organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Cyano­benzyl­­idene)thio­phene-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bMinistry of Personnel, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 12 May 2010; accepted 22 May 2010; online 26 May 2010)

The title compound, C13H9N3OS, was prepared by the reaction of thio­phene-2-carbohydrazide and 4-formyl­benzonitrile. The dihedral angle between the benzene and thio­phene rings is 11.9 (1)°. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]); Jiang (2010[Jiang, J.-H. (2010). Acta Cryst. E66, o922.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3OS

  • Mr = 255.29

  • Monoclinic, P 21 /n

  • a = 6.3966 (13) Å

  • b = 16.340 (3) Å

  • c = 11.494 (2) Å

  • β = 90.66 (3)°

  • V = 1201.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11589 measured reflections

  • 2746 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.03

  • 2746 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.97 2.821 (2) 171
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

General background references for the title compound are included in the publication of a related structure (Jiang, 2010). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C8N3 bond length of 1.272 (3)Å is comparable with reported values [1.281 (2) Å] (Girgis, 2006) and [1.273 (3)Å] (Jiang, 2010). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into centrosymmetric dimers.

Related literature top

For related structures, see: Girgis (2006); Jiang (2010).

Experimental top

A mixture of the thiophene-2-carbohydrazide (0.10 mol), and 4-formylbenzonitrile (0.10 mol) was stirred in refluxing ethanol (10 mL) for 4 h to afford the title compound (0.079 mol, yield 79%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

General background references for the title compound are included in the publication of a related structure (Jiang, 2010). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C8N3 bond length of 1.272 (3)Å is comparable with reported values [1.281 (2) Å] (Girgis, 2006) and [1.273 (3)Å] (Jiang, 2010). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into centrosymmetric dimers.

For related structures, see: Girgis (2006); Jiang (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-(4-Cyanobenzylidene)thiophene-2-carbohydrazide top
Crystal data top
C13H9N3OSF(000) = 528
Mr = 255.29Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1539 reflections
a = 6.3966 (13) Åθ = 3.8–26.2°
b = 16.340 (3) ŵ = 0.26 mm1
c = 11.494 (2) ÅT = 293 K
β = 90.66 (3)°Block, colorless
V = 1201.3 (4) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
φ and ω scansh = 88
11589 measured reflectionsk = 2121
2746 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
2746 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H9N3OSV = 1201.3 (4) Å3
Mr = 255.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3966 (13) ŵ = 0.26 mm1
b = 16.340 (3) ÅT = 293 K
c = 11.494 (2) Å0.21 × 0.20 × 0.18 mm
β = 90.66 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1539 reflections with I > 2σ(I)
11589 measured reflectionsRint = 0.066
2746 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2746 reflectionsΔρmin = 0.32 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.2706 (3)0.38738 (12)0.84452 (15)0.0428 (5)
N20.1294 (3)0.44128 (12)0.88894 (14)0.0440 (5)
H2A0.14990.46030.95790.053*
O10.1694 (3)0.51089 (11)0.87605 (12)0.0542 (5)
C20.8862 (4)0.20156 (14)0.79598 (18)0.0444 (6)
C90.0408 (4)0.46559 (14)0.82840 (17)0.0421 (6)
C40.7596 (4)0.29587 (15)0.93785 (18)0.0463 (6)
H4A0.77590.32241.00890.056*
C80.4290 (4)0.37040 (14)0.90796 (18)0.0430 (6)
H8A0.44570.39600.97970.052*
C70.7082 (4)0.21428 (16)0.72907 (19)0.0535 (7)
H7A0.68950.18580.65970.064*
C50.5847 (4)0.31123 (13)0.86961 (17)0.0408 (6)
C100.0772 (4)0.43914 (14)0.70730 (17)0.0431 (6)
C30.9102 (4)0.24155 (15)0.90156 (19)0.0487 (6)
H3B1.02780.23180.94790.058*
C130.0822 (5)0.38914 (16)0.5070 (2)0.0600 (8)
H13A0.05680.36640.43440.072*
C60.5585 (4)0.26912 (15)0.76500 (19)0.0505 (6)
H6A0.43970.27800.71930.061*
C110.2581 (4)0.45925 (15)0.64795 (18)0.0514 (7)
H11A0.36730.48880.68020.062*
C120.2588 (5)0.43005 (16)0.5330 (2)0.0595 (7)
H12A0.36880.43800.48060.071*
S10.08838 (11)0.38350 (4)0.62050 (5)0.0558 (3)
N11.1789 (4)0.10803 (16)0.7206 (2)0.0703 (7)
C11.0483 (4)0.14800 (17)0.7545 (2)0.0516 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0461 (13)0.0436 (12)0.0388 (9)0.0034 (10)0.0026 (9)0.0032 (8)
N20.0477 (13)0.0492 (12)0.0351 (9)0.0055 (10)0.0021 (9)0.0080 (8)
O10.0571 (12)0.0630 (12)0.0425 (8)0.0186 (9)0.0023 (8)0.0126 (8)
C20.0460 (15)0.0440 (14)0.0432 (11)0.0022 (11)0.0034 (11)0.0055 (10)
C90.0471 (15)0.0414 (13)0.0376 (11)0.0018 (11)0.0021 (11)0.0001 (10)
C40.0514 (16)0.0490 (14)0.0384 (11)0.0003 (12)0.0013 (11)0.0017 (10)
C80.0459 (15)0.0463 (14)0.0369 (11)0.0016 (11)0.0012 (10)0.0013 (10)
C70.0612 (18)0.0539 (16)0.0452 (12)0.0049 (13)0.0047 (12)0.0094 (11)
C50.0435 (15)0.0404 (13)0.0385 (11)0.0002 (11)0.0022 (10)0.0036 (9)
C100.0507 (15)0.0401 (13)0.0386 (11)0.0018 (11)0.0006 (10)0.0024 (9)
C30.0464 (16)0.0517 (15)0.0478 (12)0.0026 (12)0.0026 (11)0.0065 (11)
C130.081 (2)0.0600 (18)0.0391 (12)0.0101 (16)0.0040 (13)0.0079 (11)
C60.0496 (16)0.0538 (16)0.0478 (12)0.0066 (13)0.0063 (11)0.0027 (11)
C110.0591 (18)0.0528 (16)0.0420 (12)0.0071 (13)0.0077 (11)0.0061 (11)
C120.071 (2)0.0596 (17)0.0477 (13)0.0082 (15)0.0166 (13)0.0056 (12)
S10.0620 (5)0.0646 (5)0.0407 (3)0.0109 (3)0.0001 (3)0.0088 (3)
N10.0686 (18)0.0765 (17)0.0658 (14)0.0177 (14)0.0068 (13)0.0044 (12)
C10.0534 (17)0.0544 (16)0.0471 (13)0.0029 (13)0.0009 (12)0.0027 (12)
Geometric parameters (Å, º) top
N3—C81.272 (3)C7—C61.378 (3)
N3—N21.365 (2)C7—H7A0.9300
N2—C91.345 (3)C5—C61.394 (3)
N2—H2A0.8600C10—C111.376 (3)
O1—C91.239 (3)C10—S11.723 (2)
C2—C71.382 (3)C3—H3B0.9300
C2—C31.385 (3)C13—C121.349 (4)
C2—C11.442 (4)C13—S11.693 (3)
C9—C101.474 (3)C13—H13A0.9300
C4—C31.378 (3)C6—H6A0.9300
C4—C51.382 (3)C11—C121.405 (3)
C4—H4A0.9300C11—H11A0.9300
C8—C51.460 (3)C12—H12A0.9300
C8—H8A0.9300N1—C11.133 (3)
C8—N3—N2116.90 (18)C6—C5—C8120.8 (2)
C9—N2—N3122.15 (18)C11—C10—C9121.4 (2)
C9—N2—H2A118.9C11—C10—S1110.98 (16)
N3—N2—H2A118.9C9—C10—S1127.61 (19)
C7—C2—C3119.9 (2)C4—C3—C2119.9 (2)
C7—C2—C1119.9 (2)C4—C3—H3B120.1
C3—C2—C1120.2 (2)C2—C3—H3B120.1
O1—C9—N2119.03 (19)C12—C13—S1112.96 (18)
O1—C9—C10119.6 (2)C12—C13—H13A123.5
N2—C9—C10121.3 (2)S1—C13—H13A123.5
C3—C4—C5120.6 (2)C7—C6—C5120.1 (2)
C3—C4—H4A119.7C7—C6—H6A119.9
C5—C4—H4A119.7C5—C6—H6A119.9
N3—C8—C5120.9 (2)C10—C11—C12112.2 (2)
N3—C8—H8A119.6C10—C11—H11A123.9
C5—C8—H8A119.6C12—C11—H11A123.9
C6—C7—C2120.1 (2)C13—C12—C11112.5 (3)
C6—C7—H7A119.9C13—C12—H12A123.7
C2—C7—H7A119.9C11—C12—H12A123.7
C4—C5—C6119.2 (2)C13—S1—C1091.29 (13)
C4—C5—C8120.0 (2)N1—C1—C2177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.972.821 (2)171
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H9N3OS
Mr255.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.3966 (13), 16.340 (3), 11.494 (2)
β (°) 90.66 (3)
V3)1201.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11589, 2746, 1539
Rint0.066
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.03
No. of reflections2746
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.972.821 (2)171
Symmetry code: (i) x, y+1, z+2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationJiang, J.-H. (2010). Acta Cryst. E66, o922.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds