organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,4,6-Tri­methyl­benzyl­­idene)isonicotinohydrazide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 May 2010; accepted 24 May 2010; online 29 May 2010)

The title isoniazid derivative, C16H17N3O, exists in an E configuration with respect to the Schiff base C=N bond. The pyridine ring is essentially planar [maximum deviation = 0.009 (3) Å]. The mean plane through the hydrazide unit forms dihedral angles of 38.38 (16) and 39.42 (16)°, respectively, with the pyridine and benzene rings. In the crystal structure, symmetry-related mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into chains along [100]. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For the preparation of the title compound, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For related structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.], 2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O

  • Mr = 267.33

  • Monoclinic, P 21 /c

  • a = 4.7966 (7) Å

  • b = 34.268 (7) Å

  • c = 8.3795 (14) Å

  • β = 96.203 (14)°

  • V = 1369.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.994

  • 12980 measured reflections

  • 3127 independent reflections

  • 2043 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.160

  • S = 1.11

  • 3127 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1-C5/N1 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.93 (3) 1.97 (3) 2.844 (3) 157 (3)
C16—H16BCg1i 0.96 2.96 3.551 (3) 121
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we report the crystal structure of the title isoniazid derivative.

The title isoniazid derivative (Fig. 1) exists in an E configuration with respective to the Schiff base C7N3 bond [C7N3 = 1.280 (3) Å; torsion angle N2–N3–C7–C8 = 179.4 (2)°]. The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.009 (3) Å at atom C4. The mean plane through the hydrazide unit (O1/C6/N2/N3/C7) forms dihedral angles of 38.38 (16) and 39.42 (16)°, respectively, with the pyridine and benzene (C8-C13) rings. The bond lengths and angles are consistent to those observed in closely related structures (Naveenkumar et al., 2009; 2010a,b; Shi, 2005).

In the crystal structure (Fig. 2), adjacent molecules are linked into one-dimensional chains along the [100] direction via intermolecular N2—H1N2···O1i hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C16—H16B···Cg1i interactions (Table 1) involving the centroid of the pyridine ring.

Related literature top

For general background to and applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005).

Experimental top

The title isoniazid derivative was prepared following the procedure by Lourenco et al., (2008). The title derivative was prepared by the reaction between 2,4,6-trimethylbenzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethanol and ethyl ether to afford the pure derivative. Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation with dimethyl sulfoxide.

Refinement top

Atom H1N2 was located from difference Fourier map and allowed to refine freely. All other H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, Uiso = 1.2 or 1.5 Ueq(C). These H atoms were refined as riding on their parent atoms. A rotating group model was used for the methyl groups.

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we report the crystal structure of the title isoniazid derivative.

The title isoniazid derivative (Fig. 1) exists in an E configuration with respective to the Schiff base C7N3 bond [C7N3 = 1.280 (3) Å; torsion angle N2–N3–C7–C8 = 179.4 (2)°]. The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.009 (3) Å at atom C4. The mean plane through the hydrazide unit (O1/C6/N2/N3/C7) forms dihedral angles of 38.38 (16) and 39.42 (16)°, respectively, with the pyridine and benzene (C8-C13) rings. The bond lengths and angles are consistent to those observed in closely related structures (Naveenkumar et al., 2009; 2010a,b; Shi, 2005).

In the crystal structure (Fig. 2), adjacent molecules are linked into one-dimensional chains along the [100] direction via intermolecular N2—H1N2···O1i hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C16—H16B···Cg1i interactions (Table 1) involving the centroid of the pyridine ring.

For general background to and applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title derivative with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of title derivative, viewed along the c axis, showing adjacent molecules being linked into one-dimensional chains along the [100] direction. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(2,4,6-Trimethylbenzylidene)isonicotinohydrazide top
Crystal data top
C16H17N3OF(000) = 568
Mr = 267.33Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2541 reflections
a = 4.7966 (7) Åθ = 2.4–30.0°
b = 34.268 (7) ŵ = 0.08 mm1
c = 8.3795 (14) ÅT = 100 K
β = 96.203 (14)°Needle, colourless
V = 1369.3 (4) Å30.35 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3127 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.971, Tmax = 0.994k = 4443
12980 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.4572P]
where P = (Fo2 + 2Fc2)/3
3127 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H17N3OV = 1369.3 (4) Å3
Mr = 267.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7966 (7) ŵ = 0.08 mm1
b = 34.268 (7) ÅT = 100 K
c = 8.3795 (14) Å0.35 × 0.10 × 0.07 mm
β = 96.203 (14)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3127 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2043 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.070
12980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.48 e Å3
3127 reflectionsΔρmin = 0.30 e Å3
188 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9087 (4)0.22119 (6)0.3351 (3)0.0317 (5)
N10.3263 (5)0.34311 (7)0.2703 (3)0.0306 (6)
N20.4637 (5)0.19838 (6)0.2872 (3)0.0213 (5)
N30.5529 (4)0.16006 (6)0.2958 (3)0.0225 (5)
C10.3140 (5)0.27683 (7)0.1801 (3)0.0219 (6)
H1A0.23030.25810.11020.026*
C20.2194 (6)0.31475 (8)0.1741 (4)0.0258 (6)
H2A0.07080.32100.09770.031*
C30.5418 (6)0.33331 (8)0.3769 (4)0.0329 (7)
H3A0.62100.35260.44570.039*
C40.6534 (6)0.29642 (8)0.3909 (3)0.0268 (6)
H4A0.80620.29130.46600.032*
C50.5375 (5)0.26708 (7)0.2929 (3)0.0213 (6)
C60.6561 (5)0.22694 (8)0.3077 (3)0.0216 (6)
C70.3557 (5)0.13476 (7)0.2787 (3)0.0225 (6)
H7A0.16990.14290.26310.027*
C80.4207 (5)0.09301 (7)0.2837 (3)0.0218 (6)
C90.6338 (5)0.07743 (8)0.3932 (3)0.0230 (6)
C100.6948 (5)0.03831 (8)0.3826 (3)0.0239 (6)
H10A0.83640.02790.45470.029*
C110.5558 (5)0.01384 (7)0.2701 (3)0.0219 (6)
C120.3405 (5)0.02938 (7)0.1670 (3)0.0219 (6)
H12A0.24110.01310.09240.026*
C130.2675 (5)0.06847 (7)0.1712 (3)0.0212 (6)
C140.7896 (6)0.10107 (8)0.5253 (3)0.0289 (7)
H14A0.85910.08410.61170.043*
H14B0.66520.12000.56390.043*
H14C0.94400.11420.48480.043*
C150.6406 (6)0.02825 (8)0.2617 (3)0.0278 (6)
H15A0.63170.04030.36440.042*
H15C0.82870.02990.23310.042*
H15D0.51550.04150.18230.042*
C160.0339 (5)0.08385 (8)0.0537 (3)0.0266 (6)
H16A0.05660.06250.00530.040*
H16D0.10940.10150.01940.040*
H16B0.10010.09730.11080.040*
H1N20.271 (7)0.2019 (8)0.278 (4)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0158 (10)0.0349 (11)0.0431 (13)0.0011 (8)0.0035 (9)0.0082 (9)
N10.0296 (14)0.0280 (13)0.0340 (15)0.0002 (10)0.0018 (11)0.0029 (11)
N20.0157 (12)0.0217 (11)0.0252 (13)0.0021 (8)0.0035 (9)0.0027 (9)
N30.0204 (12)0.0230 (12)0.0232 (13)0.0026 (9)0.0012 (9)0.0003 (9)
C10.0199 (13)0.0243 (14)0.0207 (15)0.0034 (10)0.0023 (11)0.0017 (11)
C20.0199 (14)0.0277 (15)0.0287 (16)0.0012 (11)0.0029 (12)0.0033 (12)
C30.0346 (18)0.0314 (16)0.0317 (18)0.0073 (12)0.0013 (14)0.0062 (13)
C40.0228 (14)0.0329 (16)0.0227 (15)0.0039 (11)0.0068 (12)0.0000 (12)
C50.0172 (13)0.0267 (14)0.0206 (14)0.0013 (10)0.0039 (11)0.0045 (11)
C60.0153 (13)0.0291 (14)0.0193 (14)0.0018 (10)0.0033 (11)0.0048 (11)
C70.0163 (13)0.0282 (14)0.0226 (15)0.0023 (10)0.0007 (11)0.0024 (11)
C80.0244 (14)0.0175 (13)0.0252 (15)0.0002 (10)0.0103 (12)0.0013 (11)
C90.0224 (14)0.0269 (14)0.0200 (15)0.0015 (11)0.0031 (11)0.0018 (11)
C100.0203 (14)0.0291 (15)0.0213 (15)0.0046 (10)0.0019 (11)0.0046 (11)
C110.0211 (14)0.0245 (14)0.0205 (14)0.0005 (10)0.0037 (11)0.0016 (11)
C120.0206 (14)0.0222 (13)0.0231 (15)0.0016 (10)0.0032 (11)0.0006 (11)
C130.0161 (13)0.0243 (14)0.0239 (15)0.0005 (10)0.0059 (11)0.0028 (11)
C140.0318 (16)0.0275 (15)0.0261 (16)0.0015 (11)0.0028 (13)0.0014 (12)
C150.0316 (16)0.0277 (15)0.0232 (16)0.0053 (12)0.0018 (12)0.0022 (12)
C160.0214 (14)0.0246 (14)0.0337 (17)0.0007 (11)0.0033 (12)0.0015 (12)
Geometric parameters (Å, º) top
O1—C61.225 (3)C8—C131.409 (4)
N1—C21.330 (4)C9—C101.377 (4)
N1—C31.334 (4)C9—C141.504 (4)
N2—C61.343 (3)C10—C111.378 (4)
N2—N31.380 (3)C10—H10A0.9300
N2—H1N20.93 (3)C11—C121.380 (4)
N3—C71.280 (3)C11—C151.502 (4)
C1—C21.375 (4)C12—C131.386 (3)
C1—C51.391 (4)C12—H12A0.9300
C1—H1A0.9300C13—C161.505 (4)
C2—H2A0.9300C14—H14A0.9600
C3—C41.373 (4)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.377 (4)C15—H15A0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.489 (4)C15—H15D0.9600
C7—C81.464 (4)C16—H16A0.9600
C7—H7A0.9300C16—H16D0.9600
C8—C91.403 (4)C16—H16B0.9600
C2—N1—C3116.2 (2)C8—C9—C14123.1 (2)
C6—N2—N3118.8 (2)C9—C10—C11123.1 (3)
C6—N2—H1N2125.5 (18)C9—C10—H10A118.5
N3—N2—H1N2115.4 (18)C11—C10—H10A118.5
C7—N3—N2114.7 (2)C10—C11—C12117.9 (2)
C2—C1—C5118.6 (3)C10—C11—C15120.2 (2)
C2—C1—H1A120.7C12—C11—C15122.0 (2)
C5—C1—H1A120.7C11—C12—C13122.1 (3)
N1—C2—C1124.4 (3)C11—C12—H12A119.0
N1—C2—H2A117.8C13—C12—H12A119.0
C1—C2—H2A117.8C12—C13—C8118.6 (2)
N1—C3—C4123.8 (3)C12—C13—C16119.6 (2)
N1—C3—H3A118.1C8—C13—C16121.8 (2)
C4—C3—H3A118.1C9—C14—H14A109.5
C3—C4—C5119.5 (3)C9—C14—H14B109.5
C3—C4—H4A120.2H14A—C14—H14B109.5
C5—C4—H4A120.2C9—C14—H14C109.5
C4—C5—C1117.5 (2)H14A—C14—H14C109.5
C4—C5—C6119.9 (2)H14B—C14—H14C109.5
C1—C5—C6122.5 (2)C11—C15—H15A109.5
O1—C6—N2124.0 (2)C11—C15—H15C109.5
O1—C6—C5121.7 (2)H15A—C15—H15C109.5
N2—C6—C5114.3 (2)C11—C15—H15D109.5
N3—C7—C8120.4 (2)H15A—C15—H15D109.5
N3—C7—H7A119.8H15C—C15—H15D109.5
C8—C7—H7A119.8C13—C16—H16A109.5
C9—C8—C13120.1 (2)C13—C16—H16D109.5
C9—C8—C7121.9 (2)H16A—C16—H16D109.5
C13—C8—C7118.0 (2)C13—C16—H16B109.5
C10—C9—C8118.2 (2)H16A—C16—H16B109.5
C10—C9—C14118.7 (2)H16D—C16—H16B109.5
C6—N2—N3—C7178.4 (2)N3—C7—C8—C13138.1 (3)
C3—N1—C2—C10.9 (4)C13—C8—C9—C102.7 (4)
C5—C1—C2—N10.5 (4)C7—C8—C9—C10175.6 (2)
C2—N1—C3—C40.1 (4)C13—C8—C9—C14174.7 (2)
N1—C3—C4—C51.2 (5)C7—C8—C9—C147.1 (4)
C3—C4—C5—C11.7 (4)C8—C9—C10—C110.3 (4)
C3—C4—C5—C6179.7 (3)C14—C9—C10—C11177.2 (2)
C2—C1—C5—C40.9 (4)C9—C10—C11—C121.9 (4)
C2—C1—C5—C6179.5 (2)C9—C10—C11—C15177.8 (3)
N3—N2—C6—O10.6 (4)C10—C11—C12—C131.8 (4)
N3—N2—C6—C5178.9 (2)C15—C11—C12—C13177.9 (2)
C4—C5—C6—O137.5 (4)C11—C12—C13—C80.6 (4)
C1—C5—C6—O1141.0 (3)C11—C12—C13—C16178.9 (2)
C4—C5—C6—N2142.9 (3)C9—C8—C13—C122.8 (4)
C1—C5—C6—N238.5 (4)C7—C8—C13—C12175.5 (2)
N2—N3—C7—C8179.4 (2)C9—C8—C13—C16178.9 (2)
N3—C7—C8—C940.1 (4)C7—C8—C13—C162.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C5/N1 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.93 (3)1.97 (3)2.844 (3)157 (3)
C16—H16B···Cg1i0.962.963.551 (3)121
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17N3O
Mr267.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.7966 (7), 34.268 (7), 8.3795 (14)
β (°) 96.203 (14)
V3)1369.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12980, 3127, 2043
Rint0.070
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.160, 1.11
No. of reflections3127
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C5/N1 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.93 (3)1.97 (3)2.844 (3)157 (3)
C16—H16B···Cg1i0.96002.963.551 (3)121
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional Correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSN and JHG are grateful to USM for USM Fellowships. HKF and JHG thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds