organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Methyl­phen­yl)succinimide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title compound, C11H11NO2, the dihedral angle between the ring planes is 52.5 (1)°.

Related literature

For related structures, see: Saraswathi et al. (2010a[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o390.],b[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o919.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO2

  • Mr = 189.21

  • Monoclinic, P 21 /n

  • a = 7.7906 (9) Å

  • b = 6.6015 (8) Å

  • c = 19.511 (2) Å

  • β = 100.06 (1)°

  • V = 988.02 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 299 K

  • 0.32 × 0.16 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.972, Tmax = 0.988

  • 3757 measured reflections

  • 2000 independent reflections

  • 1453 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.168

  • S = 1.18

  • 2000 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Saraswathi et al., 2010a,b), the crystal structure of N,N-(3-methylphenyl)succinimide has been determined (Fig.1). In the structure, the molecule is non-planar with the benzene and pyrrolidine rings tilted by 52.5 (1)° with respect to one another, compared to the values of 57.3 (1)° in N,N-(4-methylphenyl)succinimide (Saraswathi et al., 2010a) and 67.7 (1)° jn N,N- (2,3-dimethylphenyl)succinimide (Saraswathi et al., 2010b).

The torsional angles of the groups, C2 - C1 - N1 - C7, C6 - C1 - N1 - C7, C2 - C1 - N1 - C10 and C6 - C1 - N1 - C10 in the molecule are 52.6 (2), -127.0 (2), -123.4 (2) and 57.0 (2)°, respectively, while the torsional angles of the groups, O1 - C7 - N1 - C1, C8 - C7 - N1 - C1, O2 - C10 - N1 - C1 and C9 - C10 - N1 - C1 are 7.7 (3), -171.5 (2), -2.1 (3) and -178.6 (2)°, respectively.

The packing of molecules into layered row like chains along b-axis is shown in Fig.2.

Related literature top

For related structures, see: Saraswathi et al. (2010a,b).

Experimental top

The solution of succinic anhydride (0.02 mole) in toluene (25 ml) was treated dropwise with the solution of 3-methylaniline (0.02 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-methylaniline. The resultant solid N-(3-methylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

N-(3-methylphenyl)succinamic acid was heated for 2 h and then allowed to cool slowly to room temperature to get the compound, N-(3-methylphenyl)succinimide. The purity of the compound was checked and characterized by its infrared spectra.

Rod like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. Isotropic displacement parameters for the H atoms were set equal to 1.2 Ueq (parent atom).

Structure description top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Saraswathi et al., 2010a,b), the crystal structure of N,N-(3-methylphenyl)succinimide has been determined (Fig.1). In the structure, the molecule is non-planar with the benzene and pyrrolidine rings tilted by 52.5 (1)° with respect to one another, compared to the values of 57.3 (1)° in N,N-(4-methylphenyl)succinimide (Saraswathi et al., 2010a) and 67.7 (1)° jn N,N- (2,3-dimethylphenyl)succinimide (Saraswathi et al., 2010b).

The torsional angles of the groups, C2 - C1 - N1 - C7, C6 - C1 - N1 - C7, C2 - C1 - N1 - C10 and C6 - C1 - N1 - C10 in the molecule are 52.6 (2), -127.0 (2), -123.4 (2) and 57.0 (2)°, respectively, while the torsional angles of the groups, O1 - C7 - N1 - C1, C8 - C7 - N1 - C1, O2 - C10 - N1 - C1 and C9 - C10 - N1 - C1 are 7.7 (3), -171.5 (2), -2.1 (3) and -178.6 (2)°, respectively.

The packing of molecules into layered row like chains along b-axis is shown in Fig.2.

For related structures, see: Saraswathi et al. (2010a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound.
1-(3-Methylphenyl)pyrrolidine-2,5-dione top
Crystal data top
C11H11NO2F(000) = 400
Mr = 189.21Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1573 reflections
a = 7.7906 (9) Åθ = 2.6–27.7°
b = 6.6015 (8) ŵ = 0.09 mm1
c = 19.511 (2) ÅT = 299 K
β = 100.06 (1)°Rod, colourless
V = 988.02 (19) Å30.32 × 0.16 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2000 independent reflections
Radiation source: fine-focus sealed tube1453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.972, Tmax = 0.988k = 86
3757 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2000 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H11NO2V = 988.02 (19) Å3
Mr = 189.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7906 (9) ŵ = 0.09 mm1
b = 6.6015 (8) ÅT = 299 K
c = 19.511 (2) Å0.32 × 0.16 × 0.14 mm
β = 100.06 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2000 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1453 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.020
3757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.18Δρmax = 0.17 e Å3
2000 reflectionsΔρmin = 0.18 e Å3
128 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0804 (2)0.1090 (2)0.35080 (8)0.0418 (4)
C20.1645 (2)0.0080 (3)0.40538 (9)0.0477 (5)
H20.18950.14300.39770.057*
C30.2117 (2)0.0744 (3)0.47137 (10)0.0590 (5)
C40.1759 (3)0.2780 (4)0.48018 (12)0.0717 (7)
H40.20690.33640.52400.086*
C50.0957 (3)0.3947 (3)0.42550 (12)0.0699 (6)
H50.07440.53110.43250.084*
C60.0468 (3)0.3106 (3)0.36036 (10)0.0552 (5)
H60.00820.38920.32340.066*
C70.0722 (2)0.1600 (3)0.27360 (9)0.0505 (5)
C80.0778 (3)0.2276 (4)0.20019 (10)0.0679 (6)
H8A0.19690.25280.17750.081*
H8B0.01030.35050.19870.081*
C90.0004 (3)0.0551 (4)0.16546 (10)0.0710 (7)
H9A0.08940.10440.14050.085*
H9B0.08860.01430.13290.085*
C100.0783 (2)0.0839 (3)0.22331 (9)0.0570 (5)
C110.2939 (3)0.0550 (5)0.53171 (12)0.0857 (8)
H11A0.35880.16250.51510.103*
H11B0.20450.11140.55410.103*
H11C0.37090.02640.56440.103*
N10.02773 (18)0.0164 (2)0.28405 (7)0.0438 (4)
O10.1388 (2)0.2413 (2)0.31764 (8)0.0682 (5)
O20.1681 (2)0.2311 (3)0.22030 (8)0.0867 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (8)0.0435 (9)0.0422 (9)0.0036 (7)0.0142 (7)0.0011 (7)
C20.0468 (9)0.0519 (10)0.0461 (10)0.0010 (8)0.0131 (7)0.0013 (8)
C30.0479 (10)0.0869 (15)0.0437 (10)0.0122 (10)0.0123 (8)0.0003 (10)
C40.0711 (13)0.0912 (17)0.0566 (12)0.0205 (13)0.0219 (10)0.0293 (12)
C50.0807 (14)0.0573 (12)0.0786 (16)0.0142 (12)0.0330 (12)0.0206 (11)
C60.0573 (10)0.0491 (11)0.0631 (12)0.0030 (9)0.0218 (9)0.0037 (9)
C70.0442 (9)0.0552 (11)0.0521 (11)0.0006 (8)0.0086 (8)0.0047 (8)
C80.0556 (11)0.0902 (16)0.0564 (12)0.0069 (11)0.0057 (9)0.0211 (11)
C90.0618 (12)0.1086 (18)0.0423 (11)0.0053 (12)0.0086 (9)0.0046 (11)
C100.0505 (10)0.0788 (14)0.0436 (10)0.0027 (10)0.0134 (8)0.0103 (9)
C110.0681 (14)0.138 (2)0.0493 (12)0.0046 (15)0.0058 (10)0.0168 (13)
N10.0427 (7)0.0491 (8)0.0400 (8)0.0009 (6)0.0085 (6)0.0025 (6)
O10.0757 (9)0.0631 (9)0.0698 (9)0.0190 (7)0.0235 (7)0.0006 (7)
O20.0944 (12)0.1052 (13)0.0646 (10)0.0348 (10)0.0254 (9)0.0154 (9)
Geometric parameters (Å, º) top
C1—C61.375 (3)C7—N11.396 (2)
C1—C21.385 (2)C7—C81.494 (2)
C1—N11.432 (2)C8—C91.507 (3)
C2—C31.387 (3)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.389 (3)C9—C101.498 (3)
C3—C111.504 (3)C9—H9A0.9700
C4—C51.375 (3)C9—H9B0.9700
C4—H40.9300C10—O21.204 (2)
C5—C61.378 (3)C10—N11.386 (2)
C5—H50.9300C11—H11A0.9600
C6—H60.9300C11—H11B0.9600
C7—O11.205 (2)C11—H11C0.9600
C6—C1—C2120.76 (16)C9—C8—H8A110.7
C6—C1—N1120.37 (15)C7—C8—H8B110.7
C2—C1—N1118.87 (15)C9—C8—H8B110.7
C1—C2—C3120.54 (18)H8A—C8—H8B108.8
C1—C2—H2119.7C10—C9—C8105.46 (16)
C3—C2—H2119.7C10—C9—H9A110.6
C2—C3—C4117.90 (19)C8—C9—H9A110.6
C2—C3—C11120.8 (2)C10—C9—H9B110.6
C4—C3—C11121.3 (2)C8—C9—H9B110.6
C5—C4—C3121.34 (19)H9A—C9—H9B108.8
C5—C4—H4119.3O2—C10—N1123.72 (18)
C3—C4—H4119.3O2—C10—C9128.29 (17)
C4—C5—C6120.3 (2)N1—C10—C9107.98 (17)
C4—C5—H5119.8C3—C11—H11A109.5
C6—C5—H5119.8C3—C11—H11B109.5
C1—C6—C5119.10 (19)H11A—C11—H11B109.5
C1—C6—H6120.5C3—C11—H11C109.5
C5—C6—H6120.5H11A—C11—H11C109.5
O1—C7—N1124.49 (16)H11B—C11—H11C109.5
O1—C7—C8127.37 (18)C10—N1—C7112.22 (15)
N1—C7—C8108.13 (16)C10—N1—C1124.11 (15)
C7—C8—C9105.02 (17)C7—N1—C1123.56 (13)
C7—C8—H8A110.7
C6—C1—C2—C32.0 (3)C8—C9—C10—N18.2 (2)
N1—C1—C2—C3177.61 (15)O2—C10—N1—C7178.5 (2)
C1—C2—C3—C41.6 (3)C9—C10—N1—C72.2 (2)
C1—C2—C3—C11176.53 (16)O2—C10—N1—C12.1 (3)
C2—C3—C4—C50.2 (3)C9—C10—N1—C1178.57 (15)
C11—C3—C4—C5177.9 (2)O1—C7—N1—C10175.92 (19)
C3—C4—C5—C60.8 (3)C8—C7—N1—C105.0 (2)
C2—C1—C6—C51.0 (3)O1—C7—N1—C17.7 (3)
N1—C1—C6—C5178.66 (16)C8—C7—N1—C1171.46 (15)
C4—C5—C6—C10.4 (3)C6—C1—N1—C1057.0 (2)
O1—C7—C8—C9171.10 (19)C2—C1—N1—C10123.42 (19)
N1—C7—C8—C99.8 (2)C6—C1—N1—C7127.04 (18)
C7—C8—C9—C1010.8 (2)C2—C1—N1—C752.6 (2)
C8—C9—C10—O2172.5 (2)

Experimental details

Crystal data
Chemical formulaC11H11NO2
Mr189.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)7.7906 (9), 6.6015 (8), 19.511 (2)
β (°) 100.06 (1)
V3)988.02 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.16 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.972, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3757, 2000, 1453
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.168, 1.18
No. of reflections2000
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o919.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds