organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(3,4-di­meth­oxy­phen­yl)meth­yl]pyridine ethanol monosolvate

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 10 May 2010; accepted 12 May 2010; online 19 May 2010)

In the title compound, C22H23NO4·C2H6O, the pyridyl ring is aligned at 89.39 (2) and 87.41 (2)° with respect to the benzene rings, and the three rings connected to the methine C atom are arranged in a propeller-like conformation. The heterocycle is linked to the solvent mol­ecule by an O—H⋯N hydrogen bond.

Related literature

For background to the use of pyridine and its derivatives as ligands to bridge different metal ions and form functional coordination compounds, see: Chen et al. (2007[Chen, C. Y., Cheng, P. Y., Wu, H. H. & Lee, H. M. (2007). Inorg. Chem., 46, 5691-5699.]); Fasina et al. (2004[Fasina, T. M., Collings, J. C., Lydon, D. P., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Nguyen, P., Bruce, M., Scott, A. J., Clegg, W., Watt, S. W., Viney, C. & Marder, T. B. (2004). J. Mater. Chem. 14, 2395-2404.]); Mancisidor et al. (2008[Mancisidor, W. C., Spodine, E. & Yazigi, D. V. (2008). Inorg. Chem. 47, 3687-3692.]). For the synthesis, see: Ostaszewski (1998[Ostaszewski, R. (1998). Tetrahedron, 54, 6897-6902.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23NO4·C2H6O

  • Mr = 411.48

  • Monoclinic, C 2/c

  • a = 29.564 (6) Å

  • b = 8.3810 (17) Å

  • c = 19.440 (4) Å

  • β = 107.94 (3)°

  • V = 4582.6 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.27 × 0.20 × 0.19 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 14513 measured reflections

  • 5573 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.174

  • S = 1.02

  • 5573 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N1 0.82 2.04 2.842 (4) 167

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine and its derivatives, are of interest as ligands to bridge different metal ions to form functional coordination compounds, for example: 9,10-bis(4'- pyridylethynyl)-anthracene (Fasina et al., 2004);2,6-bis-(imi-dazol-1 -yl)pyridine (Chen et al., 2007); bis-(pyridine-2-ylmethyl)-benzylamine (Mancisidor et al., 2008). In order to search for new pyridine compounds with higher bioactivity and optical properties, we synthesized the title compound.

In the title compound, the bond lengths and angles are generally normal. The dihedral angles between pyridine ring N1, C20, C19, C18, C22, C21(p1) with C3—C8 (p2) phenyl ring and C10—C15 (p3) phenyl ring are 89.39 (2)° and 87.41 (2)°, the dihedral angles between C3—C8 (p2) phenyl ring and C10—C15 (p3) phenyl ring is 84.33 (2)°, respectively.

The crystal structure is stabilized by intramolecular O—H···N hydrogen bonds (Table 1) and intramolecular C—H···O hydrogen bonds. The donor and acceptor distance are 3.4019Å for C(20) – H(20 A).. O(5) and 3.3902Å for C(21) – H(21 A).. O(3). In addition, there exist four kinds of C—H···Π interaction in the lattice [C2···Cg1=3.441 (2) Å; C3···Cg2=4.052 (3) Å; C17···Cg2=3.774 (2) Å; C24···Cg3=4.187 (1) Å; Cg1, Cg2 and Cg3 refer to pyridine, phenyl C3—C8 and phenyl ring C10—C15, respectively]. In the solid state, all above intermolecular interactions in the title compound stabilize the crystal packing structure.

Related literature top

For background to the use of pyridine and its derivatives as ligands to bridge

different metal ions and form functional coordination compounds, see: Chen et al. (2007); Fasina et al. (2004); Mancisidor et al. (2008). For the synthesis, see: Ostaszewski (1998).

Experimental top

The title compound was prepared by the reaction of 1,2-dimethoxybenzene (20 mmol), isonicotinaldehyde (40 mmol), and was stirred in dichloromethane solution with 84% sulfuric acid (10 ml) as activator (Ostaszewski et al., 1998). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature over a period of 3 days.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H distances in the range 0.93-0.97 Å, and with Uiso(H)= 1.2-1.5Ueq of the parent atoms.

Structure description top

Pyridine and its derivatives, are of interest as ligands to bridge different metal ions to form functional coordination compounds, for example: 9,10-bis(4'- pyridylethynyl)-anthracene (Fasina et al., 2004);2,6-bis-(imi-dazol-1 -yl)pyridine (Chen et al., 2007); bis-(pyridine-2-ylmethyl)-benzylamine (Mancisidor et al., 2008). In order to search for new pyridine compounds with higher bioactivity and optical properties, we synthesized the title compound.

In the title compound, the bond lengths and angles are generally normal. The dihedral angles between pyridine ring N1, C20, C19, C18, C22, C21(p1) with C3—C8 (p2) phenyl ring and C10—C15 (p3) phenyl ring are 89.39 (2)° and 87.41 (2)°, the dihedral angles between C3—C8 (p2) phenyl ring and C10—C15 (p3) phenyl ring is 84.33 (2)°, respectively.

The crystal structure is stabilized by intramolecular O—H···N hydrogen bonds (Table 1) and intramolecular C—H···O hydrogen bonds. The donor and acceptor distance are 3.4019Å for C(20) – H(20 A).. O(5) and 3.3902Å for C(21) – H(21 A).. O(3). In addition, there exist four kinds of C—H···Π interaction in the lattice [C2···Cg1=3.441 (2) Å; C3···Cg2=4.052 (3) Å; C17···Cg2=3.774 (2) Å; C24···Cg3=4.187 (1) Å; Cg1, Cg2 and Cg3 refer to pyridine, phenyl C3—C8 and phenyl ring C10—C15, respectively]. In the solid state, all above intermolecular interactions in the title compound stabilize the crystal packing structure.

For background to the use of pyridine and its derivatives as ligands to bridge

different metal ions and form functional coordination compounds, see: Chen et al. (2007); Fasina et al. (2004); Mancisidor et al. (2008). For the synthesis, see: Ostaszewski (1998).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-[Bis(3,4-dimethoxyphenyl)methyl]pyridine ethanol monosolvate top
Crystal data top
C22H23NO4·C2H6OF(000) = 1760
Mr = 411.48Dx = 1.193 Mg m3
Monoclinic, C2/cMelting point: 342 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.564 (6) ÅCell parameters from 25 reflections
b = 8.3810 (17) Åθ = 1.5–25.5°
c = 19.440 (4) ŵ = 0.08 mm1
β = 107.94 (3)°T = 295 K
V = 4582.6 (18) Å3Block, colourless
Z = 80.27 × 0.20 × 0.19 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.042
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 1.5°
Graphite monochromatorh = 3438
ω scansk = 1110
14513 measured reflectionsl = 2520
5573 independent reflections3 standard reflections every 100 reflections
2669 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.070P)2 + 0.6422P]
where P = (Fo2 + 2Fc2)/3
5573 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H23NO4·C2H6OV = 4582.6 (18) Å3
Mr = 411.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.564 (6) ŵ = 0.08 mm1
b = 8.3810 (17) ÅT = 295 K
c = 19.440 (4) Å0.27 × 0.20 × 0.19 mm
β = 107.94 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.042
14513 measured reflections3 standard reflections every 100 reflections
5573 independent reflections intensity decay: none
2669 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
5573 reflectionsΔρmin = 0.22 e Å3
277 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30498 (6)1.1065 (2)0.93614 (10)0.0848 (6)
O20.23104 (6)1.2671 (2)0.86968 (10)0.0795 (5)
O30.07275 (6)1.2438 (2)0.48851 (8)0.0711 (5)
O40.15262 (5)1.1115 (2)0.49173 (8)0.0648 (5)
O50.02886 (9)0.3191 (3)0.87938 (15)0.1157 (8)
H50.03600.37420.84940.139*
N10.06698 (8)0.5258 (3)0.79531 (13)0.0770 (6)
C10.34474 (13)1.0218 (4)0.97716 (19)0.1275 (14)
H1B0.36591.09261.01090.191*
H1C0.36080.97650.94580.191*
H1D0.33490.93801.00300.191*
C20.19141 (11)1.3623 (4)0.83401 (19)0.1037 (11)
H2A0.19571.46760.85440.156*
H2B0.16311.31580.83990.156*
H2C0.18841.36830.78350.156*
C30.24084 (8)0.8041 (3)0.80555 (12)0.0592 (6)
H3A0.24430.69940.79220.071*
C40.27668 (8)0.8747 (3)0.86124 (13)0.0627 (7)
H4A0.30390.81670.88450.075*
C50.27240 (8)1.0275 (3)0.88221 (12)0.0573 (6)
C60.23211 (8)1.1147 (3)0.84613 (12)0.0550 (6)
C70.19656 (8)1.0447 (3)0.79090 (12)0.0546 (6)
H7A0.16961.10340.76720.066*
C80.20042 (7)0.8876 (3)0.77007 (11)0.0491 (5)
C90.16086 (7)0.8074 (3)0.71137 (10)0.0503 (6)
H9A0.17640.72970.68840.060*
C100.13455 (7)0.9216 (3)0.65203 (11)0.0493 (5)
C110.09260 (8)0.9934 (3)0.64980 (12)0.0608 (7)
H11A0.07830.96870.68490.073*
C120.07107 (8)1.1021 (3)0.59624 (12)0.0626 (7)
H12A0.04271.15080.59600.075*
C130.09124 (8)1.1383 (3)0.54365 (11)0.0528 (6)
C140.13426 (7)1.0673 (3)0.54553 (11)0.0481 (5)
C150.15522 (7)0.9611 (3)0.59909 (11)0.0486 (5)
H15A0.18390.91420.60020.058*
C160.02736 (11)1.3087 (4)0.48086 (18)0.1096 (12)
H16A0.01861.38010.44030.164*
H16B0.02821.36590.52400.164*
H16C0.00451.22400.47310.164*
C170.19682 (9)1.0437 (3)0.49298 (14)0.0800 (8)
H17A0.20651.08670.45400.120*
H17B0.19350.93000.48770.120*
H17C0.22031.06830.53820.120*
C180.12750 (8)0.7117 (3)0.74155 (11)0.0517 (6)
C190.09979 (10)0.5923 (3)0.70163 (13)0.0783 (8)
H19A0.10080.57150.65510.094*
C200.07074 (11)0.5034 (4)0.72947 (17)0.0918 (9)
H20A0.05270.42310.70090.110*
C210.09305 (9)0.6417 (3)0.83336 (14)0.0657 (7)
H21A0.09090.66130.87930.079*
C220.12338 (8)0.7359 (3)0.80920 (12)0.0566 (6)
H22A0.14100.81570.83880.068*
C230.0512 (2)0.0797 (6)0.8412 (3)0.227 (3)
H23A0.06520.02050.86050.340*
H23B0.06580.11790.80660.340*
H23C0.01770.06560.81810.340*
C240.05815 (13)0.1877 (5)0.8959 (2)0.1247 (13)
H24A0.09090.22360.90960.150*
H24B0.05340.13450.93740.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0727 (12)0.0672 (12)0.0895 (12)0.0157 (10)0.0119 (10)0.0122 (10)
O20.0763 (13)0.0534 (11)0.0964 (13)0.0007 (9)0.0085 (10)0.0037 (10)
O30.0654 (11)0.0860 (12)0.0681 (10)0.0276 (10)0.0297 (8)0.0295 (9)
O40.0664 (11)0.0799 (12)0.0586 (9)0.0179 (9)0.0346 (8)0.0171 (8)
O50.1304 (19)0.0829 (16)0.164 (2)0.0193 (15)0.0893 (17)0.0368 (15)
N10.0741 (15)0.0770 (16)0.0810 (15)0.0157 (13)0.0257 (12)0.0058 (13)
C10.105 (3)0.105 (3)0.121 (3)0.007 (2)0.041 (2)0.014 (2)
C20.089 (2)0.0649 (19)0.142 (3)0.0179 (17)0.013 (2)0.011 (2)
C30.0556 (15)0.0595 (15)0.0647 (14)0.0085 (12)0.0216 (12)0.0095 (12)
C40.0476 (14)0.0656 (17)0.0708 (16)0.0053 (12)0.0124 (12)0.0195 (14)
C50.0500 (14)0.0582 (16)0.0595 (14)0.0057 (12)0.0107 (11)0.0165 (12)
C60.0540 (15)0.0517 (15)0.0606 (14)0.0043 (12)0.0193 (12)0.0083 (12)
C70.0482 (14)0.0567 (15)0.0602 (14)0.0032 (11)0.0185 (11)0.0127 (12)
C80.0457 (13)0.0568 (15)0.0484 (12)0.0034 (11)0.0198 (10)0.0106 (11)
C90.0535 (13)0.0549 (14)0.0457 (12)0.0080 (11)0.0201 (10)0.0036 (10)
C100.0512 (13)0.0551 (14)0.0438 (11)0.0057 (11)0.0179 (10)0.0021 (10)
C110.0583 (15)0.0809 (18)0.0514 (13)0.0138 (13)0.0289 (11)0.0143 (12)
C120.0506 (14)0.0802 (18)0.0621 (14)0.0187 (13)0.0247 (12)0.0134 (13)
C130.0518 (14)0.0593 (14)0.0481 (12)0.0068 (11)0.0163 (10)0.0071 (11)
C140.0488 (13)0.0541 (13)0.0448 (11)0.0023 (11)0.0194 (10)0.0013 (10)
C150.0458 (12)0.0539 (14)0.0486 (12)0.0060 (11)0.0185 (10)0.0020 (11)
C160.086 (2)0.139 (3)0.117 (2)0.061 (2)0.0505 (19)0.065 (2)
C170.0815 (19)0.100 (2)0.0775 (17)0.0284 (17)0.0530 (15)0.0195 (16)
C180.0519 (13)0.0559 (14)0.0465 (12)0.0020 (11)0.0141 (10)0.0031 (11)
C190.094 (2)0.088 (2)0.0525 (14)0.0251 (17)0.0221 (14)0.0119 (14)
C200.097 (2)0.094 (2)0.081 (2)0.0386 (18)0.0223 (17)0.0097 (17)
C210.0691 (17)0.0713 (17)0.0635 (15)0.0018 (15)0.0304 (13)0.0059 (14)
C220.0624 (15)0.0562 (14)0.0543 (13)0.0049 (12)0.0224 (11)0.0031 (11)
C230.330 (9)0.152 (5)0.213 (6)0.083 (6)0.107 (6)0.038 (4)
C240.090 (3)0.126 (4)0.152 (4)0.010 (2)0.029 (2)0.031 (3)
Geometric parameters (Å, º) top
O1—C51.358 (3)C9—H9A0.9800
O1—C11.395 (3)C10—C111.367 (3)
O2—C61.361 (3)C10—C151.389 (3)
O2—C21.410 (3)C11—C121.383 (3)
O3—C131.367 (3)C11—H11A0.9300
O3—C161.413 (3)C12—C131.367 (3)
O4—C141.369 (2)C12—H12A0.9300
O4—C171.418 (3)C13—C141.395 (3)
O5—C241.377 (4)C14—C151.365 (3)
O5—H50.8200C15—H15A0.9300
N1—C211.317 (3)C16—H16A0.9600
N1—C201.332 (3)C16—H16B0.9600
C1—H1B0.9600C16—H16C0.9600
C1—H1C0.9600C17—H17A0.9600
C1—H1D0.9600C17—H17B0.9600
C2—H2A0.9600C17—H17C0.9600
C2—H2B0.9600C18—C191.373 (3)
C2—H2C0.9600C18—C221.373 (3)
C3—C81.373 (3)C19—C201.368 (4)
C3—C41.392 (3)C19—H19A0.9300
C3—H3A0.9300C20—H20A0.9300
C4—C51.362 (3)C21—C221.381 (3)
C4—H4A0.9300C21—H21A0.9300
C5—C61.389 (3)C22—H22A0.9300
C6—C71.381 (3)C23—C241.362 (5)
C7—C81.392 (3)C23—H23A0.9600
C7—H7A0.9300C23—H23B0.9600
C8—C91.517 (3)C23—H23C0.9600
C9—C101.516 (3)C24—H24A0.9700
C9—C181.522 (3)C24—H24B0.9700
C5—O1—C1117.8 (2)C11—C12—H12A119.9
C6—O2—C2117.9 (2)C12—C13—O3124.7 (2)
C13—O3—C16117.95 (19)C12—C13—C14119.4 (2)
C14—O4—C17117.27 (18)O3—C13—C14115.96 (19)
C24—O5—H5109.5C15—C14—O4124.44 (19)
C21—N1—C20115.9 (2)C15—C14—C13119.63 (19)
O1—C1—H1B109.5O4—C14—C13115.93 (19)
O1—C1—H1C109.5C14—C15—C10121.4 (2)
H1B—C1—H1C109.5C14—C15—H15A119.3
O1—C1—H1D109.5C10—C15—H15A119.3
H1B—C1—H1D109.5O3—C16—H16A109.5
H1C—C1—H1D109.5O3—C16—H16B109.5
O2—C2—H2A109.5H16A—C16—H16B109.5
O2—C2—H2B109.5O3—C16—H16C109.5
H2A—C2—H2B109.5H16A—C16—H16C109.5
O2—C2—H2C109.5H16B—C16—H16C109.5
H2A—C2—H2C109.5O4—C17—H17A109.5
H2B—C2—H2C109.5O4—C17—H17B109.5
C8—C3—C4120.7 (2)H17A—C17—H17B109.5
C8—C3—H3A119.7O4—C17—H17C109.5
C4—C3—H3A119.7H17A—C17—H17C109.5
C5—C4—C3120.9 (2)H17B—C17—H17C109.5
C5—C4—H4A119.5C19—C18—C22115.8 (2)
C3—C4—H4A119.5C19—C18—C9120.7 (2)
O1—C5—C4125.5 (2)C22—C18—C9123.4 (2)
O1—C5—C6115.3 (2)C20—C19—C18120.8 (2)
C4—C5—C6119.2 (2)C20—C19—H19A119.6
O2—C6—C7124.7 (2)C18—C19—H19A119.6
O2—C6—C5115.4 (2)N1—C20—C19123.5 (3)
C7—C6—C5119.9 (2)N1—C20—H20A118.2
C6—C7—C8121.1 (2)C19—C20—H20A118.2
C6—C7—H7A119.4N1—C21—C22124.0 (2)
C8—C7—H7A119.4N1—C21—H21A118.0
C3—C8—C7118.2 (2)C22—C21—H21A118.0
C3—C8—C9120.1 (2)C18—C22—C21120.0 (2)
C7—C8—C9121.67 (19)C18—C22—H22A120.0
C10—C9—C8112.84 (19)C21—C22—H22A120.0
C10—C9—C18112.59 (18)C24—C23—H23A109.5
C8—C9—C18112.63 (16)C24—C23—H23B109.5
C10—C9—H9A106.0H23A—C23—H23B109.5
C8—C9—H9A106.0C24—C23—H23C109.5
C18—C9—H9A106.0H23A—C23—H23C109.5
C11—C10—C15118.3 (2)H23B—C23—H23C109.5
C11—C10—C9123.36 (19)C23—C24—O5114.7 (4)
C15—C10—C9118.31 (19)C23—C24—H24A108.6
C10—C11—C12121.1 (2)O5—C24—H24A108.6
C10—C11—H11A119.4C23—C24—H24B108.6
C12—C11—H11A119.4O5—C24—H24B108.6
C13—C12—C11120.2 (2)H24A—C24—H24B107.6
C13—C12—H12A119.9
C8—C3—C4—C50.5 (3)C10—C11—C12—C130.8 (4)
C1—O1—C5—C44.8 (4)C11—C12—C13—O3180.0 (2)
C1—O1—C5—C6176.1 (3)C11—C12—C13—C141.5 (4)
C3—C4—C5—O1179.4 (2)C16—O3—C13—C126.5 (4)
C3—C4—C5—C61.5 (3)C16—O3—C13—C14174.9 (2)
C2—O2—C6—C71.8 (4)C17—O4—C14—C151.1 (3)
C2—O2—C6—C5178.7 (2)C17—O4—C14—C13178.8 (2)
O1—C5—C6—O20.3 (3)C12—C13—C14—C151.0 (3)
C4—C5—C6—O2178.9 (2)O3—C13—C14—C15179.7 (2)
O1—C5—C6—C7179.3 (2)C12—C13—C14—O4178.9 (2)
C4—C5—C6—C71.5 (3)O3—C13—C14—O40.2 (3)
O2—C6—C7—C8180.0 (2)O4—C14—C15—C10180.0 (2)
C5—C6—C7—C80.5 (3)C13—C14—C15—C100.1 (3)
C4—C3—C8—C70.6 (3)C11—C10—C15—C140.7 (3)
C4—C3—C8—C9177.74 (19)C9—C10—C15—C14177.8 (2)
C6—C7—C8—C30.6 (3)C10—C9—C18—C1972.2 (3)
C6—C7—C8—C9177.71 (19)C8—C9—C18—C19158.8 (2)
C3—C8—C9—C10147.48 (19)C10—C9—C18—C22108.8 (2)
C7—C8—C9—C1034.3 (3)C8—C9—C18—C2220.2 (3)
C3—C8—C9—C1883.7 (2)C22—C18—C19—C200.9 (4)
C7—C8—C9—C1894.6 (2)C9—C18—C19—C20178.2 (3)
C8—C9—C10—C1197.2 (3)C21—N1—C20—C190.5 (4)
C18—C9—C10—C1131.7 (3)C18—C19—C20—N10.4 (5)
C8—C9—C10—C1579.6 (2)C20—N1—C21—C220.9 (4)
C18—C9—C10—C15151.5 (2)C19—C18—C22—C210.5 (3)
C15—C10—C11—C120.2 (4)C9—C18—C22—C21178.5 (2)
C9—C10—C11—C12177.1 (2)N1—C21—C22—C180.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.042.842 (4)167

Experimental details

Crystal data
Chemical formulaC22H23NO4·C2H6O
Mr411.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)29.564 (6), 8.3810 (17), 19.440 (4)
β (°) 107.94 (3)
V3)4582.6 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.20 × 0.19
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14513, 5573, 2669
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.02
No. of reflections5573
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.042.842 (4)167
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Z2007B01).

References

First citationChen, C. Y., Cheng, P. Y., Wu, H. H. & Lee, H. M. (2007). Inorg. Chem., 46, 5691–5699.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFasina, T. M., Collings, J. C., Lydon, D. P., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., Nguyen, P., Bruce, M., Scott, A. J., Clegg, W., Watt, S. W., Viney, C. & Marder, T. B. (2004). J. Mater. Chem. 14, 2395–2404.  Web of Science CSD CrossRef CAS Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMancisidor, W. C., Spodine, E. & Yazigi, D. V. (2008). Inorg. Chem. 47, 3687–3692.  Web of Science PubMed Google Scholar
First citationOstaszewski, R. (1998). Tetrahedron, 54, 6897–6902.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds