organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Methyl­phen­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 13 April 2010; accepted 4 May 2010; online 12 May 2010)

In the crystal structure of the title compound, C22H18NO2+·CF3SO3, adjacent cations are linked through C—H⋯π and ππ inter­actions, and the cations and anions are connected by C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 3.0 (1)°. The carboxyl group is twisted at an angle of 83.1 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or inclined at an angle of 75.2 (1)° in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulf­onates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2006[Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822-o824.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2006[Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822-o824.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18NO2+·CF3O3S

  • Mr = 477.45

  • Monoclinic, P 21 /n

  • a = 13.2686 (6) Å

  • b = 8.4788 (4) Å

  • c = 20.4078 (10) Å

  • β = 106.749 (5)°

  • V = 2198.51 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.50 × 0.40 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.869, Tmax = 1.000

  • 12172 measured reflections

  • 3892 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.137

  • S = 0.95

  • 3892 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O27i 0.93 2.57 3.314 (5) 137
C4—H4⋯O29i 0.93 2.44 3.319 (4) 159
C5—H5⋯O28 0.93 2.44 3.364 (5) 171
C6—H6⋯O28ii 0.93 2.56 3.342 (5) 142
C23—H23⋯O27iii 0.93 2.53 3.448 (4) 169
C25—H25A⋯O29 0.96 2.56 3.415 (5) 149
C25—H25BCg4iv 0.96 2.62 3.487 (4) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.

Table 2
C–F⋯π inter­actions (Å,°)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

X I J IJ XJ XIJ
C30 F31 Cg2i 3.420 (3) 4.044 (4) 108.9 (2)
C30 F32 Cg1i 3.441 (3) 4.032 (4) 107.1 (2)
C30 F32 Cg2i 3.788 (4) 4.044 (4) 91.5 (2)
C30 F33 Cg1i 3.669 (3) 4.032 (4) 96.2 (2)
Symmetry code: (i) [-x+{3\over 2}, y+{1\over 2}, -z+{1\over 2}].

Table 3
ππ inter­actions (Å,°)

Cg3 and Cg4 are the centroids of the C5–C8/C13/C14 and C18–C23 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
3 4v 3.913 (2) 4.80 (17) 3.472 (2) 1.805 (2)
4 3v 3.913 (2) 4.80 (17) 3.565 (2) 1.613 (2)
Symmetry code: (v) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-(Phenoxycarbonyl)-10-methylacridinium salts appear to be convenient chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001), which are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). Oxidation of the cations of these salts with hydrogen peroxide in alkaline media is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecule to electronically excited, light emitting 10-methyl-9-acridinone (Rak et al., 1999; Zomer & Jacquemijns, 2001). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to undertake investigations on derivatives substituted in this fragment. Here we present the structure of 9-(4-methylphenoxy)carbonyl-10-methylacridinium trifluoromethanesulfonate, a structural isomer of the 2-methyl substituted salt, whose structure has already been refined (Sikorski et al., 2006).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0386 (3) Å and 0.0017 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 3.0 (1)°. The carboxyl group is twisted at an angle of 83.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 75.2 (1)° in the lattice.

In the crystal structure, the adjacent cations are linked through C–H···π (Table 1, Fig. 2) and ππ (involving acridine and phenyl moieties) (Table 3, Fig. 2) interactions, and cations and anions are connected by multidirectional C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2006); Trzybiński et al. (2010).

Experimental top

The compound was synthesized as described elsewhere (Sikorski et al., 2006; Trzybiński et al., 2010), i.e., 9-(chlorocarbonyl)acridine obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride was esterified with 4-methylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product – 4-methylphenyl acridine-9-carboxylate, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v) – was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-methylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 25 v/v excess of diethyl ether. Light-orange crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 445 - 447 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Structure description top

9-(Phenoxycarbonyl)-10-methylacridinium salts appear to be convenient chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001), which are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). Oxidation of the cations of these salts with hydrogen peroxide in alkaline media is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecule to electronically excited, light emitting 10-methyl-9-acridinone (Rak et al., 1999; Zomer & Jacquemijns, 2001). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to undertake investigations on derivatives substituted in this fragment. Here we present the structure of 9-(4-methylphenoxy)carbonyl-10-methylacridinium trifluoromethanesulfonate, a structural isomer of the 2-methyl substituted salt, whose structure has already been refined (Sikorski et al., 2006).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0386 (3) Å and 0.0017 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 3.0 (1)°. The carboxyl group is twisted at an angle of 83.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 75.2 (1)° in the lattice.

In the crystal structure, the adjacent cations are linked through C–H···π (Table 1, Fig. 2) and ππ (involving acridine and phenyl moieties) (Table 3, Fig. 2) interactions, and cations and anions are connected by multidirectional C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2006); Trzybiński et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 3/2, y + 1/2, –z + 1/2; (ii) –x + 2, –y + 1, –z + 1; (iii) x – 1, y, z; (iv) –x + 1, –y + 1, –z + 1; (v) –x + 1, –y, –z + 1.]
9-(4-Methylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C22H18NO2+·CF3O3SF(000) = 984
Mr = 477.45Dx = 1.442 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3355 reflections
a = 13.2686 (6) Åθ = 3.1–29.2°
b = 8.4788 (4) ŵ = 0.21 mm1
c = 20.4078 (10) ÅT = 295 K
β = 106.749 (5)°Plate, light-orange
V = 2198.51 (19) Å30.50 × 0.40 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3892 independent reflections
Radiation source: enhanced (Mo) X-Ray Source2096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1010
Tmin = 0.869, Tmax = 1.000l = 2424
12172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
3892 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H18NO2+·CF3O3SV = 2198.51 (19) Å3
Mr = 477.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2686 (6) ŵ = 0.21 mm1
b = 8.4788 (4) ÅT = 295 K
c = 20.4078 (10) Å0.50 × 0.40 × 0.10 mm
β = 106.749 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3892 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2096 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 1.000Rint = 0.061
12172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.95Δρmax = 0.23 e Å3
3892 reflectionsΔρmin = 0.19 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3367 (3)0.4502 (4)0.3326 (2)0.0699 (10)
H10.28980.40020.35190.084*
C20.2997 (3)0.5409 (5)0.2766 (2)0.0918 (13)
H20.22760.55020.25630.110*
C30.3705 (3)0.6211 (5)0.2491 (2)0.0957 (14)
H30.34410.68540.21110.115*
C40.4760 (3)0.6083 (4)0.2759 (2)0.0691 (10)
H40.52080.66340.25650.083*
C50.7739 (3)0.3924 (4)0.44967 (19)0.0631 (9)
H50.82030.44330.43020.076*
C60.8115 (3)0.3064 (5)0.5083 (2)0.0735 (10)
H60.88380.30130.52870.088*
C70.7440 (3)0.2253 (5)0.5386 (2)0.0766 (11)
H70.77130.16670.57830.092*
C80.6389 (3)0.2334 (4)0.50934 (18)0.0639 (10)
H80.59440.17860.52910.077*
C90.4876 (3)0.3337 (4)0.41922 (16)0.0479 (8)
N100.62352 (19)0.4910 (3)0.36094 (13)0.0486 (7)
C110.4461 (2)0.4303 (4)0.36217 (16)0.0498 (8)
C120.5177 (2)0.5109 (4)0.33342 (16)0.0495 (8)
C130.5948 (3)0.3229 (4)0.44951 (16)0.0507 (8)
C140.6651 (2)0.4037 (4)0.41908 (16)0.0473 (8)
C150.4137 (3)0.2312 (4)0.44360 (17)0.0548 (9)
O160.38896 (18)0.2932 (3)0.49667 (12)0.0648 (7)
O170.3828 (2)0.1080 (3)0.41764 (13)0.0858 (9)
C180.3185 (3)0.2065 (4)0.52390 (16)0.0500 (8)
C190.3597 (3)0.1129 (4)0.57992 (17)0.0609 (9)
H190.43210.09970.59780.073*
C200.2903 (3)0.0381 (4)0.60930 (17)0.0652 (10)
H200.31700.02620.64730.078*
C210.1839 (3)0.0565 (4)0.58395 (19)0.0647 (10)
C220.1461 (3)0.1515 (5)0.52795 (19)0.0671 (10)
H220.07390.16550.51020.081*
C230.2132 (3)0.2273 (4)0.49707 (17)0.0593 (9)
H230.18660.29080.45890.071*
C240.1088 (4)0.0241 (5)0.6176 (2)0.1041 (15)
H24A0.04280.03090.60550.156*
H24B0.13870.02250.66640.156*
H24C0.09780.13130.60210.156*
C250.6972 (3)0.5623 (4)0.32692 (17)0.0655 (10)
H25A0.75830.49640.33430.098*
H25B0.71800.66500.34580.098*
H25C0.66320.57150.27870.098*
S260.98783 (7)0.47984 (11)0.33273 (4)0.0560 (3)
O271.09157 (18)0.4193 (3)0.34606 (12)0.0801 (8)
O280.96339 (18)0.5485 (3)0.39004 (12)0.0844 (8)
O290.90554 (18)0.3856 (3)0.28984 (12)0.0688 (7)
C300.9911 (3)0.6484 (5)0.2789 (2)0.0737 (11)
F311.0614 (2)0.7536 (3)0.31098 (15)0.1247 (10)
F321.0156 (2)0.6073 (4)0.22295 (13)0.1123 (9)
F330.8988 (2)0.7204 (3)0.25876 (13)0.1117 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.061 (2)0.098 (3)0.003 (2)0.033 (2)0.014 (2)
C20.050 (2)0.096 (3)0.131 (4)0.012 (2)0.029 (2)0.033 (3)
C30.078 (3)0.090 (3)0.117 (3)0.012 (3)0.027 (3)0.046 (3)
C40.056 (2)0.060 (2)0.098 (3)0.0012 (19)0.032 (2)0.019 (2)
C50.060 (2)0.052 (2)0.079 (3)0.0077 (19)0.022 (2)0.011 (2)
C60.061 (2)0.063 (3)0.085 (3)0.001 (2)0.003 (2)0.010 (2)
C70.086 (3)0.063 (3)0.073 (3)0.001 (2)0.011 (2)0.004 (2)
C80.071 (3)0.054 (2)0.067 (2)0.008 (2)0.020 (2)0.003 (2)
C90.058 (2)0.0330 (18)0.060 (2)0.0060 (16)0.0285 (18)0.0113 (17)
N100.0474 (17)0.0375 (15)0.0676 (17)0.0061 (13)0.0274 (14)0.0070 (14)
C110.048 (2)0.0370 (18)0.071 (2)0.0068 (16)0.0289 (18)0.0049 (18)
C120.052 (2)0.0331 (19)0.067 (2)0.0010 (16)0.0229 (17)0.0037 (17)
C130.063 (2)0.0320 (18)0.060 (2)0.0040 (17)0.0225 (18)0.0059 (16)
C140.046 (2)0.0351 (18)0.063 (2)0.0052 (15)0.0203 (17)0.0105 (17)
C150.068 (2)0.040 (2)0.066 (2)0.0062 (18)0.0334 (19)0.0037 (18)
O160.0833 (17)0.0462 (14)0.0804 (16)0.0143 (13)0.0485 (14)0.0130 (12)
O170.122 (2)0.0581 (17)0.1013 (19)0.0380 (16)0.0701 (18)0.0252 (16)
C180.066 (2)0.0374 (19)0.054 (2)0.0074 (18)0.0285 (19)0.0066 (17)
C190.061 (2)0.057 (2)0.066 (2)0.0032 (19)0.0198 (19)0.008 (2)
C200.091 (3)0.054 (2)0.0529 (19)0.004 (2)0.024 (2)0.0038 (18)
C210.074 (3)0.068 (3)0.060 (2)0.014 (2)0.032 (2)0.014 (2)
C220.061 (2)0.078 (3)0.068 (2)0.001 (2)0.027 (2)0.004 (2)
C230.072 (3)0.055 (2)0.053 (2)0.002 (2)0.0214 (19)0.0023 (17)
C240.141 (4)0.097 (3)0.099 (3)0.038 (3)0.074 (3)0.008 (3)
C250.058 (2)0.068 (2)0.079 (2)0.0098 (19)0.0331 (19)0.0052 (19)
S260.0511 (5)0.0592 (6)0.0605 (5)0.0019 (5)0.0208 (4)0.0024 (5)
O270.0581 (15)0.0891 (19)0.0933 (18)0.0225 (14)0.0221 (13)0.0194 (15)
O280.0716 (16)0.118 (2)0.0732 (16)0.0188 (16)0.0366 (14)0.0244 (15)
O290.0627 (15)0.0584 (15)0.0878 (17)0.0099 (12)0.0258 (13)0.0128 (13)
C300.062 (3)0.066 (3)0.087 (3)0.012 (2)0.011 (2)0.000 (2)
F310.122 (2)0.0878 (19)0.140 (2)0.0465 (17)0.0005 (17)0.0175 (16)
F320.114 (2)0.147 (2)0.0809 (15)0.0172 (17)0.0356 (14)0.0272 (16)
F330.0992 (18)0.0718 (16)0.142 (2)0.0200 (15)0.0010 (16)0.0185 (15)
Geometric parameters (Å, º) top
C1—C21.347 (5)C15—O161.327 (4)
C1—C111.412 (4)O16—C181.421 (3)
C1—H10.9300C18—C231.357 (4)
C2—C31.401 (5)C18—C191.370 (4)
C2—H20.9300C19—C201.388 (5)
C3—C41.352 (5)C19—H190.9300
C3—H30.9300C20—C211.366 (5)
C4—C121.411 (5)C20—H200.9300
C4—H40.9300C21—C221.369 (5)
C5—C61.366 (5)C21—C241.524 (5)
C5—C141.401 (4)C22—C231.388 (4)
C5—H50.9300C22—H220.9300
C6—C71.406 (5)C23—H230.9300
C6—H60.9300C24—H24A0.9600
C7—C81.351 (5)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—C131.413 (4)C25—H25A0.9600
C8—H80.9300C25—H25B0.9600
C9—C131.381 (4)C25—H25C0.9600
C9—C111.400 (4)S26—O271.420 (2)
C9—C151.499 (4)S26—O281.425 (2)
N10—C121.364 (4)S26—O291.430 (2)
N10—C141.372 (4)S26—C301.811 (4)
N10—C251.481 (4)C30—F321.321 (4)
C11—C121.427 (4)C30—F311.321 (4)
C13—C141.434 (4)C30—F331.324 (4)
C15—O171.189 (4)
C2—C1—C11120.7 (3)O16—C15—C9112.4 (3)
C2—C1—H1119.7C15—O16—C18117.3 (2)
C11—C1—H1119.7C23—C18—C19121.9 (3)
C1—C2—C3119.5 (4)C23—C18—O16119.4 (3)
C1—C2—H2120.2C19—C18—O16118.5 (3)
C3—C2—H2120.2C18—C19—C20118.1 (3)
C4—C3—C2122.3 (4)C18—C19—H19121.0
C4—C3—H3118.9C20—C19—H19121.0
C2—C3—H3118.9C21—C20—C19121.8 (3)
C3—C4—C12119.7 (3)C21—C20—H20119.1
C3—C4—H4120.1C19—C20—H20119.1
C12—C4—H4120.1C20—C21—C22118.2 (3)
C6—C5—C14119.7 (3)C20—C21—C24121.1 (4)
C6—C5—H5120.1C22—C21—C24120.7 (4)
C14—C5—H5120.1C21—C22—C23121.5 (3)
C5—C6—C7121.8 (4)C21—C22—H22119.2
C5—C6—H6119.1C23—C22—H22119.2
C7—C6—H6119.1C18—C23—C22118.5 (3)
C8—C7—C6119.2 (4)C18—C23—H23120.7
C8—C7—H7120.4C22—C23—H23120.7
C6—C7—H7120.4C21—C24—H24A109.5
C7—C8—C13121.7 (3)C21—C24—H24B109.5
C7—C8—H8119.1H24A—C24—H24B109.5
C13—C8—H8119.1C21—C24—H24C109.5
C13—C9—C11121.2 (3)H24A—C24—H24C109.5
C13—C9—C15120.1 (3)H24B—C24—H24C109.5
C11—C9—C15118.5 (3)N10—C25—H25A109.4
C12—N10—C14122.2 (2)N10—C25—H25B109.5
C12—N10—C25119.8 (3)H25A—C25—H25B109.5
C14—N10—C25118.0 (3)N10—C25—H25C109.6
C9—C11—C1122.4 (3)H25A—C25—H25C109.5
C9—C11—C12118.2 (3)H25B—C25—H25C109.5
C1—C11—C12119.4 (3)O27—S26—O28115.33 (16)
N10—C12—C4121.7 (3)O27—S26—O29116.23 (16)
N10—C12—C11120.0 (3)O28—S26—O29114.60 (14)
C4—C12—C11118.3 (3)O27—S26—C30102.13 (17)
C9—C13—C8122.6 (3)O28—S26—C30103.11 (19)
C9—C13—C14119.3 (3)O29—S26—C30102.54 (16)
C8—C13—C14118.2 (3)F32—C30—F31107.0 (3)
N10—C14—C5121.9 (3)F32—C30—F33106.9 (3)
N10—C14—C13118.9 (3)F31—C30—F33107.5 (3)
C5—C14—C13119.3 (3)F32—C30—S26111.8 (3)
O17—C15—O16125.2 (3)F31—C30—S26111.7 (3)
O17—C15—C9122.4 (3)F33—C30—S26111.7 (3)
C11—C1—C2—C32.5 (6)C6—C5—C14—C130.7 (5)
C1—C2—C3—C41.5 (7)C9—C13—C14—N100.7 (4)
C2—C3—C4—C120.2 (6)C8—C13—C14—N10180.0 (3)
C14—C5—C6—C71.3 (5)C9—C13—C14—C5179.8 (3)
C5—C6—C7—C80.5 (5)C8—C13—C14—C50.5 (4)
C6—C7—C8—C130.8 (5)C13—C9—C15—O1794.0 (4)
C13—C9—C11—C1176.4 (3)C11—C9—C15—O1781.1 (4)
C15—C9—C11—C18.5 (4)C13—C9—C15—O1685.3 (3)
C13—C9—C11—C123.6 (4)C11—C9—C15—O1699.6 (3)
C15—C9—C11—C12171.5 (3)O17—C15—O16—C181.1 (5)
C2—C1—C11—C9178.2 (3)C9—C15—O16—C18179.6 (3)
C2—C1—C11—C121.8 (5)C15—O16—C18—C2387.3 (4)
C14—N10—C12—C4176.3 (3)C15—O16—C18—C1997.4 (3)
C25—N10—C12—C45.0 (4)C23—C18—C19—C200.0 (5)
C14—N10—C12—C114.6 (4)O16—C18—C19—C20175.2 (3)
C25—N10—C12—C11174.0 (3)C18—C19—C20—C210.3 (5)
C3—C4—C12—N10178.1 (3)C19—C20—C21—C220.1 (5)
C3—C4—C12—C110.9 (5)C19—C20—C21—C24178.9 (3)
C9—C11—C12—N100.9 (4)C20—C21—C22—C230.3 (5)
C1—C11—C12—N10179.1 (3)C24—C21—C22—C23179.3 (3)
C9—C11—C12—C4180.0 (3)C19—C18—C23—C220.4 (5)
C1—C11—C12—C40.0 (4)O16—C18—C23—C22174.8 (3)
C11—C9—C13—C8176.4 (3)C21—C22—C23—C180.5 (5)
C15—C9—C13—C88.6 (4)O27—S26—C30—F3258.5 (3)
C11—C9—C13—C144.4 (4)O28—S26—C30—F32178.4 (3)
C15—C9—C13—C14170.6 (3)O29—S26—C30—F3262.3 (3)
C7—C8—C13—C9179.4 (3)O27—S26—C30—F3161.3 (3)
C7—C8—C13—C141.3 (5)O28—S26—C30—F3158.6 (3)
C12—N10—C14—C5175.6 (3)O29—S26—C30—F31177.9 (3)
C25—N10—C14—C55.7 (4)O27—S26—C30—F33178.2 (3)
C12—N10—C14—C133.8 (4)O28—S26—C30—F3361.8 (3)
C25—N10—C14—C13174.8 (3)O29—S26—C30—F3357.5 (3)
C6—C5—C14—N10178.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O27i0.932.573.314 (5)137
C4—H4···O29i0.932.443.319 (4)159
C5—H5···O280.932.443.364 (5)171
C6—H6···O28ii0.932.563.342 (5)142
C23—H23···O27iii0.932.533.448 (4)169
C25—H25A···O290.962.563.415 (5)149
C25—H25B···Cg4iv0.962.623.487 (4)151
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H18NO2+·CF3O3S
Mr477.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)13.2686 (6), 8.4788 (4), 20.4078 (10)
β (°) 106.749 (5)
V3)2198.51 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.40 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.869, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12172, 3892, 2096
Rint0.061
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 0.95
No. of reflections3892
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), CrysAlis RED, SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O27i0.932.573.314 (5)137
C4—H4···O29i0.932.443.319 (4)159
C5—H5···O280.932.443.364 (5)171
C6—H6···O28ii0.932.563.342 (5)142
C23—H23···O27iii0.932.533.448 (4)169
C25—H25A···O290.962.563.415 (5)149
C25—H25B···Cg4iv0.962.623.487 (4)151
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1.
C–F···π interactions (Å,°). top
XIJI···JX···JXI···J
C30F31Cg2i3.420 (3)4.044 (4)108.9 (2)
C30F32Cg1i3.441 (3)4.032 (4)107.1 (2)
C30F32Cg2i3.788 (4)4.044 (4)91.5 (2)
C30F33Cg1i3.669 (3)4.032 (4)96.2 (2)
Symmetry code: (i) –x + 3/2, y + 1/2, –z + 1/2. Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
34v3.913 (2)4.80 (17)3.472 (2)1.805 (2)
43v3.913 (2)4.80 (17)3.565 (2)1.613 (2)
Symmetry code: (v) –x + 1, –y, –z + 1.

Notes: Cg3 and Cg4 are the centroids of the C5–C8/C13/C14 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822–o824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds