metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aquadi-μ3-malonato-hexa­phenyl­ditin(IV)] acetone solvate]

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2010; accepted 18 May 2010; online 22 May 2010)

The asymmetric unit of the title polymeric complex, {[Sn2=(C6H5)6(C3H2O4)(H2O)]·C3H6O}n, comprises of two Sn cations, one malonate anion and a non-coordinating acetone solvent mol­ecule. Both crystallographically independent Sn cations are five-coordinated by two O and three C atoms in a distorted trigonal-bipyrimidal geometry. One of the Sn cations is bridged by the malonate units, affording polymeric chains which run along [001]. Weak intra­molecular C—H⋯π inter­actions stabilize the mol­ecular structure. In the crystal structure, adjacent chains are inter­connected by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional supra­molecular structure. A weak inter­molecular C—H⋯π inter­action is also observed.

Related literature

For general background to and applications of the title complex, see: Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 745-750.]); Ng & Kumar Das (1993[Ng, S. W. & Kumar Das, V. G. (1993). Acta Cryst. C49, 754-756.]); Ng et al. (1990[Ng, S. W., Kumar Das, V. G., Hossain, M. B., Goerlitz, F. & van der Helm, D. (1990). J. Organomet. Chem. 390, 19-28.]); Samuel-Lewis et al. (1992[Samuel-Lewis, A., Smith, P. J., Aupers, J. H., Hampson, D. & Povey, D. C. (1992). J. Organomet. Chem. 437, 131-144.]). For a related bis­(triphenyl­tin) structure, see: Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 745-750.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6O

  • Mr = 878.12

  • Tetragonal, [I \overline 4]

  • a = 23.604 (3) Å

  • c = 13.8458 (18) Å

  • V = 7714.2 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 100 K

  • 0.22 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.953

  • 68157 measured reflections

  • 8900 independent reflections

  • 7984 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.103

  • S = 1.17

  • 8900 reflections

  • 421 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.07 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 4262 Friedel pairs

  • Flack parameter: 0.04 (3)

Table 1
Selected interatomic distances (Å)

Sn1⋯O1 2.333 (4)
Sn1⋯O3i 2.148 (4)
Sn1⋯C1 2.124 (7)
Sn1⋯C7 2.132 (6)
Sn1⋯C13 2.133 (7)
Sn2⋯O2 2.164 (4)
Sn2⋯O1W 2.325 (4)
Sn2⋯C19 2.137 (7)
Sn2⋯C25 2.139 (7)
Sn2⋯C31 2.119 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C7–C12 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4ii 0.86 1.90 2.663 (6) 148
C5—H5A⋯O5iii 0.93 2.59 3.38 (3) 144
C26—H26A⋯O4ii 0.93 2.50 3.356 (8) 154
C8—H8ACg1 0.93 2.83 3.701 (8) 157
C17—H17ACg2iv 0.93 2.79 3.571 (9) 142
C38—H38BCg2 0.97 2.97 3.613 (8) 125
Symmetry codes: (ii) y-1, -x+1, -z+1; (iii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The studies of organotin(IV) carboxylate derivative complexes of dicarboxylic acids have been documented since 1990s and various kind of bis(triorganostannyl) esters of substituted aliphatic dicarboxylic acids have been prepared (Ng, 1998; Ng & Kumar Das, 1993; Ng et al., 1990; Samuel-Lewis et al., 1992). Moreover, the crystal structure of bis[triphenyltin(IV)] succinate and its complexes have also been reported (Ng, 1998; Ng & Kumar Das, 1993). However, the crystal structure of bis[triphenyltin(IV)] derivative of malonic acid has not been reported. In this study, the structure of the title complex is similar to bis[triphenyltin(IV)] succinate. The exception is that the water molecule coordinates to the tin cation.

The asymmetric unit of the title polymeric complex comprises of two crystallographically independent Sn cations (Sn1 and Sn2) and a non-coordinating acetone solvent molecule (Fig. 1). Both Sn cations are five-coordinated by two O and three C atoms. The coordination geometries are distorted from the ideal trigonal bipyrimidal geometry, resulting in see-saw shaped geometries. The coordination environments are different for the two Sn cations (Fig. 2). The Sn1 cation is coordinated to three phenyl ligands and two carbonyl O atoms, forming one-dimensional polymeric chains along the [001] direction whereas the Sn2 cation is coordinated to three phenyl ligands, a water molecule and a carbonyl O atom. Further stabilization of the molecular structure is provided by the weak intramolecular C8—H8A···Cg1 and C38—H38B···Cg2 interactions (Table 2). The O—Sn1—O and O—Sn2—O angles are 174.03 (17) and 173.79 (18)°, respectively. Bond lengths of Sn—O and Sn—C are listed in Table 1. All bond lengths and angles are comparable to a closely related bis(triphenyltin) structure (Ng, 1998).

In the crystal structure (Fig. 3), adjacent polymeric chains are interconnected into a three-dimensional supramolecular structure by intermolecular O1W—H1W1···O4, C5—H5A···O5 and C26—H26A···O4 hydrogen bonds (Table 2). The crystal structure is further stabilized by weak intermolecular C17—H17A···Cg2 (Table 2) involving the centroid of the C7-C12 (Cg2) benzene ring.

Related literature top

For general background to and applications of the title complex, see: Ng (1998); Ng & Kumar Das (1993); Ng et al. (1990); Samuel-Lewis et al. (1992). For a related bis(triphenyltin) structure, see: Ng (1998). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Scheme - show acetone as .C3H6O

Experimental top

The title complex was obtained by heating under reflux a 2:1 molar mixture of triphenyltin(IV) hydroxide (4 mmol, 1.47 g) and malonic acid (2 mmol, 0.21 g) in acetone (60 ml) for 2 h. A clear transparent solution was isolated by filtration and kept in a bottle. Colourless single crystals (1.04 g, yield: 65 %) were obtained after a few days. M.p. 419.5 – 420.7 K. Anal. found for C42H40O6Sn2: C, 57.38; H, 4.69; Sn, 27.18 %. Calc. for C42H40O6Sn2: C, 57.45; H, 4.59; Sn, 27.03 %. FTIR as KBr disc (cm-1): ν(COO)as 1656, ν(COO)s 1335, ν(Sn-O) 633. 1H-NMR: δ: phenyl photons 7.41-7.48 (18H, m, Hmeta+para); 7.65-7.78 (12H, m, Hortho); CH2 3.59 (2H, s) ppm. 13C-NMR: δ: phenyl carbons Cipso 137.77, Cortho 136.78, Cmeta 128.88, Cpara 130.14, CH2 41.65, COO 173.34 ppm.

Refinement top

The water molecule H atoms were located from the difference Fourier map and constrained to ride with the parent atom with Uiso = 1.5 Ueq(O). All other H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the C40 and C42 methyl groups. In the acetone solvent molecule, all atoms were refined isotropically and the C—O and C—C distances were fixed at 1.20 (1) and 1.50 (1) Å, respectively. EADP restraints were also imposed on C4:C8 and C37:C39 atom pairs. 4262 Friedel pairs were used in the final refinement to determine the absolute structure. The highest residual electron density peak is located at 1.25 Å from C41 and the deepest hole is located at 0.84 Å from Sn1.

Structure description top

The studies of organotin(IV) carboxylate derivative complexes of dicarboxylic acids have been documented since 1990s and various kind of bis(triorganostannyl) esters of substituted aliphatic dicarboxylic acids have been prepared (Ng, 1998; Ng & Kumar Das, 1993; Ng et al., 1990; Samuel-Lewis et al., 1992). Moreover, the crystal structure of bis[triphenyltin(IV)] succinate and its complexes have also been reported (Ng, 1998; Ng & Kumar Das, 1993). However, the crystal structure of bis[triphenyltin(IV)] derivative of malonic acid has not been reported. In this study, the structure of the title complex is similar to bis[triphenyltin(IV)] succinate. The exception is that the water molecule coordinates to the tin cation.

The asymmetric unit of the title polymeric complex comprises of two crystallographically independent Sn cations (Sn1 and Sn2) and a non-coordinating acetone solvent molecule (Fig. 1). Both Sn cations are five-coordinated by two O and three C atoms. The coordination geometries are distorted from the ideal trigonal bipyrimidal geometry, resulting in see-saw shaped geometries. The coordination environments are different for the two Sn cations (Fig. 2). The Sn1 cation is coordinated to three phenyl ligands and two carbonyl O atoms, forming one-dimensional polymeric chains along the [001] direction whereas the Sn2 cation is coordinated to three phenyl ligands, a water molecule and a carbonyl O atom. Further stabilization of the molecular structure is provided by the weak intramolecular C8—H8A···Cg1 and C38—H38B···Cg2 interactions (Table 2). The O—Sn1—O and O—Sn2—O angles are 174.03 (17) and 173.79 (18)°, respectively. Bond lengths of Sn—O and Sn—C are listed in Table 1. All bond lengths and angles are comparable to a closely related bis(triphenyltin) structure (Ng, 1998).

In the crystal structure (Fig. 3), adjacent polymeric chains are interconnected into a three-dimensional supramolecular structure by intermolecular O1W—H1W1···O4, C5—H5A···O5 and C26—H26A···O4 hydrogen bonds (Table 2). The crystal structure is further stabilized by weak intermolecular C17—H17A···Cg2 (Table 2) involving the centroid of the C7-C12 (Cg2) benzene ring.

For general background to and applications of the title complex, see: Ng (1998); Ng & Kumar Das (1993); Ng et al. (1990); Samuel-Lewis et al. (1992). For a related bis(triphenyltin) structure, see: Ng (1998). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Scheme - show acetone as .C3H6O

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title polymeric complex, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the polymeric chain, showing the coordination environment of Sn cations. Non-coordinating acetone solvent molecule and H atoms have been omitted for clarity. Symmetry codes: (a) -x+1/2, -y+3/2, z-1/2 (b)-x+1/2, -y+3/2, z+1/2
[Figure 3] Fig. 3. The crystal structure of the title polymeric complex, viewed along the c axis, showing the polymeric chains being linked into a three-dimensional supramolecular structure. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
Poly[[aquadi-µ3-malonato-hexaphenylditin(IV)] acetone solvate] top
Crystal data top
[Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6ODx = 1.512 Mg m3
Mr = 878.12Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 9959 reflections
Hall symbol: I -4θ = 2.4–29.2°
a = 23.604 (3) ŵ = 1.34 mm1
c = 13.8458 (18) ÅT = 100 K
V = 7714.2 (17) Å3Plate, colourless
Z = 80.22 × 0.13 × 0.04 mm
F(000) = 3520
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8900 independent reflections
Radiation source: fine-focus sealed tube7984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3030
Tmin = 0.754, Tmax = 0.953k = 3030
68157 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.P)2 + 93.8407P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
8900 reflectionsΔρmax = 0.97 e Å3
421 parametersΔρmin = 1.07 e Å3
3 restraintsAbsolute structure: Flack (1983); 4262 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
[Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6OZ = 8
Mr = 878.12Mo Kα radiation
Tetragonal, I4µ = 1.34 mm1
a = 23.604 (3) ÅT = 100 K
c = 13.8458 (18) Å0.22 × 0.13 × 0.04 mm
V = 7714.2 (17) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7984 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.953Rint = 0.099
68157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.P)2 + 93.8407P]
where P = (Fo2 + 2Fc2)/3
S = 1.17Δρmax = 0.97 e Å3
8900 reflectionsΔρmin = 1.07 e Å3
421 parametersAbsolute structure: Flack (1983); 4262 Friedel pairs
3 restraintsAbsolute structure parameter: 0.04 (3)
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.217535 (17)0.739451 (17)0.13286 (3)0.01387 (9)
Sn20.036022 (17)0.791156 (19)0.37080 (3)0.01716 (10)
O10.15759 (19)0.7609 (2)0.2618 (3)0.0145 (9)
O20.12560 (18)0.8069 (2)0.3907 (3)0.0178 (10)
O30.2318 (2)0.77354 (19)0.5059 (3)0.0156 (9)
O40.2431 (2)0.8673 (2)0.5045 (3)0.0192 (10)
C10.1443 (3)0.7032 (3)0.0687 (5)0.0186 (14)
C20.1082 (3)0.6687 (3)0.1211 (7)0.0302 (17)
H2A0.11460.66220.18650.036*
C30.0618 (4)0.6435 (4)0.0742 (7)0.044 (2)
H3A0.03700.62110.10990.053*
C40.0520 (3)0.6508 (4)0.0206 (6)0.0311 (12)
H4A0.02140.63290.05010.037*
C50.0877 (4)0.6850 (4)0.0738 (6)0.043 (2)
H5A0.08080.69050.13920.051*
C60.1346 (3)0.7117 (4)0.0299 (5)0.0299 (18)
H6A0.15870.73460.06600.036*
C70.2330 (3)0.8282 (3)0.1215 (5)0.0164 (13)
C80.1879 (3)0.8657 (3)0.1222 (7)0.0311 (12)
H8A0.15090.85230.12360.037*
C90.1984 (3)0.9234 (3)0.1208 (6)0.0242 (16)
H9A0.16820.94860.11710.029*
C100.2528 (3)0.9440 (3)0.1246 (7)0.0337 (18)
H10A0.25920.98280.12580.040*
C110.2972 (3)0.9074 (3)0.1267 (7)0.0323 (16)
H11A0.33400.92120.12930.039*
C120.2877 (3)0.8498 (3)0.1249 (7)0.0256 (15)
H12A0.31830.82500.12600.031*
C130.2702 (3)0.6933 (3)0.2302 (5)0.0165 (13)
C140.3288 (3)0.6913 (3)0.2152 (5)0.0228 (15)
H14A0.34490.71040.16330.027*
C150.3635 (3)0.6601 (4)0.2795 (6)0.0330 (19)
H15A0.40260.66000.27130.040*
C160.3395 (4)0.6300 (3)0.3539 (6)0.036 (2)
H16A0.36230.60770.39350.044*
C170.2809 (3)0.6324 (3)0.3708 (6)0.0316 (17)
H17A0.26500.61290.42250.038*
C180.2473 (3)0.6642 (3)0.3096 (5)0.0185 (14)
H18A0.20860.66630.32120.022*
C190.0405 (3)0.7008 (3)0.3759 (5)0.0203 (14)
C200.0015 (4)0.6672 (4)0.3374 (6)0.034 (2)
H20A0.03340.68380.30970.041*
C210.0036 (5)0.6079 (4)0.3399 (7)0.049 (3)
H21A0.02520.58550.31470.059*
C220.0506 (4)0.5827 (4)0.3790 (8)0.043 (2)
H22A0.05390.54340.38020.052*
C230.0934 (4)0.6165 (4)0.4168 (7)0.039 (2)
H23A0.12550.59970.44300.047*
C240.0887 (3)0.6751 (3)0.4158 (5)0.0251 (16)
H24A0.11760.69730.44150.030*
C250.0251 (3)0.8406 (3)0.4989 (5)0.0222 (16)
C260.0171 (3)0.8283 (3)0.5668 (5)0.0231 (16)
H26A0.04210.79860.55560.028*
C270.0219 (3)0.8604 (3)0.6510 (5)0.0255 (17)
H27A0.04940.85140.69660.031*
C280.0143 (4)0.9055 (4)0.6665 (6)0.034 (2)
H28A0.01080.92730.72210.041*
C290.0555 (3)0.9182 (4)0.5996 (6)0.0315 (19)
H29A0.07980.94850.61030.038*
C300.0609 (3)0.8857 (3)0.5161 (5)0.0269 (17)
H30A0.08900.89450.47140.032*
C310.0315 (3)0.8320 (3)0.2348 (5)0.0178 (15)
C320.0313 (3)0.8901 (3)0.2256 (5)0.0211 (16)
H32A0.03140.91210.28130.025*
C330.0311 (3)0.9169 (3)0.1369 (7)0.0265 (15)
H33A0.03070.95630.13370.032*
C340.0316 (3)0.8851 (4)0.0528 (6)0.0266 (18)
H34A0.03120.90290.00710.032*
C350.0327 (3)0.8264 (4)0.0589 (5)0.0253 (17)
H35A0.03380.80460.00300.030*
C360.0321 (3)0.8009 (3)0.1475 (5)0.0247 (15)
H36A0.03200.76150.15060.030*
C370.1639 (3)0.7929 (3)0.3331 (4)0.0127 (9)
C380.2218 (3)0.8202 (3)0.3560 (5)0.0157 (13)
H38A0.25170.79850.32540.019*
H38B0.22280.85830.33010.019*
C390.2319 (3)0.8221 (3)0.4648 (4)0.0127 (9)
O1W0.06172 (18)0.7845 (2)0.3536 (3)0.0201 (11)
H1W10.08020.76290.39190.030*
H2W10.07590.81790.36090.030*
O50.1396 (14)0.4466 (12)0.798 (2)0.357 (17)*
C400.1640 (7)0.5374 (7)0.8785 (16)0.124 (6)*
H40A0.20280.53380.85860.186*
H40B0.16160.53390.94750.186*
H40C0.14980.57380.85930.186*
C410.1293 (10)0.4918 (11)0.8319 (19)0.179 (11)*
C420.0680 (10)0.4962 (11)0.861 (2)0.214 (12)*
H42A0.04900.46130.84690.321*
H42B0.05030.52660.82650.321*
H42C0.06570.50360.92940.321*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0163 (2)0.0163 (2)0.00904 (16)0.00189 (17)0.00150 (19)0.00057 (19)
Sn20.0135 (2)0.0274 (2)0.01057 (17)0.00137 (17)0.00065 (19)0.0023 (2)
O10.017 (2)0.018 (2)0.008 (2)0.0039 (18)0.0035 (18)0.0030 (17)
O20.009 (2)0.030 (3)0.015 (2)0.0023 (19)0.0021 (17)0.0051 (19)
O30.022 (3)0.014 (2)0.011 (2)0.0023 (19)0.0067 (18)0.0026 (18)
O40.028 (3)0.015 (2)0.016 (2)0.001 (2)0.000 (2)0.0035 (19)
C10.016 (3)0.021 (4)0.019 (3)0.004 (3)0.004 (3)0.003 (3)
C20.024 (4)0.030 (4)0.036 (4)0.010 (3)0.000 (4)0.004 (4)
C30.021 (4)0.049 (6)0.061 (6)0.015 (4)0.001 (4)0.008 (5)
C40.025 (3)0.031 (3)0.037 (3)0.001 (2)0.005 (3)0.010 (3)
C50.031 (5)0.065 (7)0.034 (5)0.022 (5)0.017 (4)0.013 (4)
C60.027 (4)0.044 (5)0.019 (3)0.009 (4)0.003 (3)0.009 (3)
C70.029 (3)0.014 (3)0.006 (3)0.003 (3)0.003 (3)0.004 (3)
C80.025 (3)0.031 (3)0.037 (3)0.001 (2)0.005 (3)0.010 (3)
C90.037 (4)0.016 (3)0.019 (4)0.006 (3)0.000 (3)0.008 (3)
C100.043 (5)0.017 (3)0.041 (5)0.006 (3)0.009 (5)0.003 (4)
C110.037 (4)0.028 (4)0.032 (4)0.009 (3)0.001 (4)0.003 (4)
C120.024 (3)0.017 (3)0.035 (4)0.001 (3)0.008 (4)0.005 (4)
C130.021 (3)0.015 (3)0.014 (3)0.003 (3)0.003 (3)0.002 (3)
C140.022 (4)0.022 (4)0.024 (4)0.001 (3)0.004 (3)0.005 (3)
C150.021 (4)0.043 (5)0.035 (4)0.007 (4)0.007 (3)0.011 (4)
C160.050 (5)0.027 (4)0.032 (5)0.012 (4)0.019 (4)0.012 (4)
C170.047 (4)0.034 (4)0.014 (3)0.014 (3)0.000 (4)0.004 (4)
C180.019 (4)0.018 (3)0.019 (3)0.003 (3)0.005 (3)0.001 (3)
C190.019 (3)0.035 (4)0.007 (3)0.007 (3)0.003 (3)0.006 (3)
C200.033 (5)0.034 (5)0.036 (4)0.006 (4)0.004 (3)0.013 (4)
C210.057 (6)0.032 (5)0.059 (7)0.001 (5)0.004 (5)0.020 (4)
C220.054 (5)0.031 (4)0.045 (5)0.020 (4)0.010 (5)0.004 (5)
C230.031 (5)0.045 (5)0.041 (5)0.013 (4)0.005 (4)0.006 (4)
C240.019 (4)0.034 (4)0.022 (4)0.012 (3)0.002 (3)0.009 (3)
C250.019 (4)0.032 (4)0.016 (3)0.001 (3)0.005 (3)0.004 (3)
C260.015 (3)0.036 (4)0.018 (3)0.008 (3)0.004 (3)0.001 (3)
C270.019 (3)0.043 (5)0.015 (4)0.005 (3)0.005 (3)0.003 (3)
C280.026 (4)0.050 (6)0.026 (4)0.002 (4)0.000 (3)0.016 (4)
C290.025 (4)0.037 (5)0.032 (4)0.006 (4)0.006 (3)0.017 (3)
C300.024 (4)0.033 (4)0.024 (4)0.003 (3)0.008 (3)0.010 (3)
C310.011 (3)0.030 (4)0.013 (3)0.000 (3)0.005 (3)0.001 (3)
C320.019 (4)0.029 (4)0.016 (3)0.001 (3)0.003 (3)0.007 (3)
C330.025 (4)0.026 (4)0.028 (4)0.003 (3)0.005 (4)0.003 (4)
C340.023 (4)0.039 (5)0.019 (4)0.003 (4)0.001 (3)0.004 (3)
C350.027 (4)0.036 (5)0.013 (3)0.010 (4)0.002 (3)0.001 (3)
C360.021 (4)0.023 (4)0.030 (4)0.001 (3)0.000 (3)0.002 (3)
C370.011 (2)0.020 (2)0.0064 (18)0.0028 (18)0.0038 (16)0.0045 (17)
C380.019 (3)0.019 (3)0.010 (3)0.004 (2)0.003 (3)0.002 (3)
C390.011 (2)0.020 (2)0.0064 (18)0.0028 (18)0.0038 (16)0.0045 (17)
O1W0.009 (2)0.034 (3)0.018 (3)0.0001 (19)0.0007 (18)0.002 (2)
Geometric parameters (Å, º) top
Sn1—C12.124 (7)C19—C201.378 (11)
Sn1—C72.132 (6)C19—C241.403 (9)
Sn1—C132.133 (7)C20—C211.405 (12)
Sn1—O3i2.148 (4)C20—H20A0.9300
Sn1—O12.333 (4)C21—C221.370 (13)
Sn2—C312.119 (7)C21—H21A0.9300
Sn2—C192.137 (7)C22—C231.390 (13)
Sn2—C252.139 (7)C22—H22A0.9300
Sn2—O22.164 (4)C23—C241.387 (12)
Sn2—O1W2.325 (4)C23—H23A0.9300
O1—C371.252 (8)C24—H24A0.9300
O2—C371.249 (7)C25—C301.379 (11)
O3—C391.279 (8)C25—C261.400 (10)
O3—Sn1ii2.148 (4)C26—C271.395 (10)
O4—C391.230 (8)C26—H26A0.9300
C1—C21.384 (10)C27—C281.383 (12)
C1—C61.399 (10)C27—H27A0.9300
C2—C31.406 (11)C28—C291.375 (11)
C2—H2A0.9300C28—H28A0.9300
C3—C41.343 (13)C29—C301.394 (10)
C3—H3A0.9300C29—H29A0.9300
C4—C51.380 (13)C30—H30A0.9300
C4—H4A0.9300C31—C321.376 (11)
C5—C61.411 (12)C31—C361.414 (10)
C5—H5A0.9300C32—C331.382 (11)
C6—H6A0.9300C32—H32A0.9300
C7—C81.385 (9)C33—C341.385 (12)
C7—C121.387 (9)C33—H33A0.9300
C8—C91.384 (10)C34—C351.387 (12)
C8—H8A0.9300C34—H34A0.9300
C9—C101.373 (10)C35—C361.368 (10)
C9—H9A0.9300C35—H35A0.9300
C10—C111.358 (11)C36—H36A0.9300
C10—H10A0.9300C37—C381.544 (9)
C11—C121.379 (9)C38—C391.525 (8)
C11—H11A0.9300C38—H38A0.9700
C12—H12A0.9300C38—H38B0.9700
C13—C141.401 (10)O1W—H1W10.8551
C13—C181.403 (9)O1W—H2W10.8618
C14—C151.416 (11)O5—C411.189 (10)
C14—H14A0.9300C40—C411.498 (10)
C15—C161.375 (12)C40—H40A0.9600
C15—H15A0.9300C40—H40B0.9600
C16—C171.403 (12)C40—H40C0.9600
C16—H16A0.9300C41—C421.507 (10)
C17—C181.383 (10)C42—H42A0.9600
C17—H17A0.9300C42—H42B0.9600
C18—H18A0.9300C42—H42C0.9600
Sn1···O12.333 (4)Sn2···O22.164 (4)
Sn1···O3i2.148 (4)Sn2···O1W2.325 (4)
Sn1···C12.124 (7)Sn2···C192.137 (7)
Sn1···C72.132 (6)Sn2···C252.139 (7)
Sn1···C132.133 (7)Sn2···C312.119 (7)
C1—Sn1—C7120.3 (3)C19—C20—H20A120.0
C1—Sn1—C13122.2 (3)C21—C20—H20A120.0
C7—Sn1—C13116.7 (3)C22—C21—C20120.8 (9)
C1—Sn1—O3i93.1 (2)C22—C21—H21A119.6
C7—Sn1—O3i89.1 (2)C20—C21—H21A119.6
C13—Sn1—O3i96.9 (2)C21—C22—C23119.2 (8)
C1—Sn1—O185.0 (2)C21—C22—H22A120.4
C7—Sn1—O187.0 (2)C23—C22—H22A120.4
C13—Sn1—O188.9 (2)C24—C23—C22120.8 (8)
O3i—Sn1—O1174.03 (17)C24—C23—H23A119.6
C31—Sn2—C19119.1 (3)C22—C23—H23A119.6
C31—Sn2—C25118.9 (3)C23—C24—C19119.9 (8)
C19—Sn2—C25121.5 (3)C23—C24—H24A120.0
C31—Sn2—O294.9 (2)C19—C24—H24A120.0
C19—Sn2—O296.8 (2)C30—C25—C26118.7 (7)
C25—Sn2—O285.3 (2)C30—C25—Sn2119.4 (5)
C31—Sn2—O1W83.6 (2)C26—C25—Sn2121.9 (6)
C19—Sn2—O1W89.2 (2)C27—C26—C25120.5 (7)
C25—Sn2—O1W90.1 (2)C27—C26—H26A119.8
O2—Sn2—O1W173.79 (18)C25—C26—H26A119.8
C37—O1—Sn1131.5 (4)C28—C27—C26119.8 (7)
C37—O2—Sn2125.4 (4)C28—C27—H27A120.1
C39—O3—Sn1ii119.4 (4)C26—C27—H27A120.1
C2—C1—C6119.7 (7)C29—C28—C27120.0 (7)
C2—C1—Sn1121.3 (5)C29—C28—H28A120.0
C6—C1—Sn1118.9 (6)C27—C28—H28A120.0
C1—C2—C3119.1 (8)C28—C29—C30120.3 (8)
C1—C2—H2A120.4C28—C29—H29A119.9
C3—C2—H2A120.4C30—C29—H29A119.9
C4—C3—C2122.1 (9)C25—C30—C29120.7 (7)
C4—C3—H3A119.0C25—C30—H30A119.6
C2—C3—H3A119.0C29—C30—H30A119.6
C3—C4—C5119.4 (8)C32—C31—C36116.1 (7)
C3—C4—H4A120.3C32—C31—Sn2122.4 (5)
C5—C4—H4A120.3C36—C31—Sn2121.5 (6)
C4—C5—C6120.7 (8)C31—C32—C33122.6 (7)
C4—C5—H5A119.7C31—C32—H32A118.7
C6—C5—H5A119.7C33—C32—H32A118.7
C1—C6—C5119.0 (8)C32—C33—C34119.9 (7)
C1—C6—H6A120.5C32—C33—H33A120.1
C5—C6—H6A120.5C34—C33—H33A120.1
C8—C7—C12118.6 (6)C33—C34—C35119.4 (7)
C8—C7—Sn1119.8 (5)C33—C34—H34A120.3
C12—C7—Sn1121.2 (5)C35—C34—H34A120.3
C9—C8—C7119.5 (7)C36—C35—C34119.6 (7)
C9—C8—H8A120.3C36—C35—H35A120.2
C7—C8—H8A120.3C34—C35—H35A120.2
C10—C9—C8120.9 (7)C35—C36—C31122.5 (7)
C10—C9—H9A119.5C35—C36—H36A118.8
C8—C9—H9A119.5C31—C36—H36A118.8
C11—C10—C9119.8 (7)O2—C37—O1125.3 (6)
C11—C10—H10A120.1O2—C37—C38113.5 (5)
C9—C10—H10A120.1O1—C37—C38121.2 (6)
C10—C11—C12120.1 (7)C39—C38—C37110.7 (5)
C10—C11—H11A120.0C39—C38—H38A109.5
C12—C11—H11A120.0C37—C38—H38A109.5
C11—C12—C7120.9 (7)C39—C38—H38B109.5
C11—C12—H12A119.5C37—C38—H38B109.5
C7—C12—H12A119.5H38A—C38—H38B108.1
C14—C13—C18118.7 (6)O4—C39—O3125.3 (6)
C14—C13—Sn1119.9 (5)O4—C39—C38120.1 (6)
C18—C13—Sn1121.4 (5)O3—C39—C38114.4 (6)
C13—C14—C15119.7 (7)Sn2—O1W—H1W1118.8
C13—C14—H14A120.2Sn2—O1W—H2W1108.1
C15—C14—H14A120.2H1W1—O1W—H2W1105.9
C16—C15—C14120.1 (8)C41—C40—H40A109.5
C16—C15—H15A119.9C41—C40—H40B109.5
C14—C15—H15A119.9H40A—C40—H40B109.5
C15—C16—C17120.7 (8)C41—C40—H40C109.5
C15—C16—H16A119.7H40A—C40—H40C109.5
C17—C16—H16A119.7H40B—C40—H40C109.5
C18—C17—C16119.0 (8)O5—C41—C40135 (3)
C18—C17—H17A120.5O5—C41—C42111 (3)
C16—C17—H17A120.5C40—C41—C42111 (2)
C17—C18—C13121.7 (7)C41—C42—H42A109.5
C17—C18—H18A119.2C41—C42—H42B109.5
C13—C18—H18A119.2H42A—C42—H42B109.5
C20—C19—C24119.2 (7)C41—C42—H42C109.5
C20—C19—Sn2121.7 (6)H42A—C42—H42C109.5
C24—C19—Sn2119.0 (5)H42B—C42—H42C109.5
C19—C20—C21120.1 (8)
C1—Sn1—O1—C37166.9 (6)O2—Sn2—C19—C20159.2 (6)
C7—Sn1—O1—C3746.0 (6)O1W—Sn2—C19—C2022.5 (6)
C13—Sn1—O1—C3770.7 (6)C31—Sn2—C19—C24117.4 (6)
C31—Sn2—O2—C3755.5 (6)C25—Sn2—C19—C2470.7 (6)
C19—Sn2—O2—C3764.6 (5)O2—Sn2—C19—C2417.9 (6)
C25—Sn2—O2—C37174.2 (6)O1W—Sn2—C19—C24160.4 (6)
C7—Sn1—C1—C2128.6 (6)C24—C19—C20—C211.2 (12)
C13—Sn1—C1—C240.5 (7)Sn2—C19—C20—C21178.3 (7)
O3i—Sn1—C1—C2140.6 (6)C19—C20—C21—C221.0 (14)
O1—Sn1—C1—C245.0 (6)C20—C21—C22—C230.2 (15)
C7—Sn1—C1—C655.4 (6)C21—C22—C23—C240.4 (14)
C13—Sn1—C1—C6135.5 (6)C22—C23—C24—C190.3 (12)
O3i—Sn1—C1—C635.4 (6)C20—C19—C24—C230.6 (11)
O1—Sn1—C1—C6138.9 (6)Sn2—C19—C24—C23177.8 (6)
C6—C1—C2—C31.0 (11)C31—Sn2—C25—C3058.1 (7)
Sn1—C1—C2—C3177.0 (6)C19—Sn2—C25—C30130.0 (6)
C1—C2—C3—C41.6 (14)O2—Sn2—C25—C3034.9 (6)
C2—C3—C4—C51.4 (14)O1W—Sn2—C25—C30140.9 (6)
C3—C4—C5—C60.7 (13)C31—Sn2—C25—C26122.5 (6)
C2—C1—C6—C50.4 (11)C19—Sn2—C25—C2649.4 (7)
Sn1—C1—C6—C5176.4 (6)O2—Sn2—C25—C26144.5 (7)
C4—C5—C6—C10.2 (12)O1W—Sn2—C25—C2639.7 (6)
C1—Sn1—C7—C834.8 (7)C30—C25—C26—C271.4 (12)
C13—Sn1—C7—C8134.9 (6)Sn2—C25—C26—C27178.0 (6)
O3i—Sn1—C7—C8127.8 (6)C25—C26—C27—C281.7 (12)
O1—Sn1—C7—C847.7 (6)C26—C27—C28—C291.0 (13)
C1—Sn1—C7—C12152.9 (6)C27—C28—C29—C300.1 (13)
C13—Sn1—C7—C1237.4 (7)C26—C25—C30—C290.5 (12)
O3i—Sn1—C7—C1259.9 (6)Sn2—C25—C30—C29178.9 (6)
O1—Sn1—C7—C12124.6 (6)C28—C29—C30—C250.2 (13)
C12—C7—C8—C93.6 (12)C19—Sn2—C31—C32176.7 (6)
Sn1—C7—C8—C9176.1 (6)C25—Sn2—C31—C3211.2 (7)
C7—C8—C9—C104.0 (13)O2—Sn2—C31—C3276.1 (6)
C8—C9—C10—C112.2 (14)O1W—Sn2—C31—C3297.8 (7)
C9—C10—C11—C120.0 (15)C19—Sn2—C31—C360.8 (7)
C10—C11—C12—C70.3 (15)C25—Sn2—C31—C36172.9 (6)
C8—C7—C12—C111.5 (13)O2—Sn2—C31—C3699.8 (6)
Sn1—C7—C12—C11173.9 (7)O1W—Sn2—C31—C3686.3 (6)
C1—Sn1—C13—C14129.2 (5)C36—C31—C32—C330.7 (11)
C7—Sn1—C13—C1461.3 (6)Sn2—C31—C32—C33176.8 (6)
O3i—Sn1—C13—C1431.2 (6)C31—C32—C33—C340.6 (11)
O1—Sn1—C13—C14147.3 (5)C32—C33—C34—C350.4 (11)
C1—Sn1—C13—C1850.4 (6)C33—C34—C35—C361.3 (12)
C7—Sn1—C13—C18119.0 (6)C34—C35—C36—C311.3 (12)
O3i—Sn1—C13—C18148.5 (5)C32—C31—C36—C350.2 (11)
O1—Sn1—C13—C1833.0 (5)Sn2—C31—C36—C35175.9 (6)
C18—C13—C14—C150.3 (10)Sn2—O2—C37—O110.4 (9)
Sn1—C13—C14—C15179.3 (5)Sn2—O2—C37—C38168.2 (4)
C13—C14—C15—C162.6 (11)Sn1—O1—C37—O2169.6 (4)
C14—C15—C16—C173.8 (12)Sn1—O1—C37—C388.9 (9)
C15—C16—C17—C182.0 (11)O2—C37—C38—C3939.1 (8)
C16—C17—C18—C131.0 (11)O1—C37—C38—C39142.2 (6)
C14—C13—C18—C172.1 (10)Sn1ii—O3—C39—O424.6 (9)
Sn1—C13—C18—C17177.5 (5)Sn1ii—O3—C39—C38150.1 (4)
C31—Sn2—C19—C2059.7 (7)C37—C38—C39—O4125.3 (7)
C25—Sn2—C19—C20112.2 (7)C37—C38—C39—O359.7 (7)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C7–C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4iii0.861.902.663 (6)148
C5—H5A···O5iv0.932.593.38 (3)144
C26—H26A···O4iii0.932.503.356 (8)154
C8—H8A···Cg10.932.833.701 (8)157
C17—H17A···Cg2ii0.932.793.571 (9)142
C38—H38B···Cg20.972.973.613 (8)125
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) y1, x+1, z+1; (iv) y+1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6O
Mr878.12
Crystal system, space groupTetragonal, I4
Temperature (K)100
a, c (Å)23.604 (3), 13.8458 (18)
V3)7714.2 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.22 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.754, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
68157, 8900, 7984
Rint0.099
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.103, 1.17
No. of reflections8900
No. of parameters421
No. of restraints3
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 93.8407P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.97, 1.07
Absolute structureFlack (1983); 4262 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected interatomic distances (Å) top
Sn1···O12.333 (4)Sn2···O22.164 (4)
Sn1···O3i2.148 (4)Sn2···O1W2.325 (4)
Sn1···C12.124 (7)Sn2···C192.137 (7)
Sn1···C72.132 (6)Sn2···C252.139 (7)
Sn1···C132.133 (7)Sn2···C312.119 (7)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C7–C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4ii0.86001.90002.663 (6)148.00
C5—H5A···O5iii0.93002.59003.38 (3)144.00
C26—H26A···O4ii0.93002.50003.356 (8)154.00
C8—H8A···Cg10.93002.833.701 (8)157
C17—H17A···Cg2iv0.93002.793.571 (9)142
C38—H38B···Cg20.97002.973.613 (8)125
Symmetry codes: (ii) y1, x+1, z+1; (iii) y+1/2, x+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Vote No. 6200/Y02) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1998). Acta Cryst. C54, 745–750.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1993). Acta Cryst. C49, 754–756.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W., Kumar Das, V. G., Hossain, M. B., Goerlitz, F. & van der Helm, D. (1990). J. Organomet. Chem. 390, 19–28.  CAS Google Scholar
First citationSamuel-Lewis, A., Smith, P. J., Aupers, J. H., Hampson, D. & Povey, D. C. (1992). J. Organomet. Chem. 437, 131–144.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds