organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aR*,6S*,7S*,7aR*)-2-(4-Meth­oxy­benz­yl)-7-(4-nitro­phen­yl)-6-phenyl-3a,6,7,7a-tetra­hydro­isoindolin-1-one

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 27 April 2010; accepted 10 May 2010; online 19 May 2010)

The title compound, C28H26N2O4, crystallizes as a racemate with four stereogenic centers. In the molecule, the pyrrolidone ring adopts an envelope conformation and the cyclo­hexene ring has a twisted envelope conformation. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For bioactive compounds, see: Walling et al. (1988[Walling, E. A., Drafft, G. A. & Ware, B. R. (1988). Arch. Biochem. Biophys. 264, 321-332.]); Liu et al. (2006[Liu, R., Gu, Q., Zhu, W., Cui, C., Fan, G., Fang, Y., Zhu, T. & Liu, H. (2006). J. Nat. Prod. 69, 871-875.], 2008[Liu, R., Lin, Z., Zhu, T., Fang, Y., Gu, Q. & Zhu, W. (2008). J. Nat. Prod. 71, 1127-1132.]). For microwave-assisted intra­molecular Diels–Alder cyclo­addition, see: Wang et al. (2009[Wang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862-2866.]); Wu et al. (2006[Wu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360-8372.], 2007[Wu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543-6547.]). For the synthesis of title compound, see: Wu et al. (2009[Wu, J., Zhao, J. & Dai, W.-M. (2009). CN Patent Appl. CN 200910100757.7.]).

[Scheme 1]

Experimental

Crystal data
  • C28H26N2O4

  • Mr = 454.51

  • Triclinic, [P \overline 1]

  • a = 5.4369 (4) Å

  • b = 12.2662 (7) Å

  • c = 18.149 (1) Å

  • α = 79.633 (1)°

  • β = 84.036 (2)°

  • γ = 80.325 (2)°

  • V = 1170.25 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.37 × 0.31 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.985

  • 11469 measured reflections

  • 5285 independent reflections

  • 3402 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.01

  • 5285 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.97 2.63 3.239 (2) 122
C28—H28A⋯O1ii 0.96 2.55 3.242 (2) 129
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C28H26N2O4, has a hexahydro-1H-isoindolone core, which is present in both synthetic and naturally occurring bioactive compounds (Walling et al., 1988 and Liu et al., 2006, 2008). The title compound has recently been obtained during microwave-assisted intramolecular Diels-Alder cycloaddition along with a minor diastereomer with a 82:18 diastereomeric ratio (Wang et al., 2009; Wu et al., 2006, 2007, 2009). The compound has four stereogenic centers but crystallizes as a racemate as indicated by the centrosymmetric space group. Here we report the crystal structure of the title compound (Fig. 1).

In the crystal structure of the title compound, there are one pyrrolidone ring and one cyclohexene ring. The pyrrolidone ring C1-C2/C7-C8/N1 adopts envelope conformation, whereas the cyclohexene ring C2-C7 has a twisted envelope conformation. Bond length of C3–C4 is larger than normal C–C single bond because of the hindrance between two phenyl rings at C3 and C4.

The crystal packing (Fig. 2) is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds; the first one between the pyrrolidone H atom and the oxygen of the nitro group, with a C8–H8A···O3i, and the second one between an H atom of the methoxy group and the oxygen of the CO unit, with a C28–H28A···O1ii, respectively (Table 1).

Related literature top

For bioactive compounds, see: Walling et al. (1988); Liu et al. (2006, 2008). For microwave-assisted intramolecular Diels–Alder cycloaddition, see: Wang et al. (2009); Wu et al. (2006, 2007). For the synthesis of title compound, see: Wu et al. (2009).

Experimental top

To a 10-mL pressurized process vial was added N-(4-methoxybenzyl)- N-(2E,4E)-5-phenylpenta-2,4-dienyl 2-bromoacetamide (133.0 mg, 0.33 mmol), triphenylphosphine (104.0 mg, 0.40 mmol), K2CO3 (68.0 mg, 0.50 mmol), and 4-nitrobenzaldehyde (60.0 mg, 0.40 mmol). After adding aqueous THF (H2O:THF = 1:1, 3.5 mL) the loaded vial was then sealed with a cap containing a silicon septum followed by stirring the mixture at room temperature for 6 h to allow the Wittig olefination taking place among the 2-bromoacetamide and the aldehyde. The vial containing the crude Wittig product was then put into the cavity of a technical microwave reactor with the temperature measured by an IR sensor. After heating at 453 K for 0.5 h, the reaction mixture was successively washed with saturated aqueous NH4Cl and brine, and then extracted with EtOAc (3 x 5 mL). The combined organic layer was dried over Na2SO4, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to furnish the title compound (82.0 mg, 55%), along with a minor diastereomer (17.9 mg, 12%), as a colorless solid. mp 466-468 K (CH2Cl2-EtOAc-hexane). Single crystals, as a racemate, suitable for X-ray diffraction of the title compound were grown at ambient temperature in the mixed solvent of methylene chloride, ethyl acetate and hexane (v:v:v = 1:1:3).

Refinement top

The H atoms were placed in calculated positions with C–H = 0.93-0.98 Å, and included in the refinement in riding model, with Uiso(H) = 1.2Ueq (carrier atom).

Structure description top

The title compound, C28H26N2O4, has a hexahydro-1H-isoindolone core, which is present in both synthetic and naturally occurring bioactive compounds (Walling et al., 1988 and Liu et al., 2006, 2008). The title compound has recently been obtained during microwave-assisted intramolecular Diels-Alder cycloaddition along with a minor diastereomer with a 82:18 diastereomeric ratio (Wang et al., 2009; Wu et al., 2006, 2007, 2009). The compound has four stereogenic centers but crystallizes as a racemate as indicated by the centrosymmetric space group. Here we report the crystal structure of the title compound (Fig. 1).

In the crystal structure of the title compound, there are one pyrrolidone ring and one cyclohexene ring. The pyrrolidone ring C1-C2/C7-C8/N1 adopts envelope conformation, whereas the cyclohexene ring C2-C7 has a twisted envelope conformation. Bond length of C3–C4 is larger than normal C–C single bond because of the hindrance between two phenyl rings at C3 and C4.

The crystal packing (Fig. 2) is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds; the first one between the pyrrolidone H atom and the oxygen of the nitro group, with a C8–H8A···O3i, and the second one between an H atom of the methoxy group and the oxygen of the CO unit, with a C28–H28A···O1ii, respectively (Table 1).

For bioactive compounds, see: Walling et al. (1988); Liu et al. (2006, 2008). For microwave-assisted intramolecular Diels–Alder cycloaddition, see: Wang et al. (2009); Wu et al. (2006, 2007). For the synthesis of title compound, see: Wu et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x, y - 1, z; (ii) - x, - y + 1, - z + 1 ; (iii) x, y + 1, z; (iv) - x, - y + 1, - z + 1. ]
(3aR*,6S*,7S*,7aR*)-2-(4-Methoxybenzyl)-7- (4-nitrophenyl)-6-phenyl-3a,6,7,7a-tetrahydroisoindolin-1-one top
Crystal data top
C28H26N2O4Z = 2
Mr = 454.51F(000) = 480
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4369 (4) ÅCell parameters from 7298 reflections
b = 12.2662 (7) Åθ = 3.1–27.4°
c = 18.149 (1) ŵ = 0.09 mm1
α = 79.633 (1)°T = 296 K
β = 84.036 (2)°Block, colorless
γ = 80.325 (2)°0.37 × 0.31 × 0.18 mm
V = 1170.25 (13) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5285 independent reflections
Radiation source: rotating anode3402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.967, Tmax = 0.985l = 2323
11469 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.041P)2 + 0.4229P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5285 reflectionsΔρmax = 0.23 e Å3
309 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)
Crystal data top
C28H26N2O4γ = 80.325 (2)°
Mr = 454.51V = 1170.25 (13) Å3
Triclinic, P1Z = 2
a = 5.4369 (4) ÅMo Kα radiation
b = 12.2662 (7) ŵ = 0.09 mm1
c = 18.149 (1) ÅT = 296 K
α = 79.633 (1)°0.37 × 0.31 × 0.18 mm
β = 84.036 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5285 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3402 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.985Rint = 0.024
11469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
5285 reflectionsΔρmin = 0.22 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3920 (3)0.60330 (10)0.32284 (8)0.0562 (4)
C30.0091 (3)0.63563 (13)0.20272 (9)0.0372 (4)
H30.14340.61280.23960.045*
C90.0145 (3)0.75414 (13)0.21103 (9)0.0354 (4)
O40.0827 (3)0.11519 (11)0.56486 (8)0.0626 (4)
C100.1747 (3)0.81473 (14)0.25156 (10)0.0437 (4)
H100.31070.78100.27430.052*
C40.0937 (3)0.62877 (14)0.12304 (10)0.0403 (4)
H40.27050.66220.12270.048*
C20.2183 (3)0.54638 (12)0.21746 (9)0.0345 (4)
H20.33940.55600.17380.041*
N10.4524 (3)0.42079 (11)0.30303 (8)0.0451 (4)
C130.2321 (3)0.91472 (14)0.18609 (10)0.0422 (4)
H130.36880.94860.16430.051*
C140.2179 (3)0.80600 (13)0.17894 (10)0.0410 (4)
H140.34710.76650.15210.049*
C250.0719 (4)0.18191 (15)0.52078 (10)0.0463 (4)
C110.1642 (4)0.92434 (15)0.25872 (11)0.0510 (5)
H110.29300.96480.28510.061*
C120.0403 (3)0.97220 (13)0.22604 (10)0.0429 (4)
C150.0421 (3)0.69472 (14)0.05692 (10)0.0417 (4)
C10.3594 (3)0.53126 (13)0.28773 (9)0.0391 (4)
C260.0549 (4)0.29610 (15)0.51910 (11)0.0532 (5)
H260.06760.33330.54940.064*
C50.0810 (3)0.50875 (15)0.11146 (11)0.0454 (4)
H50.15590.49710.07030.054*
C70.1409 (3)0.43048 (13)0.22418 (10)0.0415 (4)
H70.00910.42500.26520.050*
C220.4095 (3)0.30153 (14)0.42622 (10)0.0444 (4)
C60.0281 (3)0.41877 (15)0.15518 (11)0.0473 (4)
H60.03420.34810.14270.057*
N20.0562 (4)1.08752 (13)0.23437 (11)0.0613 (5)
C270.2232 (4)0.35445 (15)0.47165 (11)0.0531 (5)
H270.21070.43130.47030.064*
C240.2572 (4)0.12738 (15)0.47615 (11)0.0541 (5)
H240.26930.05050.47740.065*
O20.1207 (4)1.14155 (13)0.26491 (12)0.0936 (6)
C230.4236 (4)0.18681 (15)0.42990 (11)0.0518 (5)
H230.54820.14910.40050.062*
C80.3733 (4)0.35368 (14)0.25297 (11)0.0486 (5)
H8A0.33360.28240.28020.058*
H8B0.49990.34050.21240.058*
O30.2473 (4)1.12510 (13)0.20977 (13)0.0982 (7)
C200.2721 (4)0.65034 (17)0.02460 (10)0.0491 (4)
H200.34440.57770.04330.059*
C210.5791 (4)0.36794 (16)0.37105 (11)0.0507 (5)
H21A0.62820.42530.39440.061*
H21B0.72940.31850.35750.061*
C160.0606 (4)0.80281 (17)0.02643 (12)0.0608 (5)
H160.21470.83470.04650.073*
C280.2937 (4)0.16809 (19)0.60542 (12)0.0601 (5)
H28A0.23780.20320.64250.090*
H28B0.39490.11300.62970.090*
H28C0.39060.22380.57140.090*
C190.3949 (5)0.7124 (2)0.03484 (12)0.0679 (6)
H190.54960.68160.05510.081*
C170.0632 (6)0.8639 (2)0.03356 (14)0.0801 (8)
H170.00870.93620.05330.096*
C180.2906 (6)0.8187 (2)0.06392 (14)0.0814 (8)
H180.37330.86010.10400.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0704 (9)0.0431 (7)0.0610 (8)0.0104 (6)0.0178 (7)0.0151 (6)
C30.0321 (9)0.0353 (8)0.0455 (9)0.0097 (7)0.0068 (7)0.0113 (7)
C90.0323 (9)0.0350 (8)0.0391 (9)0.0052 (6)0.0006 (7)0.0089 (7)
O40.0693 (10)0.0519 (8)0.0665 (9)0.0207 (7)0.0211 (7)0.0142 (7)
C100.0363 (9)0.0427 (9)0.0534 (10)0.0074 (7)0.0062 (8)0.0157 (8)
C40.0284 (9)0.0415 (9)0.0527 (10)0.0055 (7)0.0021 (7)0.0126 (8)
C20.0352 (9)0.0305 (8)0.0378 (8)0.0085 (6)0.0042 (7)0.0062 (7)
N10.0567 (10)0.0342 (7)0.0440 (8)0.0094 (7)0.0054 (7)0.0021 (6)
C130.0399 (10)0.0366 (8)0.0505 (10)0.0101 (7)0.0004 (8)0.0058 (8)
C140.0325 (9)0.0373 (8)0.0536 (10)0.0056 (7)0.0066 (7)0.0143 (8)
C250.0514 (11)0.0427 (9)0.0447 (10)0.0115 (8)0.0029 (8)0.0067 (8)
C110.0441 (11)0.0470 (10)0.0634 (12)0.0027 (8)0.0085 (9)0.0240 (9)
C120.0482 (11)0.0302 (8)0.0516 (10)0.0028 (7)0.0070 (8)0.0116 (8)
C150.0423 (10)0.0425 (9)0.0439 (9)0.0097 (7)0.0091 (8)0.0105 (8)
C10.0404 (10)0.0347 (8)0.0430 (9)0.0122 (7)0.0042 (7)0.0065 (7)
C260.0549 (12)0.0434 (10)0.0580 (12)0.0023 (9)0.0089 (9)0.0120 (9)
C50.0419 (10)0.0475 (10)0.0535 (10)0.0161 (8)0.0042 (8)0.0175 (9)
C70.0470 (10)0.0330 (8)0.0467 (10)0.0144 (7)0.0051 (8)0.0093 (7)
C220.0454 (11)0.0403 (9)0.0446 (10)0.0052 (8)0.0064 (8)0.0014 (8)
C60.0497 (11)0.0393 (9)0.0590 (11)0.0180 (8)0.0013 (9)0.0175 (9)
N20.0682 (12)0.0380 (8)0.0807 (13)0.0074 (8)0.0033 (10)0.0200 (9)
C270.0619 (13)0.0339 (9)0.0602 (12)0.0049 (8)0.0016 (10)0.0055 (9)
C240.0660 (13)0.0351 (9)0.0590 (12)0.0079 (9)0.0096 (10)0.0097 (9)
O20.0970 (14)0.0506 (9)0.1350 (16)0.0010 (9)0.0198 (12)0.0457 (10)
C230.0573 (12)0.0421 (10)0.0519 (11)0.0028 (8)0.0080 (9)0.0081 (9)
C80.0625 (12)0.0324 (8)0.0509 (11)0.0080 (8)0.0036 (9)0.0069 (8)
O30.0893 (13)0.0558 (9)0.1607 (19)0.0331 (9)0.0210 (13)0.0445 (11)
C200.0476 (11)0.0564 (11)0.0470 (10)0.0139 (9)0.0005 (8)0.0146 (9)
C210.0492 (11)0.0485 (10)0.0512 (11)0.0102 (8)0.0058 (9)0.0035 (9)
C160.0701 (14)0.0524 (11)0.0585 (12)0.0043 (10)0.0128 (11)0.0055 (10)
C280.0536 (13)0.0750 (14)0.0512 (12)0.0146 (10)0.0070 (10)0.0106 (10)
C190.0690 (15)0.0910 (17)0.0500 (12)0.0321 (13)0.0083 (11)0.0174 (12)
C170.121 (2)0.0580 (13)0.0596 (14)0.0195 (14)0.0225 (15)0.0097 (11)
C180.106 (2)0.0889 (18)0.0527 (14)0.0455 (17)0.0008 (14)0.0034 (13)
Geometric parameters (Å, º) top
O1—C11.2235 (19)C26—H260.9300
C3—C91.516 (2)C5—C61.328 (3)
C3—C21.519 (2)C5—H50.9300
C3—C41.583 (2)C7—C61.489 (2)
C3—H30.9800C7—C81.522 (3)
C9—C101.391 (2)C7—H70.9800
C9—C141.392 (2)C22—C231.386 (2)
O4—C251.368 (2)C22—C271.388 (3)
O4—C281.423 (2)C22—C211.511 (2)
C10—C111.385 (2)C6—H60.9300
C10—H100.9300N2—O21.216 (2)
C4—C51.513 (2)N2—O31.217 (2)
C4—C151.519 (2)C27—H270.9300
C4—H40.9800C24—C231.378 (3)
C2—C11.523 (2)C24—H240.9300
C2—C71.530 (2)C23—H230.9300
C2—H20.9800C8—H8A0.9700
N1—C11.354 (2)C8—H8B0.9700
N1—C81.469 (2)C20—C191.384 (3)
N1—C211.469 (2)C20—H200.9300
C13—C121.375 (2)C21—H21A0.9700
C13—C141.378 (2)C21—H21B0.9700
C13—H130.9300C16—C171.387 (3)
C14—H140.9300C16—H160.9300
C25—C261.383 (2)C28—H28A0.9600
C25—C241.385 (3)C28—H28B0.9600
C11—C121.375 (2)C28—H28C0.9600
C11—H110.9300C19—C181.366 (4)
C12—N21.467 (2)C19—H190.9300
C15—C161.388 (3)C17—C181.370 (4)
C15—C201.392 (3)C17—H170.9300
C26—C271.387 (3)C18—H180.9300
C9—C3—C2117.16 (13)C6—C7—C2111.36 (14)
C9—C3—C4112.57 (13)C8—C7—C2101.77 (13)
C2—C3—C4107.27 (12)C6—C7—H7106.7
C9—C3—H3106.4C8—C7—H7106.7
C2—C3—H3106.4C2—C7—H7106.7
C4—C3—H3106.4C23—C22—C27117.55 (17)
C10—C9—C14118.12 (15)C23—C22—C21121.30 (17)
C10—C9—C3119.26 (14)C27—C22—C21121.02 (16)
C14—C9—C3122.61 (14)C5—C6—C7120.34 (15)
C25—O4—C28117.97 (15)C5—C6—H6119.8
C11—C10—C9121.17 (16)C7—C6—H6119.8
C11—C10—H10119.4O2—N2—O3122.85 (17)
C9—C10—H10119.4O2—N2—C12119.12 (18)
C5—C4—C15110.34 (14)O3—N2—C12118.03 (17)
C5—C4—C3111.94 (14)C26—C27—C22121.97 (17)
C15—C4—C3114.83 (13)C26—C27—H27119.0
C5—C4—H4106.4C22—C27—H27119.0
C15—C4—H4106.4C23—C24—C25120.09 (17)
C3—C4—H4106.4C23—C24—H24120.0
C3—C2—C1122.36 (13)C25—C24—H24120.0
C3—C2—C7109.16 (13)C24—C23—C22121.43 (17)
C1—C2—C7101.14 (13)C24—C23—H23119.3
C3—C2—H2107.8C22—C23—H23119.3
C1—C2—H2107.8N1—C8—C7100.71 (13)
C7—C2—H2107.8N1—C8—H8A111.6
C1—N1—C8113.54 (14)C7—C8—H8A111.6
C1—N1—C21123.90 (15)N1—C8—H8B111.6
C8—N1—C21121.57 (14)C7—C8—H8B111.6
C12—C13—C14118.76 (16)H8A—C8—H8B109.4
C12—C13—H13120.6C19—C20—C15121.2 (2)
C14—C13—H13120.6C19—C20—H20119.4
C13—C14—C9121.40 (16)C15—C20—H20119.4
C13—C14—H14119.3N1—C21—C22110.87 (15)
C9—C14—H14119.3N1—C21—H21A109.5
O4—C25—C26124.70 (17)C22—C21—H21A109.5
O4—C25—C24115.44 (16)N1—C21—H21B109.5
C26—C25—C24119.85 (17)C22—C21—H21B109.5
C12—C11—C10118.70 (16)H21A—C21—H21B108.1
C12—C11—H11120.7C17—C16—C15120.9 (2)
C10—C11—H11120.7C17—C16—H16119.5
C13—C12—C11121.85 (15)C15—C16—H16119.5
C13—C12—N2118.85 (16)O4—C28—H28A109.5
C11—C12—N2119.30 (16)O4—C28—H28B109.5
C16—C15—C20117.41 (18)H28A—C28—H28B109.5
C16—C15—C4120.60 (17)O4—C28—H28C109.5
C20—C15—C4121.99 (16)H28A—C28—H28C109.5
O1—C1—N1125.80 (17)H28B—C28—H28C109.5
O1—C1—C2128.05 (15)C18—C19—C20120.5 (2)
N1—C1—C2106.10 (13)C18—C19—H19119.8
C25—C26—C27119.10 (17)C20—C19—H19119.8
C25—C26—H26120.5C18—C17—C16120.5 (2)
C27—C26—H26120.5C18—C17—H17119.7
C6—C5—C4125.40 (16)C16—C17—H17119.7
C6—C5—H5117.3C19—C18—C17119.5 (2)
C4—C5—H5117.3C19—C18—H18120.2
C6—C7—C8122.74 (15)C17—C18—H18120.2
C2—C3—C9—C10132.93 (17)C15—C4—C5—C6117.7 (2)
C4—C3—C9—C10102.00 (18)C3—C4—C5—C611.5 (2)
C2—C3—C9—C1447.7 (2)C3—C2—C7—C657.77 (18)
C4—C3—C9—C1477.3 (2)C1—C2—C7—C6172.00 (14)
C14—C9—C10—C111.3 (3)C3—C2—C7—C8169.81 (14)
C3—C9—C10—C11178.11 (17)C1—C2—C7—C839.58 (16)
C9—C3—C4—C5171.91 (14)C4—C5—C6—C73.0 (3)
C2—C3—C4—C541.60 (17)C8—C7—C6—C5146.39 (18)
C9—C3—C4—C1545.10 (19)C2—C7—C6—C525.6 (2)
C2—C3—C4—C1585.20 (16)C13—C12—N2—O2174.7 (2)
C9—C3—C2—C149.5 (2)C11—C12—N2—O25.7 (3)
C4—C3—C2—C1177.21 (13)C13—C12—N2—O34.9 (3)
C9—C3—C2—C7167.06 (14)C11—C12—N2—O3174.6 (2)
C4—C3—C2—C765.26 (16)C25—C26—C27—C220.5 (3)
C12—C13—C14—C90.2 (3)C23—C22—C27—C260.3 (3)
C10—C9—C14—C130.7 (3)C21—C22—C27—C26175.68 (18)
C3—C9—C14—C13178.63 (16)O4—C25—C24—C23179.69 (18)
C28—O4—C25—C267.7 (3)C26—C25—C24—C230.3 (3)
C28—O4—C25—C24172.98 (18)C25—C24—C23—C220.6 (3)
C9—C10—C11—C121.2 (3)C27—C22—C23—C240.8 (3)
C14—C13—C12—C110.1 (3)C21—C22—C23—C24175.12 (18)
C14—C13—C12—N2179.39 (17)C1—N1—C8—C720.81 (19)
C10—C11—C12—C130.7 (3)C21—N1—C8—C7148.23 (16)
C10—C11—C12—N2178.85 (17)C6—C7—C8—N1161.81 (15)
C5—C4—C15—C16137.20 (17)C2—C7—C8—N136.61 (16)
C3—C4—C15—C1695.2 (2)C16—C15—C20—C191.0 (3)
C5—C4—C15—C2042.9 (2)C4—C15—C20—C19178.91 (16)
C3—C4—C15—C2084.73 (19)C1—N1—C21—C22104.26 (19)
C8—N1—C1—O1177.63 (17)C8—N1—C21—C2263.6 (2)
C21—N1—C1—O18.9 (3)C23—C22—C21—N196.9 (2)
C8—N1—C1—C24.52 (19)C27—C22—C21—N179.0 (2)
C21—N1—C1—C2173.27 (15)C20—C15—C16—C170.5 (3)
C3—C2—C1—O133.0 (3)C4—C15—C16—C17179.46 (18)
C7—C2—C1—O1154.41 (18)C15—C20—C19—C181.0 (3)
C3—C2—C1—N1149.18 (14)C15—C16—C17—C180.2 (4)
C7—C2—C1—N127.81 (16)C20—C19—C18—C170.3 (4)
O4—C25—C26—C27179.84 (19)C16—C17—C18—C190.2 (4)
C24—C25—C26—C270.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.633.239 (2)122
C28—H28A···O1ii0.962.553.242 (2)129
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC28H26N2O4
Mr454.51
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.4369 (4), 12.2662 (7), 18.149 (1)
α, β, γ (°)79.633 (1), 84.036 (2), 80.325 (2)
V3)1170.25 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.31 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.967, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11469, 5285, 3402
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.01
No. of reflections5285
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.633.239 (2)121.5
C28—H28A···O1ii0.962.553.242 (2)129.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a research grant from the Natural Science Foundation of China (grant No. 20572092). Professor Wei-Min Dai is thanked for his valuable suggestions on this work. Mr Jianming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structural analysis.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, R., Gu, Q., Zhu, W., Cui, C., Fan, G., Fang, Y., Zhu, T. & Liu, H. (2006). J. Nat. Prod. 69, 871–875.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, R., Lin, Z., Zhu, T., Fang, Y., Gu, Q. & Zhu, W. (2008). J. Nat. Prod. 71, 1127–1132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalling, E. A., Drafft, G. A. & Ware, B. R. (1988). Arch. Biochem. Biophys. 264, 321–332.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862–2866.  Google Scholar
First citationWu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360–8372.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543–6547.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Zhao, J. & Dai, W.-M. (2009). CN Patent Appl. CN 200910100757.7.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds