organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-(3,6,9-Trioxaundecane-1,11-diyl­disulfan­yl)-1,4,5,8-tetra­thia­fulvalene-6,7-dicarbo­nitrile

aKey Laboratory of Organism Functional Factors of the Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 12 May 2010; accepted 13 May 2010; online 19 May 2010)

In the title compound, C16H16N2O3S6, the two five-membered rings form a dihedral angle of 7.86 (9)°. Weak C—H⋯N hydrogen bonds link the mol­ecules to form a chain along c; the chains are further connected by weak C—H⋯O hydrogen bonds to form a three-dimensional supra­molecular network.

Related literature

For background to the use of dithiacrown ether annulated tetrathiafulvalenes as sensor molecules for various metal cations, see Moore et al. (2000[Moore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269-8276.]); Otsubo & Ogura (1985[Otsubo, T. & Ogura, F. (1985). Bull. Chem. Soc. Jpn, 58, 1343-1344.]). For the synthesis, see Yin et al. (2006[Yin, B. Z., Wang, C. L., Chen, T. & Cong, Z. Q. (2006). Chin. Chem. Reagent, 28, 132-134.]). For a related structure, see Hou et al. (2009[Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3S6

  • Mr = 476.67

  • Triclinic, [P \overline 1]

  • a = 8.300 (5) Å

  • b = 9.186 (5) Å

  • c = 13.892 (10) Å

  • α = 100.42 (3)°

  • β = 92.31 (3)°

  • γ = 95.60 (2)°

  • V = 1035.0 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 290 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.917, Tmax = 0.935

  • 10214 measured reflections

  • 4702 independent reflections

  • 3936 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.07

  • 4702 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N1i 0.97 2.65 3.534 (3) 152
C14—H14A⋯N1ii 0.97 2.74 3.691 (3) 168
C14—H14B⋯O1iii 0.97 2.64 3.401 (3) 136
C9—H9A⋯O2iv 0.97 2.57 3.406 (3) 144
C15—H15B⋯O3v 0.97 2.47 3.317 (2) 146
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+2, -z; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dithiacrown ether annulated tetrathiafulvalenes have received great attentions as sensors molecule for various metal cations (Otsubo et al., 1985; Moore et al., 2000). These sensors can recognize selectively the virous metal cations to singel electrochemical information. We incorpolated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind sodium ion (Yin et al., 2006). We report herein the synthesis and structure of the title compound.

The title compound, (I), as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into two-dimensional network in ac plane. The crystal structure is further stablized by weak C—H···N hydrogen bonds along c dirction.

Related literature top

For background literature, see Moore et al. (2000); Otsubo & Ogura (1985). For the synthesis ,see Yin et al. (2006). For a related structure, see Hou et al. (2009).

Experimental top

The title compound, (I), was prepared according to literature (Yin et al., 2006) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.97 A and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Dithiacrown ether annulated tetrathiafulvalenes have received great attentions as sensors molecule for various metal cations (Otsubo et al., 1985; Moore et al., 2000). These sensors can recognize selectively the virous metal cations to singel electrochemical information. We incorpolated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind sodium ion (Yin et al., 2006). We report herein the synthesis and structure of the title compound.

The title compound, (I), as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into two-dimensional network in ac plane. The crystal structure is further stablized by weak C—H···N hydrogen bonds along c dirction.

For background literature, see Moore et al. (2000); Otsubo & Ogura (1985). For the synthesis ,see Yin et al. (2006). For a related structure, see Hou et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
2,3-(3,6,9-Trioxaundecane-1,11-diyldisulfanyl)-1,4,5,8-tetrathiafulvalene- 6,7-dicarbonitrile top
Crystal data top
C16H16N2O3S6Z = 2
Mr = 476.67F(000) = 492
Triclinic, P1Dx = 1.530 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.300 (5) ÅCell parameters from 8487 reflections
b = 9.186 (5) Åθ = 3.2–27.5°
c = 13.892 (10) ŵ = 0.68 mm1
α = 100.42 (3)°T = 290 K
β = 92.31 (3)°Block, black
γ = 95.60 (2)°0.13 × 0.12 × 0.10 mm
V = 1035.0 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4702 independent reflections
Radiation source: fine-focus sealed tube3936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.917, Tmax = 0.935k = 1011
10214 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4702 reflectionsΔρmax = 0.52 e Å3
245 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (2)
Crystal data top
C16H16N2O3S6γ = 95.60 (2)°
Mr = 476.67V = 1035.0 (11) Å3
Triclinic, P1Z = 2
a = 8.300 (5) ÅMo Kα radiation
b = 9.186 (5) ŵ = 0.68 mm1
c = 13.892 (10) ÅT = 290 K
α = 100.42 (3)°0.13 × 0.12 × 0.10 mm
β = 92.31 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4702 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3936 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.935Rint = 0.026
10214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 0.52 e Å3
4702 reflectionsΔρmin = 0.31 e Å3
245 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1516 (2)0.9624 (2)0.20634 (12)0.0455 (4)
C20.1520 (2)0.88171 (17)0.12738 (11)0.0364 (3)
C30.2869 (2)0.84467 (18)0.08319 (11)0.0377 (3)
C40.4436 (2)0.8829 (2)0.10925 (13)0.0493 (4)
C50.05873 (19)0.74212 (17)0.00468 (11)0.0353 (3)
C60.02801 (19)0.68050 (18)0.06787 (11)0.0374 (3)
C70.2533 (2)0.60022 (18)0.17572 (11)0.0406 (4)
C80.5249 (2)0.7500 (2)0.28490 (13)0.0470 (4)
H8A0.64170.76290.28110.056*
H8B0.48030.82580.25480.056*
C90.4861 (2)0.77382 (19)0.39115 (12)0.0428 (4)
H9A0.52440.87480.42330.051*
H9B0.36990.75810.39670.051*
C100.5910 (3)0.7045 (3)0.53927 (15)0.0621 (5)
H10A0.65810.79900.55660.075*
H10B0.65200.62930.55960.075*
C110.4441 (3)0.7141 (2)0.59613 (16)0.0625 (5)
H11A0.35710.64230.56260.075*
H11B0.46670.69060.66030.075*
C120.2389 (2)0.8716 (2)0.64099 (13)0.0506 (4)
H12A0.23960.96320.68840.061*
H12B0.20880.78920.67380.061*
C130.1159 (2)0.87039 (19)0.55895 (14)0.0499 (4)
H13A0.01660.90380.58530.060*
H13B0.15660.93780.51710.060*
C140.0256 (2)0.71693 (19)0.42162 (12)0.0401 (4)
H14A0.02400.77100.37470.048*
H14B0.12270.76160.44240.048*
C150.0681 (2)0.55669 (19)0.37564 (12)0.0434 (4)
H15A0.15870.54900.32800.052*
H15B0.10290.50190.42600.052*
C160.1146 (2)0.56287 (17)0.21572 (11)0.0385 (4)
N10.1521 (3)1.0257 (2)0.26936 (13)0.0688 (5)
N20.5676 (2)0.9136 (3)0.12990 (15)0.0767 (6)
O10.56498 (15)0.67023 (14)0.43571 (9)0.0494 (3)
O20.39558 (16)0.85988 (14)0.60659 (10)0.0540 (3)
O30.08385 (15)0.72386 (12)0.50341 (8)0.0419 (3)
S10.02900 (5)0.82515 (5)0.08826 (3)0.04072 (12)
S20.27073 (5)0.74152 (6)0.00882 (3)0.04764 (13)
S30.23772 (5)0.67410 (5)0.06743 (3)0.04530 (12)
S40.06611 (5)0.59369 (5)0.15614 (3)0.04415 (12)
S50.44704 (6)0.56746 (5)0.21477 (4)0.05140 (14)
S60.09787 (6)0.47074 (5)0.31522 (3)0.04736 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (10)0.0477 (9)0.0365 (8)0.0147 (8)0.0069 (7)0.0124 (7)
C20.0451 (8)0.0380 (8)0.0278 (7)0.0106 (7)0.0008 (6)0.0076 (6)
C30.0410 (8)0.0444 (8)0.0301 (7)0.0123 (7)0.0020 (6)0.0100 (6)
C40.0463 (10)0.0674 (11)0.0386 (9)0.0175 (9)0.0003 (7)0.0160 (8)
C50.0369 (8)0.0431 (8)0.0279 (7)0.0110 (7)0.0006 (6)0.0083 (6)
C60.0407 (8)0.0448 (8)0.0274 (7)0.0113 (7)0.0024 (6)0.0064 (6)
C70.0447 (9)0.0432 (8)0.0333 (8)0.0142 (7)0.0099 (7)0.0031 (6)
C80.0429 (9)0.0542 (10)0.0452 (9)0.0016 (8)0.0058 (7)0.0167 (8)
C90.0398 (8)0.0426 (9)0.0456 (9)0.0028 (7)0.0038 (7)0.0097 (7)
C100.0551 (11)0.0863 (15)0.0479 (11)0.0191 (11)0.0054 (9)0.0160 (10)
C110.0723 (14)0.0645 (12)0.0598 (12)0.0214 (11)0.0145 (10)0.0259 (10)
C120.0559 (11)0.0452 (9)0.0458 (10)0.0001 (8)0.0052 (8)0.0024 (8)
C130.0561 (11)0.0388 (9)0.0544 (10)0.0115 (8)0.0050 (8)0.0037 (8)
C140.0381 (8)0.0480 (9)0.0399 (8)0.0100 (7)0.0039 (6)0.0202 (7)
C150.0413 (8)0.0516 (9)0.0391 (8)0.0083 (7)0.0085 (7)0.0230 (7)
C160.0477 (9)0.0382 (8)0.0299 (7)0.0131 (7)0.0096 (7)0.0048 (6)
N10.0948 (14)0.0705 (11)0.0523 (10)0.0233 (10)0.0155 (9)0.0307 (9)
N20.0525 (10)0.1179 (17)0.0673 (12)0.0318 (11)0.0040 (9)0.0268 (11)
O10.0477 (7)0.0621 (8)0.0408 (6)0.0152 (6)0.0050 (5)0.0127 (6)
O20.0509 (7)0.0463 (7)0.0644 (8)0.0010 (6)0.0077 (6)0.0103 (6)
O30.0508 (7)0.0355 (6)0.0399 (6)0.0046 (5)0.0055 (5)0.0104 (5)
S10.0380 (2)0.0521 (2)0.0354 (2)0.01113 (18)0.00434 (16)0.01327 (17)
S20.0403 (2)0.0657 (3)0.0470 (2)0.0160 (2)0.00757 (18)0.0305 (2)
S30.0407 (2)0.0629 (3)0.0344 (2)0.0145 (2)0.00208 (16)0.01077 (19)
S40.0418 (2)0.0618 (3)0.0331 (2)0.01220 (19)0.00430 (16)0.01804 (18)
S50.0472 (3)0.0551 (3)0.0507 (3)0.0212 (2)0.0144 (2)0.0019 (2)
S60.0675 (3)0.0392 (2)0.0371 (2)0.0133 (2)0.0134 (2)0.01131 (17)
Geometric parameters (Å, º) top
C1—N11.135 (2)C10—C111.480 (3)
C1—C21.430 (2)C10—H10A0.9700
C2—C31.343 (2)C10—H10B0.9700
C2—S11.7352 (18)C11—O21.420 (3)
C3—C41.430 (2)C11—H11A0.9700
C3—S21.7318 (18)C11—H11B0.9700
C4—N21.133 (3)C12—O21.411 (2)
C5—C61.348 (2)C12—C131.497 (3)
C5—S11.7615 (18)C12—H12A0.9700
C5—S21.7625 (19)C12—H12B0.9700
C6—S31.7476 (19)C13—O31.420 (2)
C6—S41.7490 (19)C13—H13A0.9700
C7—C161.340 (3)C13—H13B0.9700
C7—S51.7479 (19)C14—O31.414 (2)
C7—S31.764 (2)C14—C151.496 (2)
C8—C91.505 (3)C14—H14A0.9700
C8—S51.823 (2)C14—H14B0.9700
C8—H8A0.9700C15—S61.814 (2)
C8—H8B0.9700C15—H15A0.9700
C9—O11.421 (2)C15—H15B0.9700
C9—H9A0.9700C16—S61.7499 (19)
C9—H9B0.9700C16—S41.7555 (18)
C10—O11.419 (2)
N1—C1—C2179.5 (2)C10—C11—H11B109.7
C3—C2—C1123.03 (15)H11A—C11—H11B108.2
C3—C2—S1118.17 (13)O2—C12—C13111.50 (16)
C1—C2—S1118.78 (13)O2—C12—H12A109.3
C2—C3—C4123.67 (16)C13—C12—H12A109.3
C2—C3—S2118.12 (12)O2—C12—H12B109.3
C4—C3—S2118.19 (14)C13—C12—H12B109.3
N2—C4—C3179.9 (3)H12A—C12—H12B108.0
C6—C5—S1123.07 (13)O3—C13—C12109.47 (15)
C6—C5—S2121.53 (13)O3—C13—H13A109.8
S1—C5—S2115.39 (9)C12—C13—H13A109.8
C5—C6—S3124.32 (14)O3—C13—H13B109.8
C5—C6—S4121.23 (14)C12—C13—H13B109.8
S3—C6—S4114.42 (9)H13A—C13—H13B108.2
C16—C7—S5125.91 (13)O3—C14—C15108.09 (13)
C16—C7—S3117.11 (12)O3—C14—H14A110.1
S5—C7—S3116.72 (11)C15—C14—H14A110.1
C9—C8—S5114.18 (13)O3—C14—H14B110.1
C9—C8—H8A108.7C15—C14—H14B110.1
S5—C8—H8A108.7H14A—C14—H14B108.4
C9—C8—H8B108.7C14—C15—S6113.74 (12)
S5—C8—H8B108.7C14—C15—H15A108.8
H8A—C8—H8B107.6S6—C15—H15A108.8
O1—C9—C8107.67 (14)C14—C15—H15B108.8
O1—C9—H9A110.2S6—C15—H15B108.8
C8—C9—H9A110.2H15A—C15—H15B107.7
O1—C9—H9B110.2C7—C16—S6125.35 (13)
C8—C9—H9B110.2C7—C16—S4116.95 (13)
H9A—C9—H9B108.5S6—C16—S4117.42 (11)
O1—C10—C11116.36 (18)C10—O1—C9116.55 (15)
O1—C10—H10A108.2C12—O2—C11113.79 (15)
C11—C10—H10A108.2C14—O3—C13112.15 (13)
O1—C10—H10B108.2C2—S1—C594.00 (8)
C11—C10—H10B108.2C3—S2—C594.10 (8)
H10A—C10—H10B107.4C6—S3—C795.23 (8)
O2—C11—C10109.80 (18)C6—S4—C1695.58 (9)
O2—C11—H11A109.7C7—S5—C8101.42 (9)
C10—C11—H11A109.7C16—S6—C15100.76 (8)
O2—C11—H11B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N1i0.972.653.534 (3)152
C14—H14A···N1ii0.972.743.691 (3)168
C14—H14B···O1iii0.972.643.401 (3)136
C15—H15A···O1iii0.972.993.402 (3)107
C9—H9A···O2iv0.972.573.406 (3)144
C15—H15B···O3v0.972.473.317 (2)146
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O3S6
Mr476.67
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.300 (5), 9.186 (5), 13.892 (10)
α, β, γ (°)100.42 (3), 92.31 (3), 95.60 (2)
V3)1035.0 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.917, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
10214, 4702, 3936
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.07
No. of reflections4702
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.31

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N1i0.972.653.534 (3)152.2
C14—H14A···N1ii0.972.743.691 (3)168.2
C14—H14B···O1iii0.972.643.401 (3)135.7
C15—H15A···O1iii0.972.993.402 (3)107.3
C9—H9A···O2iv0.972.573.406 (3)143.9
C15—H15B···O3v0.972.473.317 (2)146.4
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269–8276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtsubo, T. & Ogura, F. (1985). Bull. Chem. Soc. Jpn, 58, 1343–1344.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, B. Z., Wang, C. L., Chen, T. & Cong, Z. Q. (2006). Chin. Chem. Reagent, 28, 132–134.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds