669 (11)0.0554 (10)0.0734 (12)0.0025 (8)0.0199 (9)0.0147 (8)
C30.0601 (11)0.0744 (12)0.0809 (13)0.0075 (9)0.0287 (10)0.0056 (10)
O10.0797 (10)0.1129 (13)0.0809 (10)0.0104 (9)0.0132 (8)0.0361 (9)
Geometric parameters (Å, º) top
O3—C71.2195 (18)C10—C111.399 (2)
C7—C81.472 (2)C11—C121.384 (2)
C7—C61.498 (2)C11—H11A0.9300
C9—C81.330 (2)C1—C21.382 (2)
C9—C101.462 (2)C5—C41.390 (2)
C9—H9A0.9300C5—H5A0.9300
C6—C11.385 (2)C14—C131.359 (3)
C6—C51.389 (2)C14—H14A0.9300
C8—H8A0.9300C12—C131.371 (3)
C15—C141.376 (2)C12—H12A0.9300
C15—C101.393 (2)C4—C31.371 (3)
C15—H15A0.9300C4—H4A0.9300
F1—C131.3619 (18)C2—C31.375 (3)
N1—O21.220 (2)C2—H2A0.9300
N1—O11.221 (2)C3—H3A0.9300
N1—C11.475 (2)
O3—C7—C8123.58 (14)C2—C1—C6122.96 (15)
O3—C7—C6119.14 (13)C2—C1—N1117.45 (15)
C8—C7—C6117.27 (12)C6—C1—N1119.56 (13)
C8—C9—C10126.77 (14)C6—C5—C4121.00 (16)
C8—C9—H9A116.6C6—C5—H5A119.5
C10—C9—H9A116.6C4—C5—H5A119.5
C1—C6—C5116.81 (14)C13—C14—C15118.23 (17)
C1—C6—C7121.96 (13)C13—C14—H14A120.9
C5—C6—C7120.89 (14)C15—C14—H14A120.9
C9—C8—C7120.32 (14)C13—C12—C11118.32 (16)
C9—C8—H8A119.8C13—C12—H12A120.8
C7—C8—H8A119.8C11—C12—H12A120.8
C14—C15—C10121.09 (16)C14—C13—F1118.22 (18)
C14—C15—H15A119.5C14—C13—C12123.39 (15)
C10—C15—H15A119.5F1—C13—C12118.40 (17)
O2—N1—O1124.40 (16)C3—C4—C5120.24 (16)
O2—N1—C1117.87 (15)C3—C4—H4A119.9
O1—N1—C1117.71 (16)C5—C4—H4A119.9
C15—C10—C11118.74 (14)C3—C2—C1118.66 (17)
C15—C10—C9117.76 (14)C3—C2—H2A120.7
C11—C10—C9123.49 (15)C1—C2—H2A120.7
C12—C11—C10120.21 (16)C4—C3—C2120.31 (16)
C12—C11—H11A119.9C4—C3—H3A119.8
C10—C11—H11A119.9C2—C3—H3A119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.573.500 (2)177
C5—H5A···F1ii0.932.543.396 (2)153
C9—H9A···O30.932.512.836 (2)101
C9—H9A···O3iii0.932.573.411 (2)150
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10FNO3
Mr271.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7698 (16), 17.072 (3), 9.759 (2)
β (°) 96.72 (3)
V3)1285.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12293, 2921, 2218
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 1.13
No. of reflections2921
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.573.500 (2)177.3
C5—H5A···F1ii0.932.543.396 (2)153.0
C9—H9A···O3iii0.932.573.411 (2)149.9
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of Shandong Province (2009ZRA07002).

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R. et al. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. A64, o954–o955.  Google Scholar
First citationGuo, H.-M., Liu, L.-Q., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds