organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-8-meth­­oxy-4-(2,3,4,6-tetra-O-acetyl-β-D-gluco­pyranos­yl­oxy)quinolin-2(1H)-one

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno–Bohunice, 625 00, Czech Republic, and cDepartment of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 14 April 2010; accepted 6 May 2010; online 12 May 2010)

The structure of the title compound, C26H31NO12, contains an essentially planar quinoline skeleton, with the maximum deviation from the best plane being 0.055 (2) Å, and an oxane ring in a classical chair conformation with the following Cremer and Pople puckering parameters: Q = 0.586 (2) Å, θ = 11.5 (2)° and φ = 309.4 (10)°. One acetyl group displays rotational disorder with occupancies of 0.634 (8):0.366 (8). The crystal packing is stabilized by N—H⋯O hydrogen bonds, which link mol­ecules into chains along the a axis. The packing is further stabilized by weak C—H⋯O interactions. The absolute configurations on the carbons in the oxane ring correspond to those of the commercial starting material and are unchanged in the well known mechanism of the Koenigs–Knorr synthesis.

Related literature

For the synthesis of related compounds and their biological activity, see Kimmel et al. (2010[Kimmel, R., Kafka, S. & Košmrlj, J. (2010). Carbohydr. Res. 345, 768-779.]); Suzuki et al. (2007[Suzuki, H., Aly, N. S. M., Wataya, Y., Kim, H.-S., Tamai, I., Kita, M. & Uemura, D. (2007). Chem. Pharm. Bull. 55, 821-824.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H31NO12

  • Mr = 549.52

  • Orthorhombic, P 21 21 21

  • a = 5.36993 (11) Å

  • b = 19.2205 (6) Å

  • c = 27.2479 (6) Å

  • V = 2812.33 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.918, Tmax = 0.967

  • 32021 measured reflections

  • 3429 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.09

  • 3429 reflections

  • 387 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.98 2.831 (2) 163
C13—H13⋯O9ii 1.00 2.39 3.292 (3) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound represents one of the first selectively 4-O-glucosylated N-unsubstituted 4-hydroxyquinolin-2(1H)-ones with potential antimicrobial activity (Kimmel et al., 2010). Several previously prepared saccharide functionalized quinoline derivatives possess interesting bioactivities e.g. as antimalaric agents (Suzuki et al., 2007).

The structure of the title compound (Fig. 1) consists of an essentially planar quinoline ring with the maximum deviation from the best plane being of 0.055 (2)Å for C6 and an oxane ring in classical chair conformation with Cremer & Pople (1975) puckering parameters being Q = 0.586 (2) Å, θ= 11.5 (2) and φ= 309.4 (10)°. The torsion angles describing alignment of peracetylated glucose unit, ethyl in the C2 position and methoxy group in the C8 position C2—C3—O3—C13, C3—O3—C13—O4, C1—C2—C11—C12 and C9—C8—O2—C10 are 103.2 (2), -73.23 (18), 66.1 (3) and -175.86 (19)° respectively. The acetyl group on the O5 was refined using a two-part disorder model with occupancies being 0.634 (8):0.366 (8). The absolute configurations on C14—C17 correspond to those in starting material and inversion on C13 is in agreement with the well known mechanism of Koenigs-Knorr synthesis. The molecules are linked via N1—H1···O1 H-bonds (Fig. 2, Table 1) into chains parallel to the a-axis. The packing of the crystal is stabilized by further C—H···O weak interactions (Table 1).

Related literature top

For the synthesis of related compounds and their biological activity, see Kimmel et al. (2010); Suzuki et al. (2007). For puckering parameters, see Cremer & Pople (1975).

Experimental top

The title compound was synthesised by Koenigs-Knorr glucosylation of 3-ethyl-4-hydroxy-8-methoxyquinolin-2(1H)-one with acetobromo-α-D-glucose in the presence of caesium carbonate in acetonitrile medium as described recently (Kimmel et al., 2010). The crystal used for data collection was obtained by crystallisation from ethanol at room temperature.

Refinement top

The disordered acetyl group was modeled over two sites using similarity restraints to maintain a reasonable geometry and displacement parameters. The two sites are occupied in a 63:37 ratio. Hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of their parent atoms. In the absence of significant anomalous scattering, Friedel pairs were merged.

Structure description top

The title compound represents one of the first selectively 4-O-glucosylated N-unsubstituted 4-hydroxyquinolin-2(1H)-ones with potential antimicrobial activity (Kimmel et al., 2010). Several previously prepared saccharide functionalized quinoline derivatives possess interesting bioactivities e.g. as antimalaric agents (Suzuki et al., 2007).

The structure of the title compound (Fig. 1) consists of an essentially planar quinoline ring with the maximum deviation from the best plane being of 0.055 (2)Å for C6 and an oxane ring in classical chair conformation with Cremer & Pople (1975) puckering parameters being Q = 0.586 (2) Å, θ= 11.5 (2) and φ= 309.4 (10)°. The torsion angles describing alignment of peracetylated glucose unit, ethyl in the C2 position and methoxy group in the C8 position C2—C3—O3—C13, C3—O3—C13—O4, C1—C2—C11—C12 and C9—C8—O2—C10 are 103.2 (2), -73.23 (18), 66.1 (3) and -175.86 (19)° respectively. The acetyl group on the O5 was refined using a two-part disorder model with occupancies being 0.634 (8):0.366 (8). The absolute configurations on C14—C17 correspond to those in starting material and inversion on C13 is in agreement with the well known mechanism of Koenigs-Knorr synthesis. The molecules are linked via N1—H1···O1 H-bonds (Fig. 2, Table 1) into chains parallel to the a-axis. The packing of the crystal is stabilized by further C—H···O weak interactions (Table 1).

For the synthesis of related compounds and their biological activity, see Kimmel et al. (2010); Suzuki et al. (2007). For puckering parameters, see Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atoms represented as 50 % probability ellipsoids and H atoms shown as small spheres at arbitrary radii. The disorder of acetyl group on O5 has been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound showing chains parallel to the a-axis linked via N—H···O H-bonds (dotted lines). The disorder of acetyl group on O5, and all H-atoms (except those which are involved in H-bonding), have been omitted for clarity. Symmetry code: (i) x+0.5, -y+0.5,-z+1.
3-Ethyl-8-methoxy-4-(2,3,4,6-tetra-O-acetyl-β-D- glucopyranosyloxy)quinolin-2(1H)-one top
Crystal data top
C26H31NO12Dx = 1.298 Mg m3
Mr = 549.52Melting point = 452–455 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17385 reflections
a = 5.36993 (11) Åθ = 3.1–27.2°
b = 19.2205 (6) ŵ = 0.10 mm1
c = 27.2479 (6) ÅT = 150 K
V = 2812.33 (11) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
F(000) = 1160
Data collection top
Kuma KM-4 CCD
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0.06 pixels mm-1θmax = 27.3°, θmin = 3.1°
ω scanh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1324
Tmin = 0.918, Tmax = 0.967l = 3434
32021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.5245P]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.17 e Å3
81 restraintsΔρmin = 0.13 e Å3
Crystal data top
C26H31NO12V = 2812.33 (11) Å3
Mr = 549.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.36993 (11) ŵ = 0.10 mm1
b = 19.2205 (6) ÅT = 150 K
c = 27.2479 (6) Å0.40 × 0.40 × 0.30 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2990 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.967Rint = 0.020
32021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03281 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
3429 reflectionsΔρmin = 0.13 e Å3
387 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8708 (3)0.25786 (7)0.53327 (5)0.0341 (3)
O21.3082 (3)0.37931 (8)0.41238 (6)0.0427 (4)
O30.4748 (3)0.47871 (7)0.53992 (5)0.0271 (3)
O40.6219 (3)0.48949 (7)0.61770 (5)0.0282 (3)
O50.6116 (3)0.45605 (8)0.71945 (5)0.0410 (4)
O60.5932 (3)0.62765 (8)0.70831 (5)0.0350 (3)
O70.2195 (3)0.66554 (7)0.64089 (5)0.0315 (3)
O80.3834 (3)0.62367 (7)0.53780 (5)0.0281 (3)
O90.0246 (3)0.64890 (8)0.54408 (6)0.0426 (4)
O100.3960 (4)0.76681 (8)0.62089 (7)0.0567 (5)
O110.2632 (5)0.59852 (14)0.75466 (8)0.0878 (9)
N11.0003 (3)0.34410 (8)0.48366 (6)0.0270 (4)
H11.11860.31660.47260.032*
C10.8445 (4)0.31841 (10)0.51878 (7)0.0275 (4)
C20.6558 (4)0.36595 (10)0.53815 (7)0.0277 (4)
C30.6499 (4)0.43204 (10)0.52114 (7)0.0252 (4)
C40.8076 (4)0.45683 (10)0.48212 (7)0.0248 (4)
C50.7871 (4)0.52319 (10)0.46025 (7)0.0306 (4)
H50.66720.55560.47190.037*
C60.9409 (5)0.54054 (11)0.42219 (8)0.0369 (5)
H60.92360.58480.40710.044*
C71.1230 (5)0.49464 (11)0.40506 (8)0.0363 (5)
H71.23150.50830.37930.044*
C81.1447 (4)0.42976 (11)0.42563 (7)0.0312 (5)
C90.9848 (4)0.41033 (10)0.46433 (7)0.0256 (4)
C101.4892 (5)0.39485 (14)0.37598 (8)0.0436 (6)
H10A1.60290.35530.37240.065*
H10B1.58370.43620.38580.065*
H10C1.40580.40380.34460.065*
C110.4782 (5)0.33763 (11)0.57576 (8)0.0391 (5)
H11A0.39520.29600.56200.047*
H11B0.34800.37290.58210.047*
C120.5982 (7)0.31787 (14)0.62423 (9)0.0614 (8)
H12A0.46880.30420.64770.092*
H12B0.69050.35780.63720.092*
H12C0.71280.27890.61910.092*
C130.5741 (4)0.52634 (10)0.57359 (6)0.0238 (4)
H130.73090.54740.56050.029*
C140.7213 (4)0.53372 (11)0.65513 (7)0.0275 (4)
H140.86100.56180.64110.033*
C150.5099 (4)0.58234 (11)0.66957 (7)0.0269 (4)
H150.36310.55460.68090.032*
C160.4377 (4)0.62670 (10)0.62631 (7)0.0255 (4)
H160.57630.65950.61830.031*
C170.3777 (4)0.58191 (10)0.58157 (6)0.0240 (4)
H170.21010.55990.58550.029*
C180.8190 (4)0.48969 (12)0.69638 (8)0.0348 (5)
H18A0.93670.45450.68350.042*
H18B0.90820.51910.72050.042*
C210.4515 (6)0.63038 (14)0.74961 (9)0.0497 (7)
C220.5634 (8)0.68002 (18)0.78556 (10)0.0779 (11)
H22A0.50800.66800.81880.117*
H22B0.51030.72750.77770.117*
H22C0.74540.67710.78380.117*
C230.2251 (4)0.73549 (11)0.63784 (8)0.0308 (5)
C240.0071 (5)0.76662 (13)0.65782 (10)0.0443 (6)
H24A0.02780.81370.66980.067*
H24B0.06890.73790.68490.067*
H24C0.13330.76880.63190.067*
C250.1693 (4)0.65329 (11)0.52218 (8)0.0322 (5)
C260.2118 (5)0.69197 (13)0.47544 (9)0.0469 (6)
H26A0.05920.69130.45570.070*
H26B0.34690.66980.45700.070*
H26C0.25730.74020.48290.070*
C19B0.647 (2)0.4064 (9)0.7485 (5)0.069 (3)0.366 (8)
C20B0.435 (3)0.3921 (15)0.7846 (9)0.060 (4)0.366 (8)
H20D0.50400.38130.81700.090*0.366 (8)
H20E0.33590.35260.77290.090*0.366 (8)
H20F0.32800.43340.78700.090*0.366 (8)
O12B0.8449 (12)0.3784 (5)0.7519 (4)0.093 (3)0.366 (8)
C19A0.6517 (12)0.4270 (4)0.7636 (3)0.0563 (18)0.634 (8)
C20A0.415 (2)0.3870 (9)0.7769 (5)0.072 (3)0.634 (8)
H20A0.45020.35540.80430.108*0.634 (8)
H20B0.35890.36010.74850.108*0.634 (8)
H20C0.28460.41990.78660.108*0.634 (8)
O12A0.8390 (7)0.4347 (4)0.78546 (18)0.106 (2)0.634 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (8)0.0191 (7)0.0443 (8)0.0035 (7)0.0025 (8)0.0028 (6)
O20.0448 (9)0.0399 (9)0.0435 (9)0.0117 (8)0.0165 (8)0.0028 (7)
O30.0281 (7)0.0235 (7)0.0297 (6)0.0004 (6)0.0014 (6)0.0070 (6)
O40.0362 (8)0.0239 (7)0.0245 (6)0.0009 (7)0.0008 (6)0.0002 (5)
O50.0425 (9)0.0482 (10)0.0324 (7)0.0075 (9)0.0021 (8)0.0118 (7)
O60.0384 (8)0.0382 (8)0.0284 (7)0.0048 (8)0.0019 (7)0.0103 (6)
O70.0265 (7)0.0268 (7)0.0411 (8)0.0006 (7)0.0070 (7)0.0093 (7)
O80.0290 (7)0.0282 (7)0.0270 (6)0.0002 (6)0.0013 (6)0.0025 (6)
O90.0273 (8)0.0374 (9)0.0632 (11)0.0003 (7)0.0016 (8)0.0107 (8)
O100.0527 (11)0.0316 (8)0.0859 (13)0.0056 (9)0.0298 (11)0.0093 (9)
O110.0876 (17)0.125 (2)0.0504 (12)0.0470 (17)0.0358 (12)0.0397 (13)
N10.0300 (8)0.0204 (8)0.0307 (8)0.0027 (8)0.0022 (8)0.0023 (7)
C10.0309 (10)0.0215 (10)0.0301 (10)0.0050 (9)0.0028 (9)0.0030 (8)
C20.0327 (10)0.0243 (10)0.0261 (9)0.0053 (9)0.0006 (9)0.0022 (8)
C30.0267 (10)0.0232 (10)0.0257 (9)0.0001 (9)0.0009 (8)0.0046 (8)
C40.0306 (10)0.0228 (10)0.0211 (8)0.0002 (9)0.0019 (8)0.0012 (8)
C50.0405 (11)0.0232 (10)0.0280 (9)0.0066 (10)0.0011 (10)0.0018 (8)
C60.0526 (14)0.0266 (10)0.0314 (10)0.0016 (11)0.0022 (11)0.0046 (9)
C70.0441 (13)0.0352 (12)0.0295 (10)0.0011 (11)0.0088 (10)0.0040 (9)
C80.0348 (11)0.0297 (11)0.0291 (10)0.0020 (10)0.0035 (10)0.0041 (9)
C90.0301 (10)0.0220 (9)0.0247 (9)0.0002 (9)0.0013 (9)0.0013 (8)
C100.0365 (12)0.0600 (16)0.0343 (11)0.0046 (12)0.0084 (10)0.0072 (11)
C110.0511 (14)0.0244 (10)0.0417 (12)0.0068 (11)0.0122 (12)0.0019 (9)
C120.105 (2)0.0386 (14)0.0412 (13)0.0053 (17)0.0132 (17)0.0093 (11)
C130.0262 (9)0.0231 (10)0.0221 (8)0.0013 (9)0.0018 (8)0.0009 (8)
C140.0259 (10)0.0302 (11)0.0264 (9)0.0040 (9)0.0020 (8)0.0004 (8)
C150.0296 (10)0.0276 (10)0.0236 (9)0.0070 (10)0.0016 (8)0.0045 (8)
C160.0223 (9)0.0247 (10)0.0296 (10)0.0000 (8)0.0044 (8)0.0034 (8)
C170.0236 (9)0.0228 (9)0.0256 (9)0.0019 (9)0.0028 (8)0.0009 (8)
C180.0314 (11)0.0381 (13)0.0351 (11)0.0016 (11)0.0024 (9)0.0043 (10)
C210.0624 (18)0.0572 (16)0.0293 (11)0.0063 (15)0.0029 (12)0.0125 (11)
C220.106 (3)0.086 (2)0.0415 (14)0.011 (2)0.0116 (18)0.0300 (15)
C230.0347 (11)0.0293 (11)0.0285 (10)0.0024 (10)0.0012 (9)0.0034 (9)
C240.0385 (12)0.0371 (12)0.0574 (15)0.0064 (12)0.0064 (12)0.0096 (11)
C250.0342 (12)0.0221 (10)0.0403 (11)0.0028 (9)0.0071 (10)0.0008 (9)
C260.0532 (15)0.0409 (13)0.0467 (13)0.0018 (13)0.0088 (12)0.0115 (11)
C19B0.046 (4)0.102 (7)0.060 (6)0.000 (4)0.008 (4)0.047 (5)
C20B0.047 (5)0.080 (8)0.054 (6)0.003 (6)0.009 (4)0.009 (6)
O12B0.048 (3)0.129 (6)0.102 (6)0.011 (4)0.000 (4)0.088 (5)
C19A0.036 (2)0.089 (5)0.045 (3)0.007 (3)0.004 (2)0.029 (3)
C20A0.055 (4)0.094 (6)0.066 (6)0.010 (4)0.010 (4)0.054 (5)
O12A0.050 (2)0.195 (6)0.072 (3)0.024 (3)0.017 (2)0.077 (4)
Geometric parameters (Å, º) top
O1—C11.237 (2)C11—H11A0.9900
O2—C81.357 (3)C11—H11B0.9900
O2—C101.421 (3)C12—H12A0.9800
O3—C31.397 (2)C12—H12B0.9800
O3—C131.402 (2)C12—H12C0.9800
O4—C131.419 (2)C13—C171.516 (3)
O4—C141.431 (2)C13—H131.0000
O5—C19B1.256 (15)C14—C181.502 (3)
O5—C19A1.342 (8)C14—C151.522 (3)
O5—C181.433 (3)C14—H141.0000
O6—C211.359 (3)C15—C161.506 (3)
O6—C151.440 (2)C15—H151.0000
O7—C231.347 (3)C16—C171.527 (3)
O7—C161.445 (2)C16—H161.0000
O8—C251.351 (3)C17—H171.0000
O8—C171.438 (2)C18—H18A0.9900
O9—C251.203 (3)C18—H18B0.9900
O10—C231.191 (3)C21—C221.494 (4)
O11—C211.190 (3)C22—H22A0.9800
N1—C11.364 (3)C22—H22B0.9800
N1—C91.380 (3)C22—H22C0.9800
N1—H10.8800C23—C241.486 (3)
C1—C21.463 (3)C24—H24A0.9800
C2—C31.353 (3)C24—H24B0.9800
C2—C111.502 (3)C24—H24C0.9800
C3—C41.440 (3)C25—C261.492 (3)
C4—C91.393 (3)C26—H26A0.9800
C4—C51.412 (3)C26—H26B0.9800
C5—C61.367 (3)C26—H26C0.9800
C5—H50.9500C19B—O12B1.195 (12)
C6—C71.397 (3)C19B—C20B1.529 (14)
C6—H60.9500C20B—H20D0.9800
C7—C81.372 (3)C20B—H20E0.9800
C7—H70.9500C20B—H20F0.9800
C8—C91.410 (3)C19A—O12A1.179 (7)
C10—H10A0.9800C19A—C20A1.529 (10)
C10—H10B0.9800C20A—H20A0.9800
C10—H10C0.9800C20A—H20B0.9800
C11—C121.518 (4)C20A—H20C0.9800
C8—O2—C10118.57 (17)O4—C14—H14109.1
C3—O3—C13113.78 (15)C18—C14—H14109.1
C13—O4—C14112.00 (14)C15—C14—H14109.1
C19B—O5—C19A25.1 (8)O6—C15—C16108.14 (16)
C19B—O5—C18120.2 (6)O6—C15—C14109.22 (17)
C19A—O5—C18117.1 (3)C16—C15—C14109.70 (15)
C21—O6—C15117.16 (18)O6—C15—H15109.9
C23—O7—C16118.72 (17)C16—C15—H15109.9
C25—O8—C17118.58 (16)C14—C15—H15109.9
C1—N1—C9124.38 (18)O7—C16—C15106.62 (15)
C1—N1—H1117.8O7—C16—C17109.87 (15)
C9—N1—H1117.8C15—C16—C17111.11 (16)
O1—C1—N1119.63 (19)O7—C16—H16109.7
O1—C1—C2123.48 (19)C15—C16—H16109.7
N1—C1—C2116.87 (17)C17—C16—H16109.7
C3—C2—C1118.65 (18)O8—C17—C13105.04 (14)
C3—C2—C11123.99 (19)O8—C17—C16110.07 (15)
C1—C2—C11117.36 (17)C13—C17—C16111.41 (16)
C2—C3—O3119.58 (17)O8—C17—H17110.1
C2—C3—C4123.35 (18)C13—C17—H17110.1
O3—C3—C4116.99 (16)C16—C17—H17110.1
C9—C4—C5119.09 (18)O5—C18—C14108.13 (17)
C9—C4—C3116.51 (17)O5—C18—H18A110.1
C5—C4—C3124.36 (19)C14—C18—H18A110.1
C6—C5—C4119.6 (2)O5—C18—H18B110.1
C6—C5—H5120.2C14—C18—H18B110.1
C4—C5—H5120.2H18A—C18—H18B108.4
C5—C6—C7121.5 (2)O11—C21—O6123.5 (2)
C5—C6—H6119.3O11—C21—C22126.5 (3)
C7—C6—H6119.3O6—C21—C22110.0 (3)
C8—C7—C6119.8 (2)C21—C22—H22A109.5
C8—C7—H7120.1C21—C22—H22B109.5
C6—C7—H7120.1H22A—C22—H22B109.5
O2—C8—C7126.5 (2)C21—C22—H22C109.5
O2—C8—C9113.80 (18)H22A—C22—H22C109.5
C7—C8—C9119.6 (2)H22B—C22—H22C109.5
N1—C9—C4120.02 (18)O10—C23—O7123.1 (2)
N1—C9—C8119.53 (18)O10—C23—C24125.8 (2)
C4—C9—C8120.42 (18)O7—C23—C24111.1 (2)
O2—C10—H10A109.5C23—C24—H24A109.5
O2—C10—H10B109.5C23—C24—H24B109.5
H10A—C10—H10B109.5H24A—C24—H24B109.5
O2—C10—H10C109.5C23—C24—H24C109.5
H10A—C10—H10C109.5H24A—C24—H24C109.5
H10B—C10—H10C109.5H24B—C24—H24C109.5
C2—C11—C12114.5 (2)O9—C25—O8123.39 (19)
C2—C11—H11A108.6O9—C25—C26126.2 (2)
C12—C11—H11A108.6O8—C25—C26110.40 (19)
C2—C11—H11B108.6C25—C26—H26A109.5
C12—C11—H11B108.6C25—C26—H26B109.5
H11A—C11—H11B107.6H26A—C26—H26B109.5
C11—C12—H12A109.5C25—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C11—C12—H12C109.5O12B—C19B—O5121.7 (11)
H12A—C12—H12C109.5O12B—C19B—C20B122.2 (15)
H12B—C12—H12C109.5O5—C19B—C20B115.4 (14)
O3—C13—O4107.29 (15)O12A—C19A—O5122.6 (6)
O3—C13—C17106.83 (15)O12A—C19A—C20A130.6 (9)
O4—C13—C17110.86 (14)O5—C19A—C20A106.8 (7)
O3—C13—H13110.6C19A—C20A—H20A109.5
O4—C13—H13110.6C19A—C20A—H20B109.5
C17—C13—H13110.6H20A—C20A—H20B109.5
O4—C14—C18109.20 (17)C19A—C20A—H20C109.5
O4—C14—C15105.71 (16)H20A—C20A—H20C109.5
C18—C14—C15114.39 (16)H20B—C20A—H20C109.5
C9—N1—C1—O1178.86 (18)C13—O4—C14—C1568.72 (19)
C9—N1—C1—C22.5 (3)C21—O6—C15—C16113.7 (2)
O1—C1—C2—C3177.27 (19)C21—O6—C15—C14126.9 (2)
N1—C1—C2—C31.3 (3)O4—C14—C15—O6178.44 (14)
O1—C1—C2—C113.2 (3)C18—C14—C15—O658.3 (2)
N1—C1—C2—C11178.23 (18)O4—C14—C15—C1663.19 (19)
C1—C2—C3—O3178.62 (16)C18—C14—C15—C16176.64 (18)
C11—C2—C3—O31.9 (3)C23—O7—C16—C15124.02 (19)
C1—C2—C3—C44.9 (3)C23—O7—C16—C17115.48 (18)
C11—C2—C3—C4174.59 (19)O6—C15—C16—O767.3 (2)
C13—O3—C3—C2103.2 (2)C14—C15—C16—O7173.66 (15)
C13—O3—C3—C480.1 (2)O6—C15—C16—C17173.00 (16)
C2—C3—C4—C94.7 (3)C14—C15—C16—C1754.0 (2)
O3—C3—C4—C9178.79 (16)C25—O8—C17—C13147.94 (17)
C2—C3—C4—C5173.0 (2)C25—O8—C17—C1692.0 (2)
O3—C3—C4—C53.5 (3)O3—C13—C17—O874.60 (17)
C9—C4—C5—C60.0 (3)O4—C13—C17—O8168.81 (14)
C3—C4—C5—C6177.7 (2)O3—C13—C17—C16166.26 (15)
C4—C5—C6—C71.6 (3)O4—C13—C17—C1649.7 (2)
C5—C6—C7—C82.0 (3)O7—C16—C17—O879.57 (19)
C10—O2—C8—C74.6 (3)C15—C16—C17—O8162.69 (16)
C10—O2—C8—C9175.86 (18)O7—C16—C17—C13164.32 (15)
C6—C7—C8—O2178.7 (2)C15—C16—C17—C1346.6 (2)
C6—C7—C8—C90.8 (3)C19B—O5—C18—C14166.2 (9)
C1—N1—C9—C42.8 (3)C19A—O5—C18—C14165.4 (4)
C1—N1—C9—C8175.50 (19)O4—C14—C18—O567.2 (2)
C5—C4—C9—N1177.02 (18)C15—C14—C18—O551.0 (2)
C3—C4—C9—N10.8 (3)C15—O6—C21—O111.4 (4)
C5—C4—C9—C81.2 (3)C15—O6—C21—C22179.6 (2)
C3—C4—C9—C8179.01 (18)C16—O7—C23—O104.7 (3)
O2—C8—C9—N12.1 (3)C16—O7—C23—C24175.71 (17)
C7—C8—C9—N1177.45 (19)C17—O8—C25—O93.1 (3)
O2—C8—C9—C4179.66 (18)C17—O8—C25—C26177.82 (17)
C7—C8—C9—C40.8 (3)C19A—O5—C19B—O12B102 (3)
C3—C2—C11—C12114.4 (2)C18—O5—C19B—O12B12.3 (19)
C1—C2—C11—C1266.1 (3)C19A—O5—C19B—C20B68 (2)
C3—O3—C13—O473.23 (18)C18—O5—C19B—C20B158.4 (14)
C3—O3—C13—C17167.84 (14)C19B—O5—C19A—O12A112 (2)
C14—O4—C13—O3179.20 (15)C18—O5—C19A—O12A8.2 (9)
C14—O4—C13—C1762.9 (2)C19B—O5—C19A—C20A69 (2)
C13—O4—C14—C18167.76 (16)C18—O5—C19A—C20A172.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.831 (2)163
C13—H13···O9ii1.002.393.292 (3)149
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H31NO12
Mr549.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.36993 (11), 19.2205 (6), 27.2479 (6)
V3)2812.33 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.918, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
32021, 3429, 2990
Rint0.020
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.09
No. of reflections3429
No. of parameters387
No. of restraints81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.831 (2)163.2
C13—H13···O9ii1.002.393.292 (3)149.1
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM7088352101 and joint project No. 9-06-3 of the KONTAKT Programme) and the Slovenian Research Agency (project No. P1-0230-0103 and joint project No. BI-CZ/07-08-018).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKimmel, R., Kafka, S. & Košmrlj, J. (2010). Carbohydr. Res. 345, 768–779.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aly, N. S. M., Wataya, Y., Kim, H.-S., Tamai, I., Kita, M. & Uemura, D. (2007). Chem. Pharm. Bull. 55, 821–824.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds