organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-(4-fluoro­phenyl­sulfin­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 30 April 2010; accepted 3 May 2010; online 8 May 2010)

In the title compound, C15H10BrFO2S, the O atom and the 4-fluoro­phenyl group of the 4-fluoro­phenyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-fluoro­phenyl ring is approximately perpendicular to this plane [dihedral angle = 89.38 (6)°]. In the crystal, mol­ecules are linked by a Br⋯Br contact [3.4816 (5) Å], and weak inter­molecular C—S⋯π [3.499 (2) Å] and C—F⋯π [3.535 (2) Å] inter­actions.

Related literature

For the crystal structures of similar derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o564.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrFO2S

  • Mr = 353.20

  • Monoclinic, P 21 /c

  • a = 11.4704 (4) Å

  • b = 6.1776 (2) Å

  • c = 19.6420 (7) Å

  • β = 98.432 (2)°

  • V = 1376.78 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 173 K

  • 0.32 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.453, Tmax = 0.746

  • 11827 measured reflections

  • 3148 independent reflections

  • 2655 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.05

  • 3148 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds containing benzofuran skeleton show potent biological activities such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al.. 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-(4-fluorophenylsulfinyl)-1-benzofuran analogues (Choi et al.., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [89.38 (6)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by a Br···Br interaction at 3.4816 (5) Å. The molecular packing (Fig. 2) is further stabilized by a weak intermolecular C–S···π interaction between the sulfur and the 4-fluorophenyl ring of an adjacent molecule, with a C1–S···Cg1ii [3.499 (2) Å] (Cg1 is the centroid of the C10-C15 4-fluorophenyl ring), and by a weak intermolecular C–F···π interaction between the fluorine and the benzene ring of a neighbouring benzofuran system, with C13–F···Cg2iii [3.535 (2) Å] (Cg2 is the centroid of the C2-C7 benzene ring).

Related literature top

For the crystal structures of similar derivatives, see: Choi et al. (2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (303 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 401-402 K; Rf = 0.64 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

The compounds containing benzofuran skeleton show potent biological activities such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al.. 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-(4-fluorophenylsulfinyl)-1-benzofuran analogues (Choi et al.., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [89.38 (6)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by a Br···Br interaction at 3.4816 (5) Å. The molecular packing (Fig. 2) is further stabilized by a weak intermolecular C–S···π interaction between the sulfur and the 4-fluorophenyl ring of an adjacent molecule, with a C1–S···Cg1ii [3.499 (2) Å] (Cg1 is the centroid of the C10-C15 4-fluorophenyl ring), and by a weak intermolecular C–F···π interaction between the fluorine and the benzene ring of a neighbouring benzofuran system, with C13–F···Cg2iii [3.535 (2) Å] (Cg2 is the centroid of the C2-C7 benzene ring).

For the crystal structures of similar derivatives, see: Choi et al. (2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Br···Br, C–S···π and C–F···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 1 , - y + 2, - z + 1; (ii) - x + 2, - y, - z + 1; (iii) x, - y + 1/2 , z - 1/2.]
5-Bromo-3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran top
Crystal data top
C15H10BrFO2SF(000) = 704
Mr = 353.20Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4955 reflections
a = 11.4704 (4) Åθ = 2.6–27.5°
b = 6.1776 (2) ŵ = 3.15 mm1
c = 19.6420 (7) ÅT = 173 K
β = 98.432 (2)°Block, colourless
V = 1376.78 (8) Å30.32 × 0.26 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3148 independent reflections
Radiation source: rotating anode2655 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 87
Tmin = 0.453, Tmax = 0.746l = 2525
11827 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.5303P]
where P = (Fo2 + 2Fc2)/3
3148 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C15H10BrFO2SV = 1376.78 (8) Å3
Mr = 353.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4704 (4) ŵ = 3.15 mm1
b = 6.1776 (2) ÅT = 173 K
c = 19.6420 (7) Å0.32 × 0.26 × 0.21 mm
β = 98.432 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2655 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.746Rint = 0.028
11827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3148 reflectionsΔρmin = 0.53 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.50266 (2)0.78650 (4)0.558051 (12)0.04487 (9)
S0.93498 (4)0.16534 (9)0.60352 (3)0.03310 (13)
F0.72642 (13)0.0128 (3)0.31650 (7)0.0625 (4)
O10.69236 (13)0.0086 (2)0.71739 (7)0.0367 (3)
O20.97008 (13)0.3979 (3)0.60830 (8)0.0431 (4)
C10.80963 (16)0.1358 (3)0.64457 (9)0.0291 (4)
C20.70597 (16)0.2719 (3)0.63776 (9)0.0273 (4)
C30.66711 (16)0.4522 (3)0.59916 (10)0.0296 (4)
H30.71130.51280.56800.035*
C40.55947 (17)0.5382 (3)0.60907 (9)0.0308 (4)
C50.49100 (17)0.4492 (4)0.65478 (10)0.0343 (5)
H50.41880.51140.65940.041*
C60.52929 (19)0.2691 (4)0.69335 (10)0.0367 (5)
H60.48450.20760.72410.044*
C70.63708 (18)0.1851 (3)0.68398 (9)0.0299 (4)
C80.79788 (18)0.0166 (3)0.69259 (10)0.0329 (4)
C90.8737 (2)0.1974 (4)0.72202 (12)0.0460 (6)
H9A0.94220.20580.69930.069*
H9B0.83050.33070.71550.069*
H9C0.89750.17300.77030.069*
C100.86555 (15)0.1228 (3)0.51655 (10)0.0284 (4)
C110.81711 (18)0.0770 (4)0.49734 (11)0.0370 (5)
H110.81720.18630.52990.044*
C120.7688 (2)0.1142 (4)0.42988 (12)0.0436 (5)
H120.73420.24660.41640.052*
C130.77312 (18)0.0497 (4)0.38319 (11)0.0400 (5)
C140.82316 (19)0.2465 (4)0.40008 (11)0.0391 (5)
H140.82570.35290.36680.047*
C150.87026 (17)0.2836 (3)0.46836 (11)0.0332 (4)
H150.90480.41620.48150.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04284 (15)0.03939 (15)0.05249 (15)0.01201 (10)0.00742 (10)0.00670 (10)
S0.0217 (2)0.0377 (3)0.0401 (3)0.0009 (2)0.00528 (19)0.0033 (2)
F0.0624 (9)0.0825 (12)0.0413 (7)0.0034 (8)0.0035 (6)0.0134 (7)
O10.0403 (8)0.0406 (9)0.0311 (7)0.0008 (7)0.0112 (6)0.0085 (6)
O20.0390 (8)0.0431 (9)0.0478 (9)0.0181 (7)0.0088 (7)0.0041 (7)
C10.0260 (9)0.0304 (10)0.0309 (9)0.0018 (8)0.0041 (7)0.0009 (8)
C20.0252 (9)0.0294 (10)0.0275 (9)0.0034 (8)0.0045 (7)0.0024 (8)
C30.0276 (9)0.0298 (11)0.0323 (9)0.0024 (8)0.0076 (7)0.0019 (8)
C40.0312 (10)0.0300 (11)0.0304 (9)0.0005 (8)0.0023 (8)0.0037 (8)
C50.0270 (10)0.0450 (13)0.0319 (10)0.0022 (9)0.0076 (8)0.0072 (9)
C60.0355 (11)0.0477 (14)0.0296 (10)0.0023 (10)0.0136 (8)0.0015 (9)
C70.0339 (10)0.0317 (11)0.0248 (9)0.0024 (9)0.0063 (7)0.0001 (8)
C80.0336 (11)0.0345 (11)0.0299 (9)0.0004 (9)0.0027 (8)0.0014 (8)
C90.0523 (14)0.0442 (14)0.0402 (12)0.0076 (11)0.0027 (10)0.0124 (10)
C100.0198 (8)0.0293 (10)0.0384 (10)0.0022 (8)0.0116 (7)0.0008 (8)
C110.0366 (11)0.0294 (11)0.0472 (12)0.0027 (9)0.0137 (9)0.0025 (9)
C120.0407 (12)0.0369 (13)0.0549 (13)0.0071 (10)0.0131 (10)0.0131 (11)
C130.0329 (11)0.0516 (15)0.0368 (11)0.0042 (10)0.0095 (9)0.0071 (10)
C140.0342 (11)0.0430 (13)0.0419 (11)0.0045 (10)0.0118 (9)0.0077 (10)
C150.0259 (9)0.0294 (11)0.0459 (11)0.0003 (8)0.0100 (8)0.0020 (9)
Geometric parameters (Å, º) top
Br—C41.895 (2)C6—C71.378 (3)
Br—Bri3.4816 (5)C6—H60.9300
S—O21.4910 (17)C8—C91.480 (3)
S—C11.7581 (19)C9—H9A0.9600
S—C101.795 (2)C9—H9B0.9600
F—C131.360 (2)C9—H9C0.9600
O1—C81.378 (2)C10—C151.379 (3)
O1—C71.378 (2)C10—C111.383 (3)
C1—C81.353 (3)C11—C121.379 (3)
C1—C21.446 (3)C11—H110.9300
C2—C31.384 (3)C12—C131.372 (3)
C2—C71.395 (3)C12—H120.9300
C3—C41.384 (3)C13—C141.365 (3)
C3—H30.9300C14—C151.389 (3)
C4—C51.390 (3)C14—H140.9300
C5—C61.381 (3)C15—H150.9300
C5—H50.9300
C4—Br—Bri158.65 (6)C1—C8—C9133.19 (19)
O2—S—C1107.60 (10)O1—C8—C9116.30 (18)
O2—S—C10106.21 (9)C8—C9—H9A109.5
C1—S—C1098.20 (8)C8—C9—H9B109.5
C8—O1—C7106.71 (15)H9A—C9—H9B109.5
C8—C1—C2107.72 (17)C8—C9—H9C109.5
C8—C1—S124.30 (16)H9A—C9—H9C109.5
C2—C1—S127.87 (15)H9B—C9—H9C109.5
C3—C2—C7119.89 (18)C15—C10—C11120.69 (19)
C3—C2—C1135.47 (17)C15—C10—S119.42 (16)
C7—C2—C1104.63 (17)C11—C10—S119.65 (16)
C2—C3—C4117.02 (17)C12—C11—C10120.0 (2)
C2—C3—H3121.5C12—C11—H11120.0
C4—C3—H3121.5C10—C11—H11120.0
C3—C4—C5122.64 (19)C13—C12—C11118.1 (2)
C3—C4—Br118.76 (14)C13—C12—H12121.0
C5—C4—Br118.60 (15)C11—C12—H12121.0
C6—C5—C4120.57 (19)F—C13—C14118.4 (2)
C6—C5—H5119.7F—C13—C12118.2 (2)
C4—C5—H5119.7C14—C13—C12123.4 (2)
C7—C6—C5116.72 (18)C13—C14—C15118.1 (2)
C7—C6—H6121.6C13—C14—H14120.9
C5—C6—H6121.6C15—C14—H14120.9
C6—C7—O1126.41 (17)C10—C15—C14119.7 (2)
C6—C7—C2123.16 (19)C10—C15—H15120.2
O1—C7—C2110.43 (17)C14—C15—H15120.2
C1—C8—O1110.50 (17)
O2—S—C1—C8130.32 (18)C1—C2—C7—O10.0 (2)
C10—S—C1—C8119.71 (19)C2—C1—C8—O10.7 (2)
O2—S—C1—C245.3 (2)S—C1—C8—O1177.08 (14)
C10—S—C1—C264.66 (19)C2—C1—C8—C9179.4 (2)
C8—C1—C2—C3178.8 (2)S—C1—C8—C93.1 (4)
S—C1—C2—C32.6 (3)C7—O1—C8—C10.7 (2)
C8—C1—C2—C70.4 (2)C7—O1—C8—C9179.43 (18)
S—C1—C2—C7176.65 (15)O2—S—C10—C159.31 (17)
C7—C2—C3—C40.1 (3)C1—S—C10—C15120.42 (16)
C1—C2—C3—C4179.1 (2)O2—S—C10—C11176.30 (15)
C2—C3—C4—C50.8 (3)C1—S—C10—C1165.20 (17)
C2—C3—C4—Br179.50 (14)C15—C10—C11—C122.5 (3)
C3—C4—C5—C60.7 (3)S—C10—C11—C12176.83 (16)
Br—C4—C5—C6179.57 (16)C10—C11—C12—C131.5 (3)
C4—C5—C6—C70.0 (3)C11—C12—C13—F179.44 (18)
C5—C6—C7—O1179.32 (19)C11—C12—C13—C140.3 (3)
C5—C6—C7—C20.7 (3)F—C13—C14—C15179.71 (18)
C8—O1—C7—C6179.6 (2)C12—C13—C14—C151.1 (3)
C8—O1—C7—C20.4 (2)C11—C10—C15—C141.7 (3)
C3—C2—C7—C60.6 (3)S—C10—C15—C14175.98 (15)
C1—C2—C7—C6180.00 (19)C13—C14—C15—C100.1 (3)
C3—C2—C7—O1179.40 (17)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrFO2S
Mr353.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.4704 (4), 6.1776 (2), 19.6420 (7)
β (°) 98.432 (2)
V3)1376.78 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.32 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.453, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11827, 3148, 2655
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.05
No. of reflections3148
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds