organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spiro­[1,3-dioxolane-2,3′-indolin]-2′-one

aSchool of Environmental Engineering, Chang'an University, South Second Cycle Road 368#, Xi'an 710054, Shannxi, People's Republic of China, and bDepartment of Pharmacy, Xi'an Medical University, Hanguang Round No. 137, Xi'an 710021, Xi'an, People's Republic of China
*Correspondence e-mail: cg1014@126.com

(Received 28 March 2010; accepted 2 May 2010; online 12 May 2010)

The title compound, C10H9NO3, was synthesized by the condensation reaction of isatin (systematic name 1H-indole-2,3-dione) with glycol in presence of p-toluene­sulfonic acid. The indol-2-one ring system is essentially planar [N—C—C—C torsion angle = 3.1 (2)°], and the 1,3-dioxolane ring is slightly distorted. The crystal structure exhibits inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Santos et al. (2008[Santos, E. L., Gomes, W. A. Jr, Ribeiro, N. M. & Andrade, H. M. C. (2008). J. Mol. Catal. A, 295, 18-23.]). For the bioactivity of the title compound, see: Demosthenes et al. (1998[Demosthenes, F., William, J. R., David, S. C. & David, L. C. (1998). Tetrahedron Lett. 39, 2235-2238.]); Rajopadhye & Popp (1988[Rajopadhye, M. & Popp, F. D. (1988). J. Med. Chem. 31, 1001-1005.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3

  • Mr = 191.18

  • Monoclinic, P 21 /c

  • a = 7.484 (2) Å

  • b = 5.650 (1) Å

  • c = 20.942 (5) Å

  • β = 97.889 (8)°

  • V = 877.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.36 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.989

  • 4056 measured reflections

  • 1534 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.09

  • 1534 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (3) 2.07 (3) 2.941 (3) 174 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2002[Bruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isatin derivatives, has caught great attention of many researchers as a versatile lead molecule for designing of potential drugs for the variety of biological activities, such as anti-bacteria, anti-virus, anti-tumor and neuroprotection. Among these compounds, spiro-oxindol analogues have received considerable attention as potential anti-bacteria and neuroprotection agents(Demosthenes et al. 1998; Rajopadhye et al. 1988; Santos et al. 2008).

The X-ray structural analysis confirmed the assignment of its structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a diagram of interactions between the title compounds is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds between the indoline H atom and the oxygen of the CO unit, with a N1—H1···O1i (Table 1).

Related literature top

For the synthesis of the title compound, see: Santos et al. (2008). For the bioactivity of the title compound, see: Demosthenes et al. (1998); Rajopadhye et al. (1988).

Experimental top

Isatin (1 mmol) and glycol (1 mmol) was dissolved in cyclohexane (20 ml), and 0.01 mmol TsOH was added. The mixture was stirred under reflux. After completion of the reaction, it was evaporated to dryness, followed by chromatography to the pure title compound. 1H-NMR (D6-Acetone, 400 MHz) delta: 10.44 (1H, s), 7.33 (2H, m), 7.00 (1H, td, J = 7.2, 0.8 Hz), 6.82 (1H, d, J = 7.6 Hz), 4.33 (2H, m), 4.23 (2H, m); EI–MS, m/z (%): 233 (M+)

Refinement top

The H atom bound N atom was located from difference Fourier map and refined freely. All H atoms of C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.97 Å for methylene H atoms. Uiso(H)= 1.2Ueq(C) for all H atoms.

Structure description top

Isatin derivatives, has caught great attention of many researchers as a versatile lead molecule for designing of potential drugs for the variety of biological activities, such as anti-bacteria, anti-virus, anti-tumor and neuroprotection. Among these compounds, spiro-oxindol analogues have received considerable attention as potential anti-bacteria and neuroprotection agents(Demosthenes et al. 1998; Rajopadhye et al. 1988; Santos et al. 2008).

The X-ray structural analysis confirmed the assignment of its structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a diagram of interactions between the title compounds is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds between the indoline H atom and the oxygen of the CO unit, with a N1—H1···O1i (Table 1).

For the synthesis of the title compound, see: Santos et al. (2008). For the bioactivity of the title compound, see: Demosthenes et al. (1998); Rajopadhye et al. (1988).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. N–H···O interactions (dotted lines) in the crystal structure of the title compound.
Spiro[1,3-dioxolane-2,3'-indolin]-2'-one top
Crystal data top
C10H9NO3F(000) = 400
Mr = 191.18Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7304 reflections
a = 7.484 (2) Åθ = 1.5–25.0°
b = 5.650 (1) ŵ = 0.11 mm1
c = 20.942 (5) ÅT = 273 K
β = 97.889 (8)°Block, colourless
V = 877.1 (4) Å30.36 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1534 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.963, Tmax = 0.989k = 66
4056 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.151P]
where P = (Fo2 + 2Fc2)/3
1534 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H9NO3V = 877.1 (4) Å3
Mr = 191.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.484 (2) ŵ = 0.11 mm1
b = 5.650 (1) ÅT = 273 K
c = 20.942 (5) Å0.36 × 0.27 × 0.21 mm
β = 97.889 (8)°
Data collection top
Bruker SMART CCD
diffractometer
1534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1093 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.989Rint = 0.070
4056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.23 e Å3
1534 reflectionsΔρmin = 0.20 e Å3
131 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6983 (2)0.2241 (3)0.50491 (8)0.0600 (5)
O30.6788 (2)0.6884 (3)0.43906 (8)0.0551 (5)
O20.8104 (2)0.4151 (3)0.38133 (8)0.0560 (5)
N10.4575 (3)0.1613 (4)0.42609 (9)0.0469 (6)
H10.407 (4)0.044 (5)0.4439 (13)0.070 (9)*
C70.3813 (3)0.2722 (4)0.36864 (10)0.0400 (6)
C20.6494 (3)0.4723 (4)0.40675 (10)0.0417 (6)
C80.4869 (3)0.4639 (4)0.35588 (10)0.0402 (6)
C30.4343 (3)0.6053 (4)0.30311 (11)0.0506 (6)
H3A0.50320.73550.29450.061*
C60.2254 (3)0.2139 (4)0.32859 (11)0.0512 (6)
H6A0.15660.08340.33700.061*
C10.6076 (3)0.2731 (4)0.45352 (10)0.0447 (6)
C50.1752 (3)0.3571 (5)0.27544 (11)0.0550 (7)
H5A0.07070.32160.24770.066*
C40.2758 (3)0.5498 (5)0.26285 (11)0.0542 (7)
H4A0.23810.64430.22720.065*
C100.8530 (4)0.7641 (6)0.4348 (2)0.0911 (11)
H10A0.91640.79720.47740.109*
H10B0.85040.90750.40920.109*
C90.9435 (4)0.5760 (6)0.40444 (16)0.0809 (10)
H9B1.00190.63830.36940.097*
H9C1.03400.50110.43550.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0568 (12)0.0592 (12)0.0595 (10)0.0091 (9)0.0079 (9)0.0079 (8)
O30.0577 (11)0.0369 (9)0.0735 (11)0.0087 (8)0.0196 (9)0.0187 (8)
O20.0441 (10)0.0489 (10)0.0777 (11)0.0054 (8)0.0176 (8)0.0210 (8)
N10.0488 (13)0.0362 (11)0.0535 (11)0.0084 (10)0.0008 (9)0.0106 (9)
C70.0435 (14)0.0317 (12)0.0452 (12)0.0029 (10)0.0081 (10)0.0008 (9)
C20.0424 (13)0.0305 (12)0.0538 (12)0.0037 (10)0.0127 (10)0.0069 (10)
C80.0435 (13)0.0297 (12)0.0490 (12)0.0015 (10)0.0122 (10)0.0006 (9)
C30.0542 (15)0.0397 (13)0.0605 (14)0.0000 (11)0.0174 (12)0.0095 (11)
C60.0495 (16)0.0433 (14)0.0596 (14)0.0058 (11)0.0032 (11)0.0019 (11)
C10.0464 (14)0.0368 (13)0.0497 (12)0.0005 (11)0.0022 (11)0.0019 (10)
C50.0483 (15)0.0612 (17)0.0540 (13)0.0034 (13)0.0014 (11)0.0042 (12)
C40.0558 (16)0.0569 (16)0.0505 (13)0.0139 (14)0.0095 (11)0.0114 (11)
C100.059 (2)0.0579 (19)0.160 (3)0.0178 (16)0.028 (2)0.043 (2)
C90.0602 (18)0.084 (2)0.102 (2)0.0233 (17)0.0217 (16)0.0377 (19)
Geometric parameters (Å, º) top
O1—C11.223 (2)C3—C41.393 (3)
O3—C101.387 (4)C3—H3A0.9300
O3—C21.399 (3)C6—C51.386 (3)
O2—C91.386 (3)C6—H6A0.9300
O2—C21.420 (3)C5—C41.370 (3)
N1—C11.347 (3)C5—H5A0.9300
N1—C71.406 (3)C4—H4A0.9300
N1—H10.87 (3)C10—C91.452 (4)
C7—C61.380 (3)C10—H10A0.9700
C7—C81.388 (3)C10—H10B0.9700
C2—C81.503 (3)C9—H9B0.9700
C2—C11.552 (3)C9—H9C0.9700
C8—C31.377 (3)
C10—O3—C2108.95 (19)C5—C6—H6A121.2
C9—O2—C2109.03 (19)O1—C1—N1126.8 (2)
C1—N1—C7111.8 (2)O1—C1—C2125.8 (2)
C1—N1—H1124.0 (17)N1—C1—C2107.44 (18)
C7—N1—H1123.8 (17)C4—C5—C6121.5 (2)
C6—C7—C8121.7 (2)C4—C5—H5A119.2
C6—C7—N1128.6 (2)C6—C5—H5A119.2
C8—C7—N1109.75 (19)C5—C4—C3120.5 (2)
O3—C2—O2107.13 (17)C5—C4—H4A119.8
O3—C2—C8115.39 (18)C3—C4—H4A119.8
O2—C2—C8111.88 (17)O3—C10—C9107.6 (2)
O3—C2—C1111.09 (17)O3—C10—H10A110.2
O2—C2—C1109.05 (18)C9—C10—H10A110.2
C8—C2—C1102.17 (17)O3—C10—H10B110.2
C3—C8—C7120.0 (2)C9—C10—H10B110.2
C3—C8—C2131.7 (2)H10A—C10—H10B108.5
C7—C8—C2108.34 (17)O2—C9—C10106.1 (2)
C8—C3—C4118.7 (2)O2—C9—H9B110.5
C8—C3—H3A120.6C10—C9—H9B110.5
C4—C3—H3A120.6O2—C9—H9C110.5
C7—C6—C5117.6 (2)C10—C9—H9C110.5
C7—C6—H6A121.2H9B—C9—H9C108.7
C1—N1—C7—C6177.7 (2)C7—C8—C3—C40.9 (3)
C1—N1—C7—C81.5 (3)C2—C8—C3—C4178.4 (2)
C10—O3—C2—O20.6 (3)C8—C7—C6—C51.3 (4)
C10—O3—C2—C8125.9 (3)N1—C7—C6—C5177.8 (2)
C10—O3—C2—C1118.4 (3)C7—N1—C1—O1176.7 (2)
C9—O2—C2—O37.5 (3)C7—N1—C1—C25.3 (3)
C9—O2—C2—C8134.9 (2)O3—C2—C1—O151.7 (3)
C9—O2—C2—C1112.8 (2)O2—C2—C1—O166.2 (3)
C6—C7—C8—C31.8 (3)C8—C2—C1—O1175.3 (2)
N1—C7—C8—C3177.5 (2)O3—C2—C1—N1130.3 (2)
C6—C7—C8—C2177.7 (2)O2—C2—C1—N1111.9 (2)
N1—C7—C8—C23.1 (2)C8—C2—C1—N16.7 (2)
O3—C2—C8—C354.2 (3)C7—C6—C5—C40.1 (4)
O2—C2—C8—C368.6 (3)C6—C5—C4—C30.9 (4)
C1—C2—C8—C3174.9 (2)C8—C3—C4—C50.4 (4)
O3—C2—C8—C7126.4 (2)C2—O3—C10—C96.2 (4)
O2—C2—C8—C7110.7 (2)C2—O2—C9—C1011.1 (4)
C1—C2—C8—C75.8 (2)O3—C10—C9—O210.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (3)2.07 (3)2.941 (3)174 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO3
Mr191.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.484 (2), 5.650 (1), 20.942 (5)
β (°) 97.889 (8)
V3)877.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.36 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4056, 1534, 1093
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.09
No. of reflections1534
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (3)2.07 (3)2.941 (3)174 (2)
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBruker (2002). SMART, SAINT-Plus and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDemosthenes, F., William, J. R., David, S. C. & David, L. C. (1998). Tetrahedron Lett. 39, 2235–2238.  Google Scholar
First citationRajopadhye, M. & Popp, F. D. (1988). J. Med. Chem. 31, 1001–1005.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSantos, E. L., Gomes, W. A. Jr, Ribeiro, N. M. & Andrade, H. M. C. (2008). J. Mol. Catal. A, 295, 18–23.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds