organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6,7,9,10,12,13,15,16,18-Deca­hydro-1,3-di­thiolo[4,5-l][1,4,7,10,15]trioxadi­thia­cyclo­hepta­decine-2-thione

aKey Laboratory of Organism Functional Factors of the Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 29 March 2010; accepted 10 May 2010; online 15 May 2010)

The title compound, C13H20O3S5, is bis­ected by a crystallographic twofold rotation axis, which relates the two halves of the mol­ecule to one another: one S, one C and one O atom lie on the axis. The thione S atom lies in the plane of the five-membered rings with an r.m.s. deviation of 0.0042 (5) Å. Parts of the 17-membered macrocycle were refined using a two-part disorder model [occupancies of 0.553 (14) and 0.447 (14)]. There are no noteworthy inter­molecular inter­actions.

Related literature

Thia­crown ether annulated 1,3-dithiol-2-thione is a key inter­mediate of the crown ether-bearing redox-active tetra­thia­fulvalene moiety, see: Moore et al. (2000[Moore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269-8276.]). For details of the synthesis, see: Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For a related structure, see: Hou et al. (2009[Hou, R.-B., Li, B., Che, T., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o2538.])

[Scheme 1]

Experimental

Crystal data
  • C13H20O3S5

  • Mr = 384.59

  • Monoclinic, C 2/c

  • a = 14.040 (3) Å

  • b = 13.616 (3) Å

  • c = 10.004 (2) Å

  • β = 110.89 (3)°

  • V = 1786.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 290 K

  • 0.13 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.920, Tmax = 0.926

  • 8683 measured reflections

  • 2054 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.05

  • 2054 reflections

  • 116 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiacrown ether annulated 1,3-dithiol-2-thione has been intensively investigated because it is a key intermediate of the crown ether bearing redox-active tetrathiafulvalene moiety (Moore et al., 2000). Herein, we report the crystal structure of the title compound, (I).

The molecule structure of title compound, C13H20O3S5, is shown in Fig. 1. All bond lengths and angles are unexceptional and comparable with the related structure (Hou et al., 2009). The C6, C7 and C6', C7' atoms were refined using a two-part disorder model with a major:minor occupancy ratio of 55:45.

Related literature top

Thiacrown ether annulated 1,3-dithiol-2-thione is a key intermediate of the crown ether-bearing redox-active tetrathiafulvalene moiety, see: Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009)

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaperation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.97 Å) and were included in the refinement with Uiso(H) = 1.2 Ueq(C). Atoms C6, C7 and C6', C7' were refined using a two-part disorder model with a major:minor occupancy ratio of 55:45. Mild rigid bond restraints were used on the disordered components.

Structure description top

Thiacrown ether annulated 1,3-dithiol-2-thione has been intensively investigated because it is a key intermediate of the crown ether bearing redox-active tetrathiafulvalene moiety (Moore et al., 2000). Herein, we report the crystal structure of the title compound, (I).

The molecule structure of title compound, C13H20O3S5, is shown in Fig. 1. All bond lengths and angles are unexceptional and comparable with the related structure (Hou et al., 2009). The C6, C7 and C6', C7' atoms were refined using a two-part disorder model with a major:minor occupancy ratio of 55:45.

Thiacrown ether annulated 1,3-dithiol-2-thione is a key intermediate of the crown ether-bearing redox-active tetrathiafulvalene moiety, see: Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. The disordered C6', C7' and their attached H atoms are omitted for clarity. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
4,6,7,9,10,12,13,15,16,18-Decahydro-1,3-dithiolo[4,5- l][1,4,7,10,15]trioxadithiacycloheptadecine-2-thione top
Crystal data top
C13H20O3S5F(000) = 808
Mr = 384.59Dx = 1.430 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7120 reflections
a = 14.040 (3) Åθ = 3.0–27.5°
b = 13.616 (3) ŵ = 0.65 mm1
c = 10.004 (2) ÅT = 290 K
β = 110.89 (3)°Block, yellow
V = 1786.6 (6) Å30.13 × 0.13 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2054 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1817
Tmin = 0.920, Tmax = 0.926k = 1517
8683 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.730P]
where P = (Fo2 + 2Fc2)/3
2054 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.38 e Å3
31 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H20O3S5V = 1786.6 (6) Å3
Mr = 384.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.040 (3) ŵ = 0.65 mm1
b = 13.616 (3) ÅT = 290 K
c = 10.004 (2) Å0.13 × 0.13 × 0.12 mm
β = 110.89 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2054 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1795 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.926Rint = 0.022
8683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03931 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
2054 reflectionsΔρmin = 0.40 e Å3
116 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.00000.12281 (6)0.25000.0692 (3)
S20.05129 (4)0.06857 (4)0.14909 (6)0.04829 (17)
S30.17462 (5)0.26384 (5)0.11969 (8)0.0693 (2)
O10.17749 (17)0.40044 (19)0.3861 (3)0.1067 (8)
O20.00000.5091 (3)0.25000.1381 (16)
C10.00000.0016 (2)0.25000.0456 (6)
C20.02260 (13)0.18371 (13)0.2012 (2)0.0390 (4)
C30.04873 (15)0.27043 (15)0.1292 (2)0.0493 (5)
H3A0.04400.32950.18070.059*
H3B0.00100.27570.03300.059*
C40.25511 (19)0.2730 (2)0.3037 (4)0.0816 (9)
H4A0.22780.23080.35940.098*
H4B0.32210.24810.31380.098*
C50.2672 (2)0.3743 (2)0.3658 (4)0.0896 (10)
H5A0.32380.37580.45640.108*
H5B0.28130.42050.30130.108*
C60.1737 (6)0.4901 (6)0.4396 (11)0.092 (2)0.553 (14)
H6A0.24090.51990.47530.111*0.553 (14)
H6B0.14730.48680.51690.111*0.553 (14)
C70.1044 (10)0.5461 (6)0.3178 (12)0.099 (3)0.553 (14)
H7A0.10040.61260.35010.118*0.553 (14)
H7B0.13510.54970.24510.118*0.553 (14)
C6'0.1649 (8)0.5194 (7)0.3562 (16)0.083 (3)0.447 (14)
H6'10.21300.55490.43600.100*0.447 (14)
H6'20.17850.53560.27030.100*0.447 (14)
C7'0.0574 (11)0.5476 (8)0.3385 (11)0.092 (3)0.447 (14)
H7'10.04590.53330.42660.110*0.447 (14)
H7'20.04910.61780.32190.110*0.447 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0894 (6)0.0347 (4)0.0982 (7)0.0000.0513 (5)0.000
S20.0524 (3)0.0401 (3)0.0612 (3)0.00140 (19)0.0310 (2)0.0020 (2)
S30.0700 (4)0.0671 (4)0.0918 (5)0.0035 (3)0.0543 (4)0.0127 (3)
O10.0793 (14)0.1025 (17)0.142 (2)0.0370 (13)0.0438 (14)0.0511 (16)
O20.110 (3)0.067 (2)0.225 (5)0.0000.044 (3)0.000
C10.0432 (13)0.0374 (13)0.0576 (15)0.0000.0199 (12)0.000
C20.0321 (8)0.0354 (9)0.0478 (9)0.0004 (6)0.0123 (7)0.0006 (7)
C30.0459 (10)0.0444 (10)0.0561 (11)0.0011 (8)0.0165 (9)0.0090 (9)
C40.0423 (12)0.0699 (17)0.122 (2)0.0026 (11)0.0168 (14)0.0213 (16)
C50.0518 (15)0.086 (2)0.115 (2)0.0222 (13)0.0109 (15)0.0036 (18)
C60.109 (5)0.077 (4)0.080 (5)0.023 (3)0.021 (3)0.014 (3)
C70.112 (5)0.054 (3)0.126 (5)0.018 (4)0.038 (5)0.010 (3)
C6'0.092 (5)0.063 (5)0.100 (7)0.029 (4)0.043 (5)0.029 (5)
C7'0.108 (7)0.081 (5)0.094 (5)0.003 (5)0.045 (5)0.037 (4)
Geometric parameters (Å, º) top
S1—C11.650 (3)C3—H3B0.9700
S2—C11.7231 (16)C4—C51.497 (4)
S2—C21.7440 (18)C4—H4A0.9700
S3—C41.788 (3)C4—H4B0.9700
S3—C31.806 (2)C5—H5A0.9700
O1—C61.342 (7)C5—H5B0.9700
O1—C51.391 (4)C6—C71.472 (14)
O1—C6'1.645 (12)C6—H6A0.9700
O2—C7'1.095 (11)C6—H6B0.9700
O2—C7'i1.095 (11)C7—H7A0.9700
O2—C71.467 (11)C7—H7B0.9700
O2—C7i1.467 (11)C6'—C7'1.506 (15)
C1—S2i1.7231 (16)C6'—H6'10.9700
C2—C2i1.340 (4)C6'—H6'20.9700
C2—C31.495 (3)C7'—H7'10.9700
C3—H3A0.9700C7'—H7'20.9700
C1—S2—C297.69 (10)O1—C5—H5B109.9
C4—S3—C3102.32 (13)C4—C5—H5B109.9
C6—O1—C5117.2 (4)H5A—C5—H5B108.3
C6—O1—C6'32.8 (4)O1—C6—C7104.4 (8)
C5—O1—C6'105.6 (4)O1—C6—H6A110.9
C7'—O2—C7'i122.7 (13)C7—C6—H6A110.9
C7'—O2—C730.3 (5)O1—C6—H6B110.9
C7'i—O2—C7122.3 (7)C7—C6—H6B110.9
C7'—O2—C7i122.3 (7)H6A—C6—H6B108.9
C7'i—O2—C7i30.3 (5)O2—C7—C6117.5 (8)
C7—O2—C7i139.8 (8)O2—C7—H7A107.9
S1—C1—S2i123.68 (8)C6—C7—H7A107.9
S1—C1—S2123.68 (8)O2—C7—H7B107.9
S2i—C1—S2112.65 (15)C6—C7—H7B107.9
C2i—C2—C3127.72 (11)H7A—C7—H7B107.2
C2i—C2—S2115.95 (6)C7'—C6'—O1108.1 (8)
C3—C2—S2116.30 (14)C7'—C6'—H6'1110.1
C2—C3—S3113.52 (14)O1—C6'—H6'1110.1
C2—C3—H3A108.9C7'—C6'—H6'2110.1
S3—C3—H3A108.9O1—C6'—H6'2110.1
C2—C3—H3B108.9H6'1—C6'—H6'2108.4
S3—C3—H3B108.9O2—C7'—C6'113.0 (9)
H3A—C3—H3B107.7O2—C7'—C7'i28.7 (6)
C5—C4—S3115.3 (2)C6'—C7'—C7'i125.7 (13)
C5—C4—H4A108.4O2—C7'—H7'1109.0
S3—C4—H4A108.4C6'—C7'—H7'1109.0
C5—C4—H4B108.4C7'i—C7'—H7'1118.7
S3—C4—H4B108.4O2—C7'—H7'2109.0
H4A—C4—H4B107.5C6'—C7'—H7'2109.0
O1—C5—C4108.8 (2)C7'i—C7'—H7'280.4
O1—C5—H5A109.9H7'1—C7'—H7'2107.8
C4—C5—H5A109.9
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H20O3S5
Mr384.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)14.040 (3), 13.616 (3), 10.004 (2)
β (°) 110.89 (3)
V3)1786.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.13 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.920, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
8683, 2054, 1795
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.05
No. of reflections2054
No. of parameters116
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Che, T., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o2538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269–8276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds