organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

19-[(E)-4-Chloro­benzyl­­idene]-16-(4-chloro­phen­yl)-2-hydr­­oxy-1,11-di­aza­hexa­cyclo­[15.3.1.02,10.03,8.010,17.011,15]henicosa-3(8),4,6-triene-9,18-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 May 2010; accepted 19 May 2010; online 26 May 2010)

In the title compound, C32H26Cl2N2O3, the piperidone ring adopts a chair conformation and the proline and pyrrolidine rings adopt envelope conformations. The indane ring system is essentially planar with an r.m.s. deviation of 0.011 Å for the non-H atoms. The dihedral angle between the two chloro-substituted benzene rings is 63.69 (10)°. Intra­molecular C—H⋯O and N—H⋯O hydrogen bonds may influence the mol­ecular conformation. In the crystal structure, mol­ecules are connected into layers by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For cyclo­addition reactions, see: Dondas et al. (2004[Dondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473-3485.]); Boruah et al. (2007[Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535-4537.]). For applications of pyrrolizines, see: Boruah et al. (2007[Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535-4537.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Lee et al. (2001[Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483-3486.]); Liddell (1998[Liddell, J. R. (1998). Nat. Prod. Rep. 15, 363-370.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C32H26Cl2N2O3

  • Mr = 557.45

  • Monoclinic, P 21 /c

  • a = 14.603 (2) Å

  • b = 10.5701 (14) Å

  • c = 21.808 (2) Å

  • β = 130.094 (6)°

  • V = 2575.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.34 × 0.19 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.969

  • 27859 measured reflections

  • 7631 independent reflections

  • 5380 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.186

  • S = 1.06

  • 7631 reflections

  • 356 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.86 (5) 1.97 (5) 2.623 (3) 133 (5)
C1—H1A⋯O3i 0.93 2.44 3.305 (3) 155
C22—H22A⋯O3 0.97 2.51 3.186 (3) 126
C23—H23A⋯O2ii 0.97 2.59 3.506 (3) 158
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al. 2007). The pyrrolizine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (Dimmock et al., 2001) and anticancer properties (El-Subbagh et al., 2000) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001). In view of the biological importance of aforementioned heterocycles, the crystal structure determination of the title compound was carried out and the results are presented herein.

The molecular structure of the title compound is shown in Fig.1. The piperidone (N1/C8–C12) ring adopts a chair conformation [Q = 0.608 (3) Å, Θ = 37.4 (3)°, φ= 59.8 (4)°; Cremer & Pople, 1975]. The proline ring (N2/C22–C25) and the five membered pyrrolidine ring (N1/C10/C11/C13/C14) adopt envelope conformations [puckering parameters Q = 0.398 (3) Å, φ = 269.4 (4)° and Q = 0.470 (3) Å, φ = 214.4 (3)° respectively]. The indane ring system is essentially planar with an rms deviation of 0.011 Å for the non-hydrogen atoms. The dihedral angle between the two chlorophenyl rings (C1–C6) and (C27–C32) is 63.69 (10)°. In the crystal structure, molecules are connected into layers by intermolecular weak C—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For cycloaddition reactions, see: Dondas et al. (2004); Boruah et al. (2007). For applications of pyrrolizines, see: Boruah et al. (2007); Dimmock et al. (2001); El-Subbagh et al. (2000); Lee et al. (2001); Liddell (1998). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-(4-chlorophenyl)methylidene] tetrahydro-4-(1H)-pyridinone (0.100 g, 0.291 mmol), ninhydrin (0.052 g, 0.291 mmol) and proline (0.033 g, 0.291 mmol) were dissolved in methanol (10 mL) and refluxed for 30 minutes. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as yellow crystals.

Refinement top

Atom H1O2 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [O–H = 0.86 (4) Å and C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

1,3-Dipolar cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al. 2007). The pyrrolizine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (Dimmock et al., 2001) and anticancer properties (El-Subbagh et al., 2000) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001). In view of the biological importance of aforementioned heterocycles, the crystal structure determination of the title compound was carried out and the results are presented herein.

The molecular structure of the title compound is shown in Fig.1. The piperidone (N1/C8–C12) ring adopts a chair conformation [Q = 0.608 (3) Å, Θ = 37.4 (3)°, φ= 59.8 (4)°; Cremer & Pople, 1975]. The proline ring (N2/C22–C25) and the five membered pyrrolidine ring (N1/C10/C11/C13/C14) adopt envelope conformations [puckering parameters Q = 0.398 (3) Å, φ = 269.4 (4)° and Q = 0.470 (3) Å, φ = 214.4 (3)° respectively]. The indane ring system is essentially planar with an rms deviation of 0.011 Å for the non-hydrogen atoms. The dihedral angle between the two chlorophenyl rings (C1–C6) and (C27–C32) is 63.69 (10)°. In the crystal structure, molecules are connected into layers by intermolecular weak C—H···O hydrogen bonds (Table 1, Fig. 2).

For cycloaddition reactions, see: Dondas et al. (2004); Boruah et al. (2007). For applications of pyrrolizines, see: Boruah et al. (2007); Dimmock et al. (2001); El-Subbagh et al. (2000); Lee et al. (2001); Liddell (1998). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme (H atoms are omitted for clarity).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms are not involing the hydrogen bond interactions are omitted for clarity.
19-[(E)-4-Chlorobenzylidene]-16-(4-chlorophenyl)-2-hydroxy-1,11-diazahexacyclo[15.3.1.02,10.03,8.010,17.011,15]henicosa-3(8),4,6-triene-9,18-dione top
Crystal data top
C32H26Cl2N2O3F(000) = 1160
Mr = 557.45Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5137 reflections
a = 14.603 (2) Åθ = 2.3–29.6°
b = 10.5701 (14) ŵ = 0.29 mm1
c = 21.808 (2) ÅT = 100 K
β = 130.094 (6)°Block, yellow
V = 2575.1 (5) Å30.34 × 0.19 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7631 independent reflections
Radiation source: fine-focus sealed tube5380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 30.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1920
Tmin = 0.906, Tmax = 0.969k = 1414
27859 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1017P)2 + 1.0123P]
where P = (Fo2 + 2Fc2)/3
7631 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C32H26Cl2N2O3V = 2575.1 (5) Å3
Mr = 557.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.603 (2) ŵ = 0.29 mm1
b = 10.5701 (14) ÅT = 100 K
c = 21.808 (2) Å0.34 × 0.19 × 0.11 mm
β = 130.094 (6)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5380 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.969Rint = 0.045
27859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.62 e Å3
7631 reflectionsΔρmin = 0.58 e Å3
356 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72105 (6)0.37813 (6)0.23348 (4)0.03884 (18)
Cl20.28180 (6)1.55604 (6)0.30038 (4)0.03719 (17)
O10.70242 (16)1.14499 (14)0.37668 (9)0.0270 (3)
O20.75301 (15)0.85624 (15)0.61320 (9)0.0248 (3)
O30.97349 (14)1.06477 (14)0.56290 (9)0.0265 (3)
N10.62861 (16)0.87558 (16)0.47338 (10)0.0205 (3)
N20.83265 (17)1.08411 (16)0.62301 (10)0.0230 (4)
C10.8080 (2)0.7298 (2)0.31990 (13)0.0278 (5)
H1A0.87060.78590.33990.033*
C20.8108 (2)0.6108 (2)0.29435 (14)0.0315 (5)
H2A0.87440.58760.29660.038*
C30.7182 (2)0.5272 (2)0.26543 (13)0.0273 (5)
C40.6213 (2)0.5618 (2)0.25928 (13)0.0268 (5)
H4A0.55910.50500.23930.032*
C50.6175 (2)0.6819 (2)0.28318 (12)0.0245 (4)
H5A0.55110.70650.27740.029*
C60.7127 (2)0.76651 (19)0.31604 (12)0.0225 (4)
C70.71498 (19)0.89214 (19)0.34519 (11)0.0221 (4)
H7A0.75110.95610.33800.026*
C80.67102 (18)0.92557 (18)0.38095 (11)0.0201 (4)
C90.69127 (19)1.05940 (18)0.40864 (11)0.0210 (4)
C100.69859 (19)1.08168 (18)0.48066 (11)0.0193 (4)
C110.59325 (19)1.00825 (19)0.46492 (12)0.0214 (4)
H11A0.58421.03070.50390.026*
H11B0.51871.02510.41150.026*
C120.61408 (19)0.83699 (19)0.40280 (11)0.0214 (4)
H12A0.52920.83060.35730.026*
H12B0.64860.75340.41260.026*
C130.80569 (19)1.01008 (18)0.55666 (11)0.0198 (4)
C140.75404 (19)0.87571 (19)0.55007 (11)0.0207 (4)
C150.8366 (2)0.78312 (19)0.55386 (12)0.0222 (4)
C160.8318 (2)0.6517 (2)0.55102 (13)0.0269 (5)
H16A0.77280.60850.54720.032*
C170.9170 (2)0.5864 (2)0.55402 (14)0.0317 (5)
H17A0.91460.49850.55190.038*
C181.0055 (2)0.6494 (2)0.56008 (15)0.0321 (5)
H18A1.06210.60340.56250.039*
C191.0108 (2)0.7800 (2)0.56257 (13)0.0275 (5)
H19A1.06980.82280.56630.033*
C200.92553 (19)0.84543 (19)0.55940 (11)0.0216 (4)
C210.91251 (19)0.98351 (19)0.56015 (11)0.0209 (4)
C220.9558 (2)1.0914 (2)0.70050 (12)0.0278 (5)
H22A1.01401.07530.69360.033*
H22B0.96751.03050.73830.033*
C230.9671 (2)1.2266 (2)0.72949 (13)0.0307 (5)
H23A1.04951.25550.76370.037*
H23B0.93761.23330.75840.037*
C240.8886 (2)1.3011 (2)0.65101 (13)0.0286 (5)
H24A0.86441.38150.65800.034*
H24B0.92981.31610.63030.034*
C250.7816 (2)1.21395 (19)0.59597 (12)0.0237 (4)
H25A0.72311.22780.60360.028*
C260.7192 (2)1.22071 (18)0.50652 (12)0.0210 (4)
H26A0.77771.25450.50250.025*
C270.6102 (2)1.30567 (18)0.45664 (12)0.0221 (4)
C280.5997 (2)1.39566 (19)0.40587 (13)0.0251 (4)
H28A0.66081.40370.40360.030*
C290.4999 (2)1.4740 (2)0.35843 (13)0.0281 (5)
H29A0.49491.53440.32540.034*
C300.4084 (2)1.46082 (19)0.36103 (14)0.0277 (5)
C310.4160 (2)1.3725 (2)0.41077 (16)0.0322 (5)
H31A0.35421.36450.41240.039*
C320.5155 (2)1.2962 (2)0.45792 (15)0.0313 (5)
H32A0.52021.23710.49140.038*
H1O20.782 (4)0.925 (4)0.640 (3)0.077 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0295 (3)0.0352 (3)0.0469 (3)0.0032 (3)0.0224 (3)0.0176 (2)
Cl20.0401 (4)0.0299 (3)0.0441 (3)0.0115 (3)0.0283 (3)0.0032 (2)
O10.0343 (9)0.0231 (7)0.0303 (7)0.0004 (7)0.0238 (7)0.0030 (6)
O20.0299 (8)0.0265 (7)0.0239 (7)0.0057 (7)0.0199 (7)0.0006 (6)
O30.0230 (8)0.0262 (7)0.0299 (7)0.0067 (6)0.0169 (7)0.0007 (6)
N10.0182 (8)0.0210 (7)0.0211 (7)0.0033 (7)0.0121 (7)0.0020 (6)
N20.0238 (9)0.0227 (8)0.0191 (7)0.0050 (7)0.0123 (7)0.0038 (6)
C10.0239 (11)0.0296 (10)0.0326 (10)0.0059 (9)0.0195 (10)0.0061 (8)
C20.0252 (11)0.0354 (12)0.0370 (12)0.0043 (10)0.0215 (11)0.0087 (9)
C30.0251 (11)0.0282 (10)0.0271 (10)0.0037 (9)0.0161 (10)0.0078 (8)
C40.0225 (11)0.0310 (10)0.0256 (10)0.0063 (9)0.0148 (9)0.0084 (8)
C50.0213 (10)0.0292 (10)0.0241 (9)0.0007 (9)0.0151 (9)0.0035 (8)
C60.0213 (10)0.0252 (9)0.0198 (8)0.0007 (8)0.0127 (8)0.0003 (7)
C70.0201 (10)0.0222 (9)0.0203 (8)0.0019 (8)0.0114 (8)0.0008 (7)
C80.0171 (9)0.0207 (8)0.0173 (8)0.0009 (8)0.0087 (8)0.0004 (7)
C90.0185 (10)0.0213 (9)0.0191 (8)0.0003 (8)0.0103 (8)0.0001 (7)
C100.0198 (9)0.0174 (8)0.0206 (8)0.0017 (8)0.0129 (8)0.0014 (6)
C110.0190 (10)0.0217 (9)0.0215 (9)0.0021 (8)0.0121 (8)0.0017 (7)
C120.0189 (10)0.0230 (9)0.0197 (8)0.0031 (8)0.0112 (8)0.0027 (7)
C130.0205 (10)0.0180 (8)0.0192 (8)0.0046 (8)0.0120 (8)0.0017 (6)
C140.0205 (10)0.0216 (9)0.0206 (8)0.0049 (8)0.0135 (8)0.0006 (7)
C150.0227 (10)0.0212 (9)0.0217 (9)0.0027 (8)0.0138 (9)0.0004 (7)
C160.0312 (12)0.0218 (9)0.0302 (10)0.0025 (9)0.0209 (10)0.0019 (8)
C170.0373 (13)0.0221 (10)0.0355 (11)0.0032 (10)0.0233 (11)0.0025 (8)
C180.0318 (13)0.0285 (10)0.0381 (12)0.0081 (10)0.0235 (11)0.0044 (9)
C190.0240 (11)0.0299 (10)0.0302 (10)0.0031 (9)0.0182 (10)0.0047 (8)
C200.0195 (10)0.0232 (9)0.0196 (8)0.0006 (8)0.0114 (8)0.0020 (7)
C210.0175 (9)0.0218 (9)0.0181 (8)0.0003 (8)0.0090 (8)0.0021 (7)
C220.0248 (11)0.0275 (10)0.0207 (9)0.0058 (9)0.0099 (9)0.0042 (8)
C230.0307 (12)0.0320 (11)0.0245 (10)0.0110 (10)0.0155 (10)0.0087 (8)
C240.0311 (12)0.0236 (9)0.0283 (10)0.0085 (9)0.0179 (10)0.0088 (8)
C250.0271 (11)0.0212 (9)0.0257 (9)0.0036 (8)0.0184 (9)0.0041 (7)
C260.0229 (10)0.0185 (8)0.0241 (9)0.0028 (8)0.0162 (9)0.0024 (7)
C270.0249 (10)0.0178 (8)0.0251 (9)0.0029 (8)0.0168 (9)0.0032 (7)
C280.0296 (11)0.0211 (9)0.0316 (10)0.0019 (9)0.0228 (10)0.0014 (7)
C290.0328 (12)0.0220 (9)0.0300 (10)0.0007 (9)0.0205 (10)0.0023 (8)
C300.0308 (12)0.0189 (9)0.0344 (11)0.0028 (9)0.0214 (10)0.0028 (8)
C310.0331 (13)0.0267 (10)0.0492 (14)0.0007 (10)0.0322 (12)0.0015 (9)
C320.0400 (14)0.0227 (10)0.0456 (13)0.0027 (10)0.0341 (12)0.0068 (9)
Geometric parameters (Å, º) top
Cl1—C31.734 (2)C13—C141.571 (3)
Cl2—C301.741 (2)C14—C151.514 (3)
O1—C91.215 (2)C15—C201.390 (3)
O2—C141.402 (2)C15—C161.391 (3)
O2—H1O20.86 (4)C16—C171.387 (4)
O3—C211.211 (3)C16—H16A0.9300
N1—C111.464 (3)C17—C181.382 (4)
N1—C121.470 (3)C17—H17A0.9300
N1—C141.485 (3)C18—C191.382 (3)
N2—C131.459 (2)C18—H18A0.9300
N2—C221.477 (3)C19—C201.386 (3)
N2—C251.490 (3)C19—H19A0.9300
C1—C21.387 (3)C20—C211.473 (3)
C1—C61.393 (3)C22—C231.528 (3)
C1—H1A0.9300C22—H22A0.9700
C2—C31.382 (3)C22—H22B0.9700
C2—H2A0.9300C23—C241.529 (3)
C3—C41.382 (3)C23—H23A0.9700
C4—C51.386 (3)C23—H23B0.9700
C4—H4A0.9300C24—C251.521 (3)
C5—C61.401 (3)C24—H24A0.9700
C5—H5A0.9300C24—H24B0.9700
C6—C71.464 (3)C25—C261.533 (3)
C7—C81.338 (3)C25—H25A0.9800
C7—H7A0.9300C26—C271.515 (3)
C8—C91.491 (3)C26—H26A0.9800
C8—C121.518 (3)C27—C281.391 (3)
C9—C101.522 (3)C27—C321.404 (3)
C10—C261.533 (3)C28—C291.392 (3)
C10—C111.551 (3)C28—H28A0.9300
C10—C131.558 (3)C29—C301.380 (4)
C11—H11A0.9700C29—H29A0.9300
C11—H11B0.9700C30—C311.381 (3)
C12—H12A0.9700C31—C321.376 (3)
C12—H12B0.9700C31—H31A0.9300
C13—C211.538 (3)C32—H32A0.9300
C14—O2—H1O2103 (3)C17—C16—C15118.5 (2)
C11—N1—C12109.42 (15)C17—C16—H16A120.8
C11—N1—C14102.71 (15)C15—C16—H16A120.8
C12—N1—C14114.90 (17)C18—C17—C16121.3 (2)
C13—N2—C22120.99 (18)C18—C17—H17A119.3
C13—N2—C25110.79 (15)C16—C17—H17A119.3
C22—N2—C25109.58 (16)C17—C18—C19120.7 (2)
C2—C1—C6121.0 (2)C17—C18—H18A119.7
C2—C1—H1A119.5C19—C18—H18A119.7
C6—C1—H1A119.5C18—C19—C20118.1 (2)
C3—C2—C1119.3 (2)C18—C19—H19A121.0
C3—C2—H2A120.4C20—C19—H19A121.0
C1—C2—H2A120.4C19—C20—C15121.8 (2)
C2—C3—C4121.0 (2)C19—C20—C21127.7 (2)
C2—C3—Cl1119.65 (18)C15—C20—C21110.51 (19)
C4—C3—Cl1119.31 (18)O3—C21—C20127.4 (2)
C3—C4—C5119.4 (2)O3—C21—C13124.27 (19)
C3—C4—H4A120.3C20—C21—C13108.33 (17)
C5—C4—H4A120.3N2—C22—C23104.47 (19)
C4—C5—C6120.7 (2)N2—C22—H22A110.9
C4—C5—H5A119.7C23—C22—H22A110.9
C6—C5—H5A119.7N2—C22—H22B110.9
C1—C6—C5118.44 (19)C23—C22—H22B110.9
C1—C6—C7119.0 (2)H22A—C22—H22B108.9
C5—C6—C7122.6 (2)C22—C23—C24102.44 (16)
C8—C7—C6127.4 (2)C22—C23—H23A111.3
C8—C7—H7A116.3C24—C23—H23A111.3
C6—C7—H7A116.3C22—C23—H23B111.3
C7—C8—C9116.25 (19)C24—C23—H23B111.3
C7—C8—C12125.83 (18)H23A—C23—H23B109.2
C9—C8—C12117.63 (18)C25—C24—C23102.73 (17)
O1—C9—C8122.60 (18)C25—C24—H24A111.2
O1—C9—C10122.02 (18)C23—C24—H24A111.2
C8—C9—C10115.37 (17)C25—C24—H24B111.2
C9—C10—C26113.24 (16)C23—C24—H24B111.2
C9—C10—C11107.07 (16)H24A—C24—H24B109.1
C26—C10—C11119.53 (17)N2—C25—C24104.33 (18)
C9—C10—C13112.20 (17)N2—C25—C26106.39 (15)
C26—C10—C13104.45 (15)C24—C25—C26116.25 (18)
C11—C10—C1399.52 (15)N2—C25—H25A109.9
N1—C11—C10103.43 (16)C24—C25—H25A109.9
N1—C11—H11A111.1C26—C25—H25A109.9
C10—C11—H11A111.1C27—C26—C10115.95 (17)
N1—C11—H11B111.1C27—C26—C25115.44 (17)
C10—C11—H11B111.1C10—C26—C25103.79 (15)
H11A—C11—H11B109.0C27—C26—H26A107.0
N1—C12—C8114.75 (16)C10—C26—H26A107.0
N1—C12—H12A108.6C25—C26—H26A107.0
C8—C12—H12A108.6C28—C27—C32117.3 (2)
N1—C12—H12B108.6C28—C27—C26120.2 (2)
C8—C12—H12B108.6C32—C27—C26122.47 (18)
H12A—C12—H12B107.6C27—C28—C29121.6 (2)
N2—C13—C21115.59 (17)C27—C28—H28A119.2
N2—C13—C10103.85 (16)C29—C28—H28A119.2
C21—C13—C10115.64 (16)C30—C29—C28119.2 (2)
N2—C13—C14112.50 (15)C30—C29—H29A120.4
C21—C13—C14104.56 (16)C28—C29—H29A120.4
C10—C13—C14104.36 (16)C29—C30—C31120.7 (2)
O2—C14—N1108.68 (17)C29—C30—Cl2119.54 (17)
O2—C14—C15111.33 (16)C31—C30—Cl2119.76 (19)
N1—C14—C15114.98 (16)C32—C31—C30119.6 (2)
O2—C14—C13110.56 (15)C32—C31—H31A120.2
N1—C14—C13105.97 (15)C30—C31—H31A120.2
C15—C14—C13105.12 (17)C31—C32—C27121.5 (2)
C20—C15—C16119.7 (2)C31—C32—H32A119.2
C20—C15—C14111.42 (17)C27—C32—H32A119.2
C16—C15—C14128.9 (2)
C6—C1—C2—C30.7 (4)C10—C13—C14—C15124.24 (16)
C1—C2—C3—C42.1 (4)O2—C14—C15—C20121.38 (18)
C1—C2—C3—Cl1179.90 (18)N1—C14—C15—C20114.48 (19)
C2—C3—C4—C50.6 (3)C13—C14—C15—C201.6 (2)
Cl1—C3—C4—C5178.64 (17)O2—C14—C15—C1659.9 (3)
C3—C4—C5—C62.3 (3)N1—C14—C15—C1664.2 (3)
C2—C1—C6—C52.1 (3)C13—C14—C15—C16179.6 (2)
C2—C1—C6—C7178.8 (2)C20—C15—C16—C170.1 (3)
C4—C5—C6—C13.6 (3)C14—C15—C16—C17178.8 (2)
C4—C5—C6—C7177.36 (19)C15—C16—C17—C180.3 (3)
C1—C6—C7—C8146.5 (2)C16—C17—C18—C190.6 (4)
C5—C6—C7—C834.5 (3)C17—C18—C19—C200.5 (3)
C6—C7—C8—C9176.88 (19)C18—C19—C20—C150.0 (3)
C6—C7—C8—C123.3 (3)C18—C19—C20—C21179.2 (2)
C7—C8—C9—O127.9 (3)C16—C15—C20—C190.3 (3)
C12—C8—C9—O1158.0 (2)C14—C15—C20—C19179.13 (18)
C7—C8—C9—C10151.40 (19)C16—C15—C20—C21179.02 (18)
C12—C8—C9—C1022.7 (3)C14—C15—C20—C210.2 (2)
O1—C9—C10—C260.8 (3)C19—C20—C21—O30.8 (3)
C8—C9—C10—C26179.89 (18)C15—C20—C21—O3178.47 (19)
O1—C9—C10—C11134.7 (2)C19—C20—C21—C13179.31 (19)
C8—C9—C10—C1146.0 (2)C15—C20—C21—C131.4 (2)
O1—C9—C10—C13117.1 (2)N2—C13—C21—O358.2 (3)
C8—C9—C10—C1362.2 (2)C10—C13—C21—O363.4 (3)
C12—N1—C11—C1074.00 (18)C14—C13—C21—O3177.57 (18)
C14—N1—C11—C1048.50 (18)N2—C13—C21—C20121.89 (17)
C9—C10—C11—N171.07 (18)C10—C13—C21—C20116.49 (17)
C26—C10—C11—N1158.51 (16)C14—C13—C21—C202.35 (19)
C13—C10—C11—N145.81 (17)C13—N2—C22—C23144.02 (19)
C11—N1—C12—C850.1 (2)C25—N2—C22—C2313.2 (2)
C14—N1—C12—C864.8 (2)N2—C22—C23—C2433.2 (2)
C7—C8—C12—N1150.2 (2)C22—C23—C24—C2540.6 (2)
C9—C8—C12—N123.3 (3)C13—N2—C25—C24123.78 (18)
C22—N2—C13—C2121.8 (3)C22—N2—C25—C2412.2 (2)
C25—N2—C13—C21108.51 (19)C13—N2—C25—C260.3 (2)
C22—N2—C13—C10149.50 (18)C22—N2—C25—C26135.68 (18)
C25—N2—C13—C1019.2 (2)C23—C24—C25—N232.7 (2)
C22—N2—C13—C1498.2 (2)C23—C24—C25—C26149.45 (19)
C25—N2—C13—C14131.49 (18)C9—C10—C26—C2778.5 (2)
C9—C10—C13—N2154.42 (16)C11—C10—C26—C2749.1 (2)
C26—C10—C13—N231.4 (2)C13—C10—C26—C27159.14 (17)
C11—C10—C13—N292.63 (17)C9—C10—C26—C25153.81 (18)
C9—C10—C13—C2126.7 (2)C11—C10—C26—C2578.6 (2)
C26—C10—C13—C2196.33 (19)C13—C10—C26—C2531.4 (2)
C11—C10—C13—C21139.66 (17)N2—C25—C26—C27148.12 (18)
C9—C10—C13—C1487.54 (19)C24—C25—C26—C2796.2 (2)
C26—C10—C13—C14149.42 (16)N2—C25—C26—C1020.1 (2)
C11—C10—C13—C1425.41 (18)C24—C25—C26—C10135.8 (2)
C11—N1—C14—O288.01 (18)C10—C26—C27—C28108.6 (2)
C12—N1—C14—O2153.27 (16)C25—C26—C27—C28129.7 (2)
C11—N1—C14—C15146.47 (17)C10—C26—C27—C3270.1 (3)
C12—N1—C14—C1527.7 (2)C25—C26—C27—C3251.6 (3)
C11—N1—C14—C1330.83 (19)C32—C27—C28—C290.4 (3)
C12—N1—C14—C1387.89 (19)C26—C27—C28—C29179.10 (19)
N2—C13—C14—O23.6 (2)C27—C28—C29—C300.9 (3)
C21—C13—C14—O2122.61 (17)C28—C29—C30—C310.9 (3)
C10—C13—C14—O2115.52 (18)C28—C29—C30—Cl2178.67 (17)
N2—C13—C14—N1114.01 (18)C29—C30—C31—C320.4 (4)
C21—C13—C14—N1119.79 (16)Cl2—C30—C31—C32179.21 (19)
C10—C13—C14—N12.1 (2)C30—C31—C32—C270.2 (4)
N2—C13—C14—C15123.83 (18)C28—C27—C32—C310.2 (3)
C21—C13—C14—C152.37 (18)C26—C27—C32—C31178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.86 (5)1.97 (5)2.623 (3)133 (5)
C1—H1A···O3i0.932.443.305 (3)155
C22—H22A···O30.972.513.186 (3)126
C23—H23A···O2ii0.972.593.506 (3)158
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC32H26Cl2N2O3
Mr557.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.603 (2), 10.5701 (14), 21.808 (2)
β (°) 130.094 (6)
V3)2575.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.34 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.906, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
27859, 7631, 5380
Rint0.045
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.186, 1.06
No. of reflections7631
No. of parameters356
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.86 (5)1.97 (5)2.623 (3)133 (5)
C1—H1A···O3i0.93002.44003.305 (3)155.00
C22—H22A···O30.97002.51003.186 (3)126.00
C23—H23A···O2ii0.97002.59003.506 (3)158.00
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under University Research grant No. 1001/PKIMIA/8111016 and RSK thanks Universiti Sains Malaysia for the award of post doctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBoruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535–4537.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473–3485.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Subbagh, H. I., Abu–Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.  Web of Science CrossRef CAS Google Scholar
First citationLiddell, J. R. (1998). Nat. Prod. Rep. 15, 363–370.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds