organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Isopropenyl-1H-1,3-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 April 2010; accepted 14 May 2010; online 22 May 2010)

In the title N-substituted benzimidazol-2-one, C10H10N2O, the fused ring system is almost planar (r.m.s. deviation = 0.01 Å) and aligned at 57.9 (1)° with respect to the propenyl fragment. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the transformation of 1-isopropenyl-1,3-benzimidazol-2-one to other biologically-active compounds, see: Lakhrissi et al. (2010[Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupeŕe, D., Wadouachi, A. & Martin, P. (2010). Carbohydr. Res. 343, 421-433.]); Li et al. (2010[Li, S.-K., Ji, Z.-Q., Zhang, J.-W., Guo, Z.-Y. & Wu, W.-J. (2010). J. Agric. Food Chem. 58, 2668-2672.]). A shorter heating time in the synthesis leads to the formation of 4-methyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one; see: Saber et al. (2010[Saber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1408.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O

  • Mr = 174.20

  • Monoclinic, C 2/c

  • a = 15.8724 (2) Å

  • b = 6.0971 (1) Å

  • c = 17.9313 (3) Å

  • β = 90.961 (2)°

  • V = 1735.07 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.18 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 13930 measured reflections

  • 2506 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 0.98

  • 2506 reflections

  • 123 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 1.95 (1) 2.811 (1) 172 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Benzimidazol-2-one derivatives possess a range of biological and pharmacological activities. Among the many compounds is N-isopropenyl benzimidazol-2-one, which can be further converted to 1-acyl-3-isopropenyl benzimidazol-2-ones that are active against Botrytis cinerea fungi that affect vegetables and fruits (Li et al. 2010). The reagent is also commercially available. We have recently reported the use of this reagent in the synthesis of some glucose-substituted benzimidazol-2-ones (Lakhrissi et al., 2010). For the purpose of understanding the chemistry of these compounds, the crystal structure of the reagent is determined in the present study.

In the molecule of C10H10N2O (Scheme I, Fig. 1), the fused-ring is planar (r.m.s. deviation 0.01 Å); the propenyl fragment is aligned at 57.9 (1) ° with respect to the fused-ring. Adjacent molecules are linked about a center-of-inversion by an N–H···O hydrogen bond.

Related literature top

For the transformation of 1-isopropenyl-1,3-benzimidazol-2-one to other biologically-active compounds, see: Lakhrissi et al. (2010); Li et al. (2010). A shorter heating time in the synthesis leads to the formation of 4-methyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one; see: Saber et al. (2010).

Experimental top

o-Phenylenediamine (1.0 g, 9 mmol) and ethyl acetoacetate (1.2 ml, 9 mmol) were heated in xylene (10 ml) for 6 hours. The mixture was set aside for the growth of colorless crystals of N-isopropenyl benzimidazol-2-one; yield 90%. When the heating time is shortened to 1 hour, the product is 4-methyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one; details are given in another report (Saber et al., 2010).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The amino H-atom was located in a difference Fourier map; the N–H distance was restrained to 0.86±0.01 Å. T; the temperature factor of the amino hydrogen atom was freely refined.

Structure description top

Benzimidazol-2-one derivatives possess a range of biological and pharmacological activities. Among the many compounds is N-isopropenyl benzimidazol-2-one, which can be further converted to 1-acyl-3-isopropenyl benzimidazol-2-ones that are active against Botrytis cinerea fungi that affect vegetables and fruits (Li et al. 2010). The reagent is also commercially available. We have recently reported the use of this reagent in the synthesis of some glucose-substituted benzimidazol-2-ones (Lakhrissi et al., 2010). For the purpose of understanding the chemistry of these compounds, the crystal structure of the reagent is determined in the present study.

In the molecule of C10H10N2O (Scheme I, Fig. 1), the fused-ring is planar (r.m.s. deviation 0.01 Å); the propenyl fragment is aligned at 57.9 (1) ° with respect to the fused-ring. Adjacent molecules are linked about a center-of-inversion by an N–H···O hydrogen bond.

For the transformation of 1-isopropenyl-1,3-benzimidazol-2-one to other biologically-active compounds, see: Lakhrissi et al. (2010); Li et al. (2010). A shorter heating time in the synthesis leads to the formation of 4-methyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one; see: Saber et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of C10H10N2O at the 70% probability level shown as a hydrogen-bonded dimer; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = 1 - x, 1 - y, 1 - z.
1-Isopropenyl-1H-1,3-benzimidazol-2(3H)-one top
Crystal data top
C10H10N2OF(000) = 736
Mr = 174.20Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8296 reflections
a = 15.8724 (2) Åθ = 2.3–35.0°
b = 6.0971 (1) ŵ = 0.09 mm1
c = 17.9313 (3) ÅT = 100 K
β = 90.961 (2)°Block, colorless
V = 1735.07 (5) Å30.35 × 0.30 × 0.18 mm
Z = 8
Data collection top
Bruker X8 APEXII
diffractometer
2231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 3.4°
φ and ω scansh = 2121
13930 measured reflectionsk = 88
2506 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.9009P]
where P = (Fo2 + 2Fc2)/3
2506 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C10H10N2OV = 1735.07 (5) Å3
Mr = 174.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.8724 (2) ŵ = 0.09 mm1
b = 6.0971 (1) ÅT = 100 K
c = 17.9313 (3) Å0.35 × 0.30 × 0.18 mm
β = 90.961 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
2231 reflections with I > 2σ(I)
13930 measured reflectionsRint = 0.023
2506 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.39 e Å3
2506 reflectionsΔρmin = 0.21 e Å3
123 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58630 (4)0.41270 (11)0.43646 (4)0.02815 (17)
N10.45280 (5)0.26700 (13)0.45678 (4)0.02451 (18)
H10.4355 (10)0.366 (2)0.4880 (7)0.048 (4)*
N20.53743 (5)0.08911 (12)0.38109 (4)0.02211 (17)
C10.40921 (5)0.08279 (14)0.43226 (5)0.02174 (18)
C20.32851 (6)0.00950 (17)0.44634 (5)0.0275 (2)
H20.29220.08830.47830.033*
C30.30248 (6)0.18432 (17)0.41176 (6)0.0296 (2)
H30.24730.23860.42010.036*
C40.35602 (6)0.29936 (17)0.36524 (6)0.0296 (2)
H40.33670.43140.34260.035*
C50.43747 (6)0.22577 (15)0.35092 (5)0.0259 (2)
H50.47400.30510.31930.031*
C60.46266 (5)0.03240 (14)0.38485 (4)0.02048 (18)
C70.53105 (6)0.27304 (14)0.42624 (5)0.02226 (18)
C80.60775 (5)0.04385 (15)0.33453 (5)0.02371 (19)
C90.64627 (6)0.14799 (17)0.33983 (6)0.0338 (2)
H9A0.62720.25450.37430.041*
H9B0.69300.17930.30910.041*
C100.62872 (7)0.21916 (17)0.27950 (6)0.0327 (2)
H10A0.67430.16820.24760.049*
H10B0.64690.35170.30620.049*
H10C0.57880.25240.24870.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (3)0.0240 (3)0.0338 (4)0.0062 (2)0.0053 (3)0.0065 (3)
N10.0231 (4)0.0223 (4)0.0284 (4)0.0013 (3)0.0057 (3)0.0049 (3)
N20.0214 (4)0.0209 (3)0.0242 (3)0.0038 (3)0.0054 (3)0.0036 (3)
C10.0218 (4)0.0219 (4)0.0216 (4)0.0003 (3)0.0012 (3)0.0005 (3)
C20.0215 (4)0.0315 (5)0.0298 (4)0.0009 (3)0.0044 (3)0.0010 (3)
C30.0222 (4)0.0350 (5)0.0316 (5)0.0075 (3)0.0017 (3)0.0001 (4)
C40.0282 (5)0.0304 (5)0.0302 (4)0.0090 (4)0.0004 (3)0.0036 (4)
C50.0265 (4)0.0258 (4)0.0255 (4)0.0044 (3)0.0034 (3)0.0044 (3)
C60.0199 (4)0.0216 (4)0.0200 (4)0.0022 (3)0.0016 (3)0.0008 (3)
C70.0234 (4)0.0204 (4)0.0230 (4)0.0008 (3)0.0027 (3)0.0013 (3)
C80.0215 (4)0.0263 (4)0.0235 (4)0.0056 (3)0.0057 (3)0.0045 (3)
C90.0292 (5)0.0292 (5)0.0433 (6)0.0002 (4)0.0114 (4)0.0055 (4)
C100.0352 (5)0.0346 (5)0.0287 (5)0.0088 (4)0.0090 (4)0.0014 (4)
Geometric parameters (Å, º) top
O1—C71.2338 (11)C3—H30.9500
N1—C71.3663 (11)C4—C51.3963 (13)
N1—C11.3868 (11)C4—H40.9500
N1—H10.871 (9)C5—C61.3827 (12)
N2—C71.3878 (11)C5—H50.9500
N2—C61.4016 (10)C8—C91.3225 (14)
N2—C81.4319 (11)C8—C101.4960 (13)
C1—C21.3839 (12)C9—H9A0.9500
C1—C61.3999 (11)C9—H9B0.9500
C2—C31.3939 (14)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C3—C41.3907 (14)C10—H10C0.9800
C7—N1—C1110.29 (7)C4—C5—H5121.5
C7—N1—H1122.5 (11)C5—C6—C1121.42 (8)
C1—N1—H1127.2 (11)C5—C6—N2131.94 (8)
C7—N2—C6109.21 (7)C1—C6—N2106.63 (7)
C7—N2—C8124.13 (7)O1—C7—N1127.42 (8)
C6—N2—C8126.52 (7)O1—C7—N2125.86 (8)
C2—C1—N1131.46 (8)N1—C7—N2106.72 (7)
C2—C1—C6121.39 (8)C9—C8—N2119.50 (8)
N1—C1—C6107.14 (7)C9—C8—C10124.87 (9)
C1—C2—C3117.45 (9)N2—C8—C10115.54 (8)
C1—C2—H2121.3C8—C9—H9A120.0
C3—C2—H2121.3C8—C9—H9B120.0
C4—C3—C2120.99 (9)H9A—C9—H9B120.0
C4—C3—H3119.5C8—C10—H10A109.5
C2—C3—H3119.5C8—C10—H10B109.5
C3—C4—C5121.69 (9)H10A—C10—H10B109.5
C3—C4—H4119.2C8—C10—H10C109.5
C5—C4—H4119.2H10A—C10—H10C109.5
C6—C5—C4117.05 (9)H10B—C10—H10C109.5
C6—C5—H5121.5
C7—N1—C1—C2178.46 (10)C8—N2—C6—C54.24 (15)
C7—N1—C1—C60.49 (10)C7—N2—C6—C11.11 (10)
N1—C1—C2—C3179.14 (9)C8—N2—C6—C1174.64 (8)
C6—C1—C2—C30.31 (14)C1—N1—C7—O1179.45 (9)
C1—C2—C3—C40.29 (15)C1—N1—C7—N20.19 (10)
C2—C3—C4—C50.32 (16)C6—N2—C7—O1178.83 (9)
C3—C4—C5—C60.25 (15)C8—N2—C7—O15.29 (15)
C4—C5—C6—C10.85 (13)C6—N2—C7—N10.81 (10)
C4—C5—C6—N2177.89 (9)C8—N2—C7—N1175.06 (8)
C2—C1—C6—C50.91 (13)C7—N2—C8—C9127.09 (10)
N1—C1—C6—C5179.99 (8)C6—N2—C8—C957.76 (13)
C2—C1—C6—N2178.11 (8)C7—N2—C8—C1056.22 (12)
N1—C1—C6—N20.97 (9)C6—N2—C8—C10118.93 (9)
C7—N2—C6—C5179.99 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)1.95 (1)2.811 (1)172 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2O
Mr174.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.8724 (2), 6.0971 (1), 17.9313 (3)
β (°) 90.961 (2)
V3)1735.07 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.18
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13930, 2506, 2231
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 0.98
No. of reflections2506
No. of parameters123
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)1.947 (9)2.811 (1)171.6 (15)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupeŕe, D., Wadouachi, A. & Martin, P. (2010). Carbohydr. Res. 343, 421–433.  Web of Science CrossRef Google Scholar
First citationLi, S.-K., Ji, Z.-Q., Zhang, J.-W., Guo, Z.-Y. & Wu, W.-J. (2010). J. Agric. Food Chem. 58, 2668–2672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds