organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(1-Naphthyl­oxymeth­yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl]-3-p-tolyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 May 2010; accepted 14 May 2010; online 22 May 2010)

In the title sydnone compound, C24H18N6O3S {systematic name: 4-[3-(1-naphthyl­oxymeth­yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl]-3-p-tolyl-4,5-dihydro-1,2,3-oxadiazol-3-ium-5-olate} an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The essentially planar 1,2,3-oxadiazole and 1,2,4-triazole rings [maximum deviations of 0.006 (1) and 0.008 (1) Å, respectively] are inclined to one another at inter­planar angle of 44.11 (4)°. The naphthalene unit forms an inter­planar angle of 66.40 (4)° with the 1,2,4-triazole ring. In the crystal packing, pairs of inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into dimers incorporating R22(12) ring motifs. Further stabilization is provided by weak C—H⋯π inter­actions.

Related literature

For general background to and applications of the title sydnone compound, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Baker & Ollis (1957[Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15-29.]); Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.],b[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010b). Acta Cryst. E66, o1225-o1226.],c[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010c). Acta Cryst. E66, o1233-o1234.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N6O3S

  • Mr = 470.50

  • Monoclinic, P 21 /c

  • a = 21.6096 (8) Å

  • b = 8.3622 (3) Å

  • c = 11.9272 (4) Å

  • β = 94.694 (1)°

  • V = 2148.06 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.82 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.959

  • 30407 measured reflections

  • 9432 independent reflections

  • 8048 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.08

  • 9432 reflections

  • 379 parameters

  • All H-atom parameters refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C18–C23 and C1/C6–C10 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3 0.973 (13) 2.401 (14) 3.0928 (10) 127.7 (10)
C14—H14B⋯O3i 0.973 (13) 2.396 (13) 3.1612 (10) 135.2 (11)
C8—H8ACg1ii 0.980 (17) 2.603 (17) 3.3928 (11) 138.0 (13)
C24—H24CCg2 0.993 (19) 2.95 (2) 3.7066 (14) 134.3 (17)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-aryl sydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-aryl sydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-aryl sydnones. 3-Aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles were prepared, starting from the potassium salt of aryloxyacetyl hydrazines with carbon disulphide in alcoholic KOH. The hydrazides were in turn prepared from the corresponding esters. These aryloxymethyl esters were prepared by the reaction of appropriately substituted phenol with ethylchloroacetate in presence of anhydrous potassium carbonate in dry acetone medium.

In the title sydnone compound, an intramolecular C14—H14B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring adopts a twist-boat conformation, with puckering parameters of Q = 0.6251 (7) Å, θ = 112.76 (6)° and φ = 142.75 (7)° (Cremer & Pople, 1975). The 1,2,3-oxadiazole (C16/C17/O2/N5/N6) and 1,2,4-triazole (C12/N1/N2/C13/N3) rings are essentially planar, with maximum deviations of 0.006 (1) and -0.008 (1) Å, respectively, at atoms C16 and N1. The interplanar angle between these two rings is 44.11 (4)°. The C18–C23 benzene ring and C1–C10 naphthalene ring system are making interplanar angles of 69.72 (4) and 66.40 (4)°, with the 1,2,3-oxadiazole and 1,2,4-triazole rings, respectively. As reported previously (Goh et al., 2010a,b), the exocyclic C17–O3 bond length [1.2126 (9) Å] of the sydnone unit is inconsistent with the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the 1,2,3-oxadiazole ring, and a negative charge in the exocyclic oxygen. The bond lengths and angles are within normal ranges and comparable to those reported in closely related sydnone (Goh et al., 2010a,b) and 1,2,4-triazole (Goh et al., 2010c) structures.

In the crystal packing, pairs of intermolecular C14—H14B···O3[-x, -y+2, -z+1] hydrogen bonds (Table 1) link adjacent molecules into dimers incorporating R22(12) ring motifs (Fig. 2, Bernstein et al., 1995). Further stabilization is provided by weak C8—H8A···Cg1 [x, -y+3/2, z-3/2] and C24—H24C···Cg2 interactions (Table 1) involving the C18-C23 (Cg1) and C1/C6-C10 (Cg2) benzene rings.

Related literature top

For general background to and applications of the title sydnone compound, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Baker & Ollis (1957); Goh et al. (2010a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

An equimolar mixture of 3-naphthyloxymethyl-4-amino-5-mercapto-1,2,4-triazoles (0.01 mol) and 4-bromoacetyl-3-tolylsydnones (0.01 mol) in absolute ethanol was heated under reflux for 10-12 h. The solution was concentrated, cooled to room temperature and neutralized with 10 % sodium bicarbonate solution. Solid product formed was collected by filtration and recrystallized from ethanol. Single crystals for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were located from difference Fourier map [range of C—H = 0.945 (17)–1.028 (16) Å] and allowed to refine freely.

Structure description top

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-aryl sydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-aryl sydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-aryl sydnones. 3-Aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles were prepared, starting from the potassium salt of aryloxyacetyl hydrazines with carbon disulphide in alcoholic KOH. The hydrazides were in turn prepared from the corresponding esters. These aryloxymethyl esters were prepared by the reaction of appropriately substituted phenol with ethylchloroacetate in presence of anhydrous potassium carbonate in dry acetone medium.

In the title sydnone compound, an intramolecular C14—H14B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring adopts a twist-boat conformation, with puckering parameters of Q = 0.6251 (7) Å, θ = 112.76 (6)° and φ = 142.75 (7)° (Cremer & Pople, 1975). The 1,2,3-oxadiazole (C16/C17/O2/N5/N6) and 1,2,4-triazole (C12/N1/N2/C13/N3) rings are essentially planar, with maximum deviations of 0.006 (1) and -0.008 (1) Å, respectively, at atoms C16 and N1. The interplanar angle between these two rings is 44.11 (4)°. The C18–C23 benzene ring and C1–C10 naphthalene ring system are making interplanar angles of 69.72 (4) and 66.40 (4)°, with the 1,2,3-oxadiazole and 1,2,4-triazole rings, respectively. As reported previously (Goh et al., 2010a,b), the exocyclic C17–O3 bond length [1.2126 (9) Å] of the sydnone unit is inconsistent with the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the 1,2,3-oxadiazole ring, and a negative charge in the exocyclic oxygen. The bond lengths and angles are within normal ranges and comparable to those reported in closely related sydnone (Goh et al., 2010a,b) and 1,2,4-triazole (Goh et al., 2010c) structures.

In the crystal packing, pairs of intermolecular C14—H14B···O3[-x, -y+2, -z+1] hydrogen bonds (Table 1) link adjacent molecules into dimers incorporating R22(12) ring motifs (Fig. 2, Bernstein et al., 1995). Further stabilization is provided by weak C8—H8A···Cg1 [x, -y+3/2, z-3/2] and C24—H24C···Cg2 interactions (Table 1) involving the C18-C23 (Cg1) and C1/C6-C10 (Cg2) benzene rings.

For general background to and applications of the title sydnone compound, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Baker & Ollis (1957); Goh et al. (2010a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis, showing adjacent molecules being linked into dimers. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
4-[3-(1-naphthyloxymethyl)-7H-1,2,4-triazolo[3,4- b][1,3,4]thiadiazin-6-yl]-3-p-tolyl-4,5-dihydro-1,2,3- oxadiazol-3-ium-5-olate top
Crystal data top
C24H18N6O3SF(000) = 976
Mr = 470.50Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9918 reflections
a = 21.6096 (8) Åθ = 2.6–35.1°
b = 8.3622 (3) ŵ = 0.19 mm1
c = 11.9272 (4) ÅT = 100 K
β = 94.694 (1)°Block, colourless
V = 2148.06 (13) Å30.82 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9432 independent reflections
Radiation source: fine-focus sealed tube8048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 35.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3434
Tmin = 0.857, Tmax = 0.959k = 1311
30407 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.4207P]
where P = (Fo2 + 2Fc2)/3
9432 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C24H18N6O3SV = 2148.06 (13) Å3
Mr = 470.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.6096 (8) ŵ = 0.19 mm1
b = 8.3622 (3) ÅT = 100 K
c = 11.9272 (4) Å0.82 × 0.28 × 0.22 mm
β = 94.694 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8048 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.959Rint = 0.023
30407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.08Δρmax = 0.58 e Å3
9432 reflectionsΔρmin = 0.31 e Å3
379 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.054237 (8)0.64796 (2)0.368050 (17)0.01458 (5)
O10.25803 (3)0.72732 (8)0.06654 (5)0.01628 (11)
O20.09850 (3)1.30606 (7)0.46932 (5)0.01662 (11)
O30.00745 (3)1.17152 (8)0.43365 (5)0.01799 (11)
N10.14829 (3)0.50393 (9)0.12173 (6)0.01643 (12)
N20.11061 (3)0.46927 (8)0.20910 (6)0.01603 (12)
N30.12737 (3)0.72984 (8)0.20468 (6)0.01263 (11)
N40.13693 (3)0.88576 (8)0.24115 (6)0.01300 (11)
N50.15806 (3)1.29814 (8)0.43898 (6)0.01614 (12)
N60.15941 (3)1.17335 (8)0.37354 (5)0.01269 (11)
C10.35987 (4)0.77223 (11)0.01602 (7)0.01752 (14)
C20.38308 (4)0.65856 (13)0.09650 (8)0.02498 (18)
C30.44556 (5)0.62503 (19)0.10958 (11)0.0366 (3)
C40.48733 (5)0.7049 (2)0.04353 (11)0.0389 (3)
C50.46585 (5)0.81610 (17)0.03400 (10)0.0320 (2)
C60.40179 (4)0.85376 (12)0.05035 (8)0.02161 (16)
C70.37898 (5)0.97005 (13)0.12929 (8)0.02567 (18)
C80.31662 (5)0.99837 (12)0.14608 (8)0.02419 (17)
C90.27387 (4)0.91590 (10)0.08351 (7)0.01914 (14)
C100.29522 (4)0.80784 (10)0.00217 (7)0.01503 (13)
C110.19294 (3)0.75150 (10)0.04109 (7)0.01550 (13)
C120.15819 (3)0.65872 (9)0.12197 (7)0.01378 (12)
C130.09846 (3)0.60679 (9)0.25608 (7)0.01354 (12)
C140.03560 (3)0.85027 (9)0.31981 (7)0.01418 (12)
C150.09438 (3)0.94058 (9)0.30182 (6)0.01176 (11)
C160.10454 (3)1.09342 (9)0.35705 (6)0.01216 (11)
C170.06224 (4)1.18116 (9)0.41931 (6)0.01406 (12)
C180.21821 (3)1.14204 (9)0.32812 (6)0.01316 (12)
C190.22339 (4)1.16937 (10)0.21476 (7)0.01628 (13)
C200.28120 (4)1.14737 (11)0.17364 (7)0.01943 (15)
C210.33262 (4)1.10009 (11)0.24445 (8)0.02073 (15)
C220.32506 (4)1.07116 (11)0.35765 (8)0.02126 (15)
C230.26765 (4)1.09216 (10)0.40109 (7)0.01746 (14)
C240.39559 (5)1.08553 (16)0.19990 (11)0.0326 (2)
H2A0.3546 (7)0.602 (2)0.1375 (14)0.036 (4)*
H3A0.4629 (9)0.548 (3)0.1663 (17)0.056 (5)*
H4A0.5305 (9)0.677 (3)0.0521 (16)0.053 (5)*
H5A0.4945 (7)0.876 (2)0.0788 (14)0.033 (4)*
H7A0.4102 (7)1.029 (2)0.1753 (13)0.035 (4)*
H8A0.3011 (7)1.076 (2)0.2028 (14)0.038 (4)*
H9A0.2288 (6)0.9413 (19)0.0985 (11)0.024 (3)*
H11A0.1812 (6)0.7163 (18)0.0368 (11)0.020 (3)*
H11B0.1818 (6)0.8606 (17)0.0462 (12)0.021 (3)*
H14A0.0118 (6)0.8427 (17)0.2483 (12)0.020 (3)*
H14B0.0114 (6)0.8965 (17)0.3770 (11)0.017 (3)*
H19A0.1867 (6)1.1991 (18)0.1683 (12)0.022 (3)*
H20A0.2844 (7)1.1636 (18)0.0939 (13)0.026 (3)*
H22A0.3595 (7)1.039 (2)0.4079 (12)0.029 (4)*
H23A0.2619 (6)1.0695 (19)0.4794 (12)0.026 (3)*
H24A0.4217 (10)1.175 (3)0.2286 (18)0.059 (6)*
H24B0.4133 (8)0.985 (3)0.2221 (16)0.049 (5)*
H24C0.3950 (8)1.088 (3)0.1166 (16)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01306 (8)0.01134 (8)0.01984 (9)0.00084 (5)0.00436 (6)0.00005 (6)
O10.0125 (2)0.0195 (3)0.0170 (2)0.00011 (19)0.00242 (18)0.0030 (2)
O20.0204 (2)0.0124 (2)0.0174 (3)0.00013 (19)0.00400 (19)0.00343 (19)
O30.0160 (2)0.0173 (3)0.0211 (3)0.00308 (19)0.0046 (2)0.0018 (2)
N10.0154 (3)0.0131 (3)0.0211 (3)0.0009 (2)0.0029 (2)0.0035 (2)
N20.0145 (2)0.0116 (3)0.0221 (3)0.0004 (2)0.0027 (2)0.0025 (2)
N30.0116 (2)0.0099 (2)0.0166 (3)0.00056 (18)0.00252 (19)0.0028 (2)
N40.0138 (2)0.0095 (2)0.0160 (3)0.00074 (19)0.0026 (2)0.0023 (2)
N50.0197 (3)0.0124 (3)0.0165 (3)0.0018 (2)0.0026 (2)0.0030 (2)
N60.0151 (2)0.0103 (2)0.0127 (2)0.00127 (19)0.00128 (19)0.00056 (19)
C10.0156 (3)0.0205 (4)0.0168 (3)0.0006 (3)0.0035 (2)0.0003 (3)
C20.0160 (3)0.0350 (5)0.0239 (4)0.0015 (3)0.0015 (3)0.0093 (4)
C30.0175 (4)0.0562 (8)0.0361 (5)0.0061 (4)0.0015 (4)0.0177 (5)
C40.0160 (4)0.0603 (8)0.0409 (6)0.0026 (4)0.0059 (4)0.0126 (6)
C50.0191 (4)0.0453 (6)0.0330 (5)0.0026 (4)0.0101 (3)0.0052 (5)
C60.0192 (3)0.0255 (4)0.0211 (4)0.0014 (3)0.0076 (3)0.0003 (3)
C70.0299 (4)0.0239 (4)0.0250 (4)0.0017 (3)0.0131 (3)0.0031 (3)
C80.0317 (4)0.0186 (4)0.0238 (4)0.0049 (3)0.0116 (3)0.0057 (3)
C90.0232 (3)0.0163 (3)0.0187 (3)0.0054 (3)0.0064 (3)0.0023 (3)
C100.0163 (3)0.0147 (3)0.0145 (3)0.0004 (2)0.0043 (2)0.0007 (2)
C110.0135 (3)0.0165 (3)0.0167 (3)0.0022 (2)0.0025 (2)0.0007 (2)
C120.0127 (3)0.0127 (3)0.0161 (3)0.0013 (2)0.0021 (2)0.0032 (2)
C130.0108 (2)0.0109 (3)0.0189 (3)0.0006 (2)0.0010 (2)0.0012 (2)
C140.0111 (3)0.0116 (3)0.0199 (3)0.0005 (2)0.0022 (2)0.0014 (2)
C150.0114 (2)0.0099 (3)0.0140 (3)0.0004 (2)0.0010 (2)0.0006 (2)
C160.0130 (3)0.0099 (3)0.0138 (3)0.0001 (2)0.0023 (2)0.0011 (2)
C170.0171 (3)0.0111 (3)0.0142 (3)0.0018 (2)0.0023 (2)0.0007 (2)
C180.0131 (3)0.0115 (3)0.0149 (3)0.0018 (2)0.0018 (2)0.0002 (2)
C190.0180 (3)0.0167 (3)0.0142 (3)0.0019 (2)0.0018 (2)0.0010 (2)
C200.0211 (3)0.0196 (4)0.0182 (3)0.0039 (3)0.0059 (3)0.0048 (3)
C210.0164 (3)0.0175 (3)0.0289 (4)0.0023 (3)0.0054 (3)0.0079 (3)
C220.0153 (3)0.0194 (4)0.0286 (4)0.0002 (3)0.0009 (3)0.0002 (3)
C230.0169 (3)0.0162 (3)0.0189 (3)0.0019 (2)0.0010 (2)0.0029 (3)
C240.0192 (4)0.0360 (6)0.0440 (6)0.0028 (4)0.0112 (4)0.0160 (5)
Geometric parameters (Å, º) top
S1—C131.7390 (8)C7—C81.3667 (14)
S1—C141.8214 (8)C7—H7A1.028 (16)
O1—C101.3707 (10)C8—C91.4138 (12)
O1—C111.4289 (9)C8—H8A0.980 (17)
O2—N51.3667 (9)C9—C101.3775 (12)
O2—C171.4086 (10)C9—H9A0.998 (14)
O3—C171.2126 (9)C11—C121.4882 (11)
N1—C121.3119 (10)C11—H11A0.988 (14)
N1—N21.4044 (10)C11—H11B0.946 (14)
N2—C131.3151 (10)C14—C151.5080 (10)
N3—C121.3704 (10)C14—H14A0.962 (14)
N3—C131.3739 (10)C14—H14B0.974 (13)
N3—N41.3846 (9)C15—C161.4464 (10)
N4—C151.2994 (9)C16—C171.4272 (10)
N5—N61.3049 (9)C18—C191.3849 (11)
N6—C161.3612 (9)C18—C231.3860 (11)
N6—C181.4454 (10)C19—C201.3910 (12)
C1—C21.4134 (13)C19—H19A0.962 (14)
C1—C61.4246 (12)C20—C211.3967 (13)
C1—C101.4275 (11)C20—H20A0.969 (15)
C2—C31.3752 (13)C21—C221.3943 (14)
C2—H2A0.945 (17)C21—C241.5058 (13)
C3—C41.4134 (16)C22—C231.3941 (12)
C3—H3A0.99 (2)C22—H22A0.954 (15)
C4—C51.3659 (18)C23—H23A0.971 (14)
C4—H4A0.96 (2)C24—H24A0.98 (2)
C5—C61.4174 (14)C24—H24B0.96 (2)
C5—H5A0.986 (16)C24—H24C0.993 (19)
C6—C71.4139 (14)
C13—S1—C1493.58 (4)C12—C11—H11B108.4 (8)
C10—O1—C11114.75 (6)H11A—C11—H11B107.5 (12)
N5—O2—C17110.81 (6)N1—C12—N3109.94 (7)
C12—N1—N2107.84 (6)N1—C12—C11127.14 (7)
C13—N2—N1106.48 (6)N3—C12—C11122.76 (7)
C12—N3—C13105.17 (6)N2—C13—N3110.54 (7)
C12—N3—N4124.47 (6)N2—C13—S1129.92 (6)
C13—N3—N4128.81 (6)N3—C13—S1119.53 (6)
C15—N4—N3114.39 (6)C15—C14—S1110.06 (5)
N6—N5—O2105.36 (6)C15—C14—H14A107.6 (8)
N5—N6—C16114.66 (6)S1—C14—H14A107.9 (8)
N5—N6—C18115.62 (6)C15—C14—H14B114.1 (8)
C16—N6—C18129.71 (6)S1—C14—H14B105.4 (8)
C2—C1—C6119.52 (8)H14A—C14—H14B111.6 (11)
C2—C1—C10122.14 (8)N4—C15—C16118.51 (6)
C6—C1—C10118.34 (8)N4—C15—C14123.04 (7)
C3—C2—C1120.31 (9)C16—C15—C14118.43 (6)
C3—C2—H2A121.0 (10)N6—C16—C17105.06 (6)
C1—C2—H2A118.6 (10)N6—C16—C15126.71 (6)
C2—C3—C4120.42 (11)C17—C16—C15127.69 (6)
C2—C3—H3A121.6 (11)O3—C17—O2120.35 (7)
C4—C3—H3A117.9 (11)O3—C17—C16135.53 (7)
C5—C4—C3120.13 (10)O2—C17—C16104.10 (6)
C5—C4—H4A120.8 (12)C19—C18—C23122.88 (7)
C3—C4—H4A119.1 (12)C19—C18—N6118.68 (7)
C4—C5—C6121.22 (9)C23—C18—N6118.38 (7)
C4—C5—H5A121.1 (10)C18—C19—C20117.98 (7)
C6—C5—H5A117.6 (10)C18—C19—H19A118.5 (8)
C7—C6—C5121.86 (9)C20—C19—H19A123.5 (8)
C7—C6—C1119.75 (8)C19—C20—C21121.14 (8)
C5—C6—C1118.39 (9)C19—C20—H20A117.8 (9)
C8—C7—C6120.17 (8)C21—C20—H20A121.0 (9)
C8—C7—H7A121.4 (9)C22—C21—C20118.96 (8)
C6—C7—H7A118.4 (9)C22—C21—C24120.57 (9)
C7—C8—C9121.15 (9)C20—C21—C24120.44 (9)
C7—C8—H8A119.6 (9)C23—C22—C21121.09 (8)
C9—C8—H8A119.2 (9)C23—C22—H22A118.3 (8)
C10—C9—C8119.73 (8)C21—C22—H22A120.6 (8)
C10—C9—H9A122.1 (8)C18—C23—C22117.92 (8)
C8—C9—H9A118.1 (8)C18—C23—H23A120.7 (8)
O1—C10—C9124.35 (7)C22—C23—H23A121.4 (8)
O1—C10—C1114.90 (7)C21—C24—H24A108.9 (12)
C9—C10—C1120.74 (7)C21—C24—H24B109.1 (11)
O1—C11—C12109.19 (6)H24A—C24—H24B111.9 (16)
O1—C11—H11A109.2 (8)C21—C24—H24C114.4 (10)
C12—C11—H11A110.5 (8)H24A—C24—H24C107.1 (17)
O1—C11—H11B112.0 (8)H24B—C24—H24C105.4 (16)
C12—N1—N2—C131.48 (8)C12—N3—C13—N20.23 (8)
C12—N3—N4—C15165.86 (7)N4—N3—C13—N2165.83 (7)
C13—N3—N4—C1530.53 (10)C12—N3—C13—S1179.55 (5)
C17—O2—N5—N60.43 (8)N4—N3—C13—S113.50 (10)
O2—N5—N6—C160.38 (9)C14—S1—C13—N2153.37 (8)
O2—N5—N6—C18178.66 (6)C14—S1—C13—N327.46 (6)
C6—C1—C2—C30.97 (16)C13—S1—C14—C1553.80 (6)
C10—C1—C2—C3178.48 (11)N3—N4—C15—C16171.38 (6)
C1—C2—C3—C40.6 (2)N3—N4—C15—C146.97 (10)
C2—C3—C4—C50.0 (2)S1—C14—C15—N451.78 (9)
C3—C4—C5—C60.2 (2)S1—C14—C15—C16126.57 (6)
C4—C5—C6—C7179.19 (13)N5—N6—C16—C171.00 (9)
C4—C5—C6—C10.20 (18)C18—N6—C16—C17177.88 (7)
C2—C1—C6—C7178.65 (9)N5—N6—C16—C15171.03 (7)
C10—C1—C6—C71.88 (13)C18—N6—C16—C1510.09 (12)
C2—C1—C6—C50.75 (14)N4—C15—C16—N615.34 (11)
C10—C1—C6—C5178.72 (9)C14—C15—C16—N6163.09 (7)
C5—C6—C7—C8177.25 (11)N4—C15—C16—C17174.40 (7)
C1—C6—C7—C83.36 (15)C14—C15—C16—C177.18 (11)
C6—C7—C8—C91.64 (16)N5—O2—C17—O3177.66 (7)
C7—C8—C9—C101.61 (15)N5—O2—C17—C161.00 (8)
C11—O1—C10—C95.75 (11)N6—C16—C17—O3177.21 (9)
C11—O1—C10—C1174.30 (7)C15—C16—C17—O310.86 (15)
C8—C9—C10—O1176.86 (8)N6—C16—C17—O21.15 (8)
C8—C9—C10—C13.09 (13)C15—C16—C17—O2170.78 (7)
C2—C1—C10—O11.93 (12)N5—N6—C18—C19108.58 (8)
C6—C1—C10—O1178.61 (7)C16—N6—C18—C1970.29 (11)
C2—C1—C10—C9178.12 (9)N5—N6—C18—C2368.82 (9)
C6—C1—C10—C91.34 (12)C16—N6—C18—C23112.31 (9)
C10—O1—C11—C12179.64 (6)C23—C18—C19—C200.86 (12)
N2—N1—C12—N31.37 (9)N6—C18—C19—C20176.42 (7)
N2—N1—C12—C11176.75 (7)C18—C19—C20—C210.37 (13)
C13—N3—C12—N10.74 (8)C19—C20—C21—C221.50 (13)
N4—N3—C12—N1167.57 (7)C19—C20—C21—C24176.65 (9)
C13—N3—C12—C11176.36 (7)C20—C21—C22—C231.45 (14)
N4—N3—C12—C1116.80 (11)C24—C21—C22—C23176.69 (9)
O1—C11—C12—N176.16 (10)C19—C18—C23—C220.90 (12)
O1—C11—C12—N3109.01 (8)N6—C18—C23—C22176.38 (7)
N1—N2—C13—N31.03 (8)C21—C22—C23—C180.29 (13)
N1—N2—C13—S1179.73 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and C1/C6–C10 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O30.973 (13)2.401 (14)3.0928 (10)127.7 (10)
C14—H14B···O3i0.973 (13)2.396 (13)3.1612 (10)135.2 (11)
C8—H8A···Cg1ii0.980 (17)2.603 (17)3.3928 (11)138.0 (13)
C24—H24C···Cg20.993 (19)2.95 (2)3.7066 (14)134.3 (17)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC24H18N6O3S
Mr470.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)21.6096 (8), 8.3622 (3), 11.9272 (4)
β (°) 94.694 (1)
V3)2148.06 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.82 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.857, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
30407, 9432, 8048
Rint0.023
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.08
No. of reflections9432
No. of parameters379
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and C1/C6–C10 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O30.973 (13)2.401 (14)3.0928 (10)127.7 (10)
C14—H14B···O3i0.973 (13)2.396 (13)3.1612 (10)135.2 (11)
C8—H8A···Cg1ii0.980 (17)2.603 (17)3.3928 (11)138.0 (13)
C24—H24C···Cg20.993 (19)2.95 (2)3.7066 (14)134.3 (17)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBaker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15–29.  CrossRef CAS Web of Science Google Scholar
First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010b). Acta Cryst. E66, o1225–o1226.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010c). Acta Cryst. E66, o1233–o1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds