metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Methyl N-(3-chloro­phen­yl)thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 May 2010; accepted 11 May 2010; online 19 May 2010)

The Au atom in the title compound, [Au(C8H7ClNOS)(C18H15P)], exists within a slightly distorted linear geometry defined by an S,P-donor set [S—Au—P angle = 174.61 (4)°], with the distortion related to a short intra­molecular Au⋯O contact [2.988 (3) Å]. In the crystal structure, mol­ecules are arranged into supra­molecular chains along the b axis by C—H⋯π inter­actions.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C8H7ClNOS)(C18H15P)]

  • Mr = 659.89

  • Triclinic, [P \overline 1]

  • a = 10.4236 (8) Å

  • b = 10.6961 (8) Å

  • c = 12.7439 (9) Å

  • α = 72.724 (2)°

  • β = 66.105 (1)°

  • γ = 72.530 (2)°

  • V = 1213.83 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.34 mm−1

  • T = 223 K

  • 0.19 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.515, Tmax = 1

  • 8630 measured reflections

  • 5525 independent reflections

  • 4787 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.05

  • 5525 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.94 2.82 3.472 (6) 127
C22—H22⋯Cg1ii 0.94 2.72 3.565 (5) 149
C6—H6⋯Cg2ii 0.94 2.97 3.615 (7) 127
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The remarkable propensity of molecules with the general formula R3PAu[SC(OR') NR''], for R, R' and R'' = alkyl and aryl, to provide diffraction quality crystals have proved useful for systematic crystal engineering studies (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The structure of the title compound, (I), was investigated in the context of the above.

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The deviation from the ideal linearity [S—Au—P = 174.61 (4) °] is related to a short intramolecular Au···O contact [2.988 (3) Å]. With the exception of the p-tolyl derivatives (Kuan et al., 2008), the overall molecular conformation (including close Au···.O contacts) conforms to the majority of related compounds having monodentate phosphine ligands.

The major feature of the crystal packing is the presence of C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Notably, the Cl-substituted benzene ring accepts two such interactions also donates one. Chains are arranged into layers in the (1 0 1) plane, Fig. 3.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and MeOC(S)N(H)(C6H4Cl-3) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CHCl3/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.97 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.16 and 1.21 e Å-3, respectively, were located 0.84 Å and 0.88 Å from the Au atom.

Structure description top

The remarkable propensity of molecules with the general formula R3PAu[SC(OR') NR''], for R, R' and R'' = alkyl and aryl, to provide diffraction quality crystals have proved useful for systematic crystal engineering studies (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The structure of the title compound, (I), was investigated in the context of the above.

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The deviation from the ideal linearity [S—Au—P = 174.61 (4) °] is related to a short intramolecular Au···O contact [2.988 (3) Å]. With the exception of the p-tolyl derivatives (Kuan et al., 2008), the overall molecular conformation (including close Au···.O contacts) conforms to the majority of related compounds having monodentate phosphine ligands.

The major feature of the crystal packing is the presence of C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Notably, the Cl-substituted benzene ring accepts two such interactions also donates one. Chains are arranged into layers in the (1 0 1) plane, Fig. 3.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A supramolecular chain along the b axis, highlighting the pivotal role played by the N-bound benzene ring in the formation of donor and acceptor C–H···π interactions
[Figure 3] Fig. 3. A view in projection along the b axis of the crystal packing in (I), highlighting the stacking of layers mediated by the C–H···π contacts (shown as purple dashed lines).
[(Z)-O-Methyl N-(3-chlorophenyl)thiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C8H7ClNOS)(C18H15P)]Z = 2
Mr = 659.89F(000) = 640
Triclinic, P1Dx = 1.805 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.4236 (8) ÅCell parameters from 6911 reflections
b = 10.6961 (8) Åθ = 1.8–30.1°
c = 12.7439 (9) ŵ = 6.34 mm1
α = 72.724 (2)°T = 223 K
β = 66.105 (1)°Block, colourless
γ = 72.530 (2)°0.19 × 0.08 × 0.05 mm
V = 1213.83 (16) Å3
Data collection top
Bruker SMART CCD
diffractometer
5525 independent reflections
Radiation source: fine-focus sealed tube4787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1113
Tmin = 0.515, Tmax = 1k = 1313
8630 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
5525 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.21 e Å3
Crystal data top
[Au(C8H7ClNOS)(C18H15P)]γ = 72.530 (2)°
Mr = 659.89V = 1213.83 (16) Å3
Triclinic, P1Z = 2
a = 10.4236 (8) ÅMo Kα radiation
b = 10.6961 (8) ŵ = 6.34 mm1
c = 12.7439 (9) ÅT = 223 K
α = 72.724 (2)°0.19 × 0.08 × 0.05 mm
β = 66.105 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4787 reflections with I > 2σ(I)
Tmin = 0.515, Tmax = 1Rint = 0.023
8630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 1.16 e Å3
5525 reflectionsΔρmin = 1.21 e Å3
290 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.11162 (2)0.105503 (16)0.249566 (14)0.03318 (8)
Cl10.29679 (17)0.34461 (14)0.25655 (13)0.0480 (3)
S10.1802 (2)0.03071 (14)0.11917 (12)0.0569 (5)
P10.05527 (13)0.25261 (11)0.36314 (10)0.0234 (2)
O10.2184 (4)0.2044 (3)0.0097 (3)0.0418 (9)
N10.3288 (5)0.0379 (4)0.1105 (3)0.0349 (9)
C10.2538 (6)0.0735 (5)0.0159 (4)0.0341 (11)
C20.3735 (5)0.0998 (5)0.1156 (4)0.0316 (10)
C30.3166 (5)0.1501 (5)0.1734 (4)0.0314 (10)
H30.24510.09500.20350.038*
C40.3677 (5)0.2828 (5)0.1855 (4)0.0317 (10)
C50.4734 (6)0.3662 (5)0.1412 (4)0.0371 (12)
H50.50490.45660.14740.045*
C60.5304 (6)0.3132 (6)0.0882 (5)0.0409 (12)
H60.60330.36760.05940.049*
C70.4820 (6)0.1809 (5)0.0766 (4)0.0363 (11)
H70.52390.14600.04160.044*
C80.2819 (8)0.2932 (5)0.1111 (5)0.0521 (15)
H8A0.38550.26630.13390.078*
H8B0.25150.38290.09560.078*
H8C0.25280.29170.17390.078*
C90.0939 (5)0.4105 (4)0.2678 (4)0.0234 (9)
C100.0614 (5)0.4495 (5)0.1642 (4)0.0304 (10)
H100.02100.39450.14620.037*
C110.0890 (6)0.5678 (5)0.0901 (5)0.0399 (12)
H110.06510.59490.02190.048*
C120.1513 (6)0.6478 (5)0.1140 (4)0.0343 (11)
H120.17030.72860.06180.041*
C130.1852 (5)0.6108 (5)0.2118 (5)0.0371 (12)
H130.22860.66560.22710.044*
C140.1562 (5)0.4911 (4)0.2909 (4)0.0282 (10)
H140.17910.46610.35940.034*
C150.1311 (5)0.2901 (5)0.4571 (4)0.0275 (10)
C160.2001 (6)0.1849 (6)0.5219 (5)0.0405 (12)
H160.15210.09650.51430.049*
C170.3406 (6)0.2107 (7)0.5980 (5)0.0540 (17)
H170.38680.13930.64370.065*
C180.4121 (6)0.3393 (7)0.6068 (5)0.0527 (16)
H180.50810.35580.65690.063*
C190.3451 (6)0.4442 (6)0.5434 (5)0.0435 (13)
H190.39420.53220.55120.052*
C200.2039 (5)0.4195 (5)0.4673 (4)0.0334 (11)
H200.15800.49130.42270.040*
C210.1557 (5)0.2115 (4)0.4603 (4)0.0239 (9)
C220.3060 (5)0.1834 (5)0.4125 (4)0.0351 (11)
H220.35220.18290.33210.042*
C230.3858 (6)0.1567 (5)0.4825 (5)0.0407 (12)
H230.48640.14080.44970.049*
C240.3169 (6)0.1532 (5)0.6035 (5)0.0387 (12)
H240.37160.13450.65170.046*
C250.1711 (6)0.1769 (6)0.6509 (4)0.0398 (12)
H250.12570.17250.73200.048*
C260.0902 (5)0.2070 (5)0.5816 (4)0.0340 (11)
H260.01040.22500.61530.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.05238 (14)0.02569 (11)0.02024 (10)0.01321 (8)0.00694 (8)0.00573 (7)
Cl10.0597 (9)0.0487 (8)0.0462 (8)0.0174 (7)0.0213 (7)0.0137 (6)
S10.1055 (13)0.0342 (7)0.0234 (6)0.0339 (8)0.0019 (7)0.0102 (5)
P10.0305 (6)0.0229 (5)0.0167 (5)0.0074 (5)0.0073 (4)0.0035 (4)
O10.069 (3)0.0284 (17)0.0234 (17)0.0170 (17)0.0080 (17)0.0037 (14)
N10.044 (2)0.037 (2)0.021 (2)0.0117 (19)0.0066 (18)0.0065 (17)
C10.050 (3)0.033 (2)0.023 (2)0.018 (2)0.009 (2)0.0052 (19)
C20.034 (3)0.039 (3)0.019 (2)0.009 (2)0.0034 (19)0.0090 (19)
C30.034 (3)0.034 (2)0.022 (2)0.005 (2)0.0081 (19)0.0022 (19)
C40.033 (3)0.042 (3)0.020 (2)0.012 (2)0.0041 (19)0.010 (2)
C50.036 (3)0.034 (3)0.031 (3)0.002 (2)0.006 (2)0.007 (2)
C60.033 (3)0.052 (3)0.030 (3)0.001 (2)0.010 (2)0.006 (2)
C70.039 (3)0.047 (3)0.024 (2)0.009 (2)0.013 (2)0.007 (2)
C80.074 (4)0.036 (3)0.039 (3)0.017 (3)0.015 (3)0.002 (2)
C90.022 (2)0.023 (2)0.023 (2)0.0053 (17)0.0038 (17)0.0068 (17)
C100.047 (3)0.030 (2)0.021 (2)0.016 (2)0.018 (2)0.0012 (18)
C110.054 (3)0.038 (3)0.027 (3)0.009 (2)0.017 (2)0.002 (2)
C120.047 (3)0.025 (2)0.022 (2)0.012 (2)0.003 (2)0.0001 (18)
C130.032 (3)0.029 (2)0.047 (3)0.010 (2)0.003 (2)0.015 (2)
C140.039 (3)0.028 (2)0.023 (2)0.007 (2)0.014 (2)0.0072 (18)
C150.029 (2)0.035 (2)0.025 (2)0.0115 (19)0.0122 (19)0.0060 (19)
C160.041 (3)0.042 (3)0.038 (3)0.017 (2)0.018 (2)0.008 (2)
C170.039 (3)0.072 (4)0.047 (3)0.034 (3)0.017 (3)0.021 (3)
C180.026 (3)0.087 (5)0.036 (3)0.008 (3)0.005 (2)0.010 (3)
C190.036 (3)0.062 (4)0.034 (3)0.006 (3)0.011 (2)0.017 (3)
C200.030 (3)0.041 (3)0.032 (3)0.008 (2)0.011 (2)0.011 (2)
C210.030 (2)0.022 (2)0.018 (2)0.0034 (17)0.0083 (17)0.0027 (16)
C220.034 (3)0.039 (3)0.022 (2)0.004 (2)0.007 (2)0.000 (2)
C230.030 (3)0.044 (3)0.036 (3)0.002 (2)0.012 (2)0.004 (2)
C240.038 (3)0.048 (3)0.031 (3)0.008 (2)0.019 (2)0.001 (2)
C250.039 (3)0.058 (3)0.021 (2)0.009 (3)0.010 (2)0.007 (2)
C260.026 (2)0.042 (3)0.028 (2)0.003 (2)0.004 (2)0.010 (2)
Geometric parameters (Å, º) top
Au—P12.2416 (11)C11—H110.9400
Au—S12.2902 (13)C12—C131.348 (8)
Cl1—C41.731 (5)C12—H120.9400
S1—C11.760 (5)C13—C141.402 (6)
P1—C211.809 (5)C13—H130.9400
P1—C91.813 (4)C14—H140.9400
P1—C151.817 (5)C15—C201.380 (7)
O1—C11.355 (6)C15—C161.385 (6)
O1—C81.401 (6)C16—C171.388 (8)
N1—C11.241 (6)C16—H160.9400
N1—C21.418 (6)C17—C181.367 (9)
C2—C71.374 (7)C17—H170.9400
C2—C31.402 (7)C18—C191.369 (8)
C3—C41.390 (7)C18—H180.9400
C3—H30.9400C19—C201.393 (7)
C4—C51.394 (7)C19—H190.9400
C5—C61.372 (8)C20—H200.9400
C5—H50.9400C21—C221.404 (7)
C6—C71.384 (7)C21—C261.406 (6)
C6—H60.9400C22—C231.368 (8)
C7—H70.9400C22—H220.9400
C8—H8A0.9700C23—C241.407 (7)
C8—H8B0.9700C23—H230.9400
C8—H8C0.9700C24—C251.362 (7)
C9—C141.375 (6)C24—H240.9400
C9—C101.408 (6)C25—C261.366 (7)
C10—C111.365 (7)C25—H250.9400
C10—H100.9400C26—H260.9400
C11—C121.376 (7)
P1—Au—S1174.61 (4)C13—C12—C11120.3 (5)
C1—S1—Au102.46 (16)C13—C12—H12119.8
C21—P1—C9105.6 (2)C11—C12—H12119.8
C21—P1—C15104.4 (2)C12—C13—C14120.4 (5)
C9—P1—C15105.7 (2)C12—C13—H13119.8
C21—P1—Au115.81 (14)C14—C13—H13119.8
C9—P1—Au107.75 (14)C9—C14—C13119.7 (4)
C15—P1—Au116.62 (15)C9—C14—H14120.1
C1—O1—C8116.8 (4)C13—C14—H14120.1
C1—N1—C2120.4 (4)C20—C15—C16119.6 (5)
N1—C1—O1120.4 (4)C20—C15—P1121.9 (4)
N1—C1—S1126.6 (4)C16—C15—P1118.6 (4)
O1—C1—S1113.0 (3)C15—C16—C17119.6 (5)
C7—C2—C3119.4 (5)C15—C16—H16120.2
C7—C2—N1121.4 (5)C17—C16—H16120.2
C3—C2—N1118.8 (5)C18—C17—C16120.4 (5)
C4—C3—C2118.9 (5)C18—C17—H17119.8
C4—C3—H3120.6C16—C17—H17119.8
C2—C3—H3120.6C17—C18—C19120.6 (5)
C3—C4—C5121.4 (5)C17—C18—H18119.7
C3—C4—Cl1118.7 (4)C19—C18—H18119.7
C5—C4—Cl1119.9 (4)C18—C19—C20119.6 (5)
C6—C5—C4118.5 (5)C18—C19—H19120.2
C6—C5—H5120.8C20—C19—H19120.2
C4—C5—H5120.8C15—C20—C19120.3 (5)
C5—C6—C7120.9 (5)C15—C20—H20119.9
C5—C6—H6119.6C19—C20—H20119.9
C7—C6—H6119.6C22—C21—C26118.3 (4)
C2—C7—C6120.9 (5)C22—C21—P1118.6 (3)
C2—C7—H7119.6C26—C21—P1123.1 (4)
C6—C7—H7119.6C23—C22—C21120.3 (5)
O1—C8—H8A109.5C23—C22—H22119.8
O1—C8—H8B109.5C21—C22—H22119.8
H8A—C8—H8B109.5C22—C23—C24119.9 (5)
O1—C8—H8C109.5C22—C23—H23120.0
H8A—C8—H8C109.5C24—C23—H23120.0
H8B—C8—H8C109.5C25—C24—C23120.0 (5)
C14—C9—C10119.2 (4)C25—C24—H24120.0
C14—C9—P1123.0 (4)C23—C24—H24120.0
C10—C9—P1117.8 (3)C24—C25—C26120.7 (5)
C11—C10—C9119.5 (4)C24—C25—H25119.7
C11—C10—H10120.2C26—C25—H25119.7
C9—C10—H10120.2C25—C26—C21120.7 (5)
C10—C11—C12120.8 (5)C25—C26—H26119.6
C10—C11—H11119.6C21—C26—H26119.6
C12—C11—H11119.6
P1—Au—S1—C18.4 (7)C11—C12—C13—C140.6 (8)
S1—Au—P1—C21104.7 (7)C10—C9—C14—C130.5 (7)
S1—Au—P1—C913.3 (7)P1—C9—C14—C13178.8 (3)
S1—Au—P1—C15131.8 (7)C12—C13—C14—C90.6 (7)
C2—N1—C1—O1175.9 (5)C21—P1—C15—C2095.9 (4)
C2—N1—C1—S15.4 (8)C9—P1—C15—C2015.2 (5)
C8—O1—C1—N16.2 (8)Au—P1—C15—C20134.9 (4)
C8—O1—C1—S1175.0 (4)C21—P1—C15—C1682.6 (4)
Au—S1—C1—N1166.0 (5)C9—P1—C15—C16166.2 (4)
Au—S1—C1—O115.3 (4)Au—P1—C15—C1646.6 (4)
C1—N1—C2—C775.8 (7)C20—C15—C16—C171.3 (8)
C1—N1—C2—C3111.4 (6)P1—C15—C16—C17177.3 (4)
C7—C2—C3—C42.6 (7)C15—C16—C17—C181.8 (9)
N1—C2—C3—C4175.6 (4)C16—C17—C18—C191.9 (10)
C2—C3—C4—C50.2 (7)C17—C18—C19—C201.5 (9)
C2—C3—C4—Cl1179.8 (3)C16—C15—C20—C190.9 (8)
C3—C4—C5—C62.2 (7)P1—C15—C20—C19177.6 (4)
Cl1—C4—C5—C6178.2 (4)C18—C19—C20—C151.0 (8)
C4—C5—C6—C71.4 (8)C9—P1—C21—C2265.8 (4)
C3—C2—C7—C63.4 (7)C15—P1—C21—C22177.0 (4)
N1—C2—C7—C6176.2 (5)Au—P1—C21—C2253.3 (4)
C5—C6—C7—C21.4 (8)C9—P1—C21—C26113.8 (4)
C21—P1—C9—C1414.8 (4)C15—P1—C21—C262.6 (4)
C15—P1—C9—C1495.5 (4)Au—P1—C21—C26127.1 (4)
Au—P1—C9—C14139.1 (3)C26—C21—C22—C232.0 (7)
C21—P1—C9—C10163.6 (4)P1—C21—C22—C23177.6 (4)
C15—P1—C9—C1086.1 (4)C21—C22—C23—C242.0 (8)
Au—P1—C9—C1039.2 (4)C22—C23—C24—C250.3 (9)
C14—C9—C10—C111.5 (7)C23—C24—C25—C261.4 (9)
P1—C9—C10—C11180.0 (4)C24—C25—C26—C211.4 (8)
C9—C10—C11—C121.6 (8)C22—C21—C26—C250.4 (7)
C10—C11—C12—C130.5 (8)P1—C21—C26—C25179.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.942.823.472 (6)127
C22—H22···Cg1ii0.942.723.565 (5)149
C6—H6···Cg2ii0.942.973.615 (7)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Au(C8H7ClNOS)(C18H15P)]
Mr659.89
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)10.4236 (8), 10.6961 (8), 12.7439 (9)
α, β, γ (°)72.724 (2), 66.105 (1), 72.530 (2)
V3)1213.83 (16)
Z2
Radiation typeMo Kα
µ (mm1)6.34
Crystal size (mm)0.19 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.515, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8630, 5525, 4787
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.05
No. of reflections5525
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 1.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.942.823.472 (6)127
C22—H22···Cg1ii0.942.723.565 (5)149
C6—H6···Cg2ii0.942.973.615 (7)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds