organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo­ethyl)-1,4-diazo­niabi­cyclo­[2.2.2]octane bromide tetra­fluoro­borate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xjm_cool@163.com

(Received 21 April 2010; accepted 11 May 2010; online 15 May 2010)

In the crystal of the title compound, C8H17BrN22+·Br·BF4, a weak inter­molecular N—H⋯Br hydrogen bond is observed between the cation and the bromide anion. A two-part disorder model was applied to the BF4 anion with a refined major–minor occupancy ratio of 0.837 (14):0.163 (14).

Related literature

For the crystal structures and properties of related compounds, see: Chen et al.(2009[Chen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2009). Cryst. Growth Des. 9, 3828-3831.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C8H17BrN22+·BF4·Br

  • Mr = 387.87

  • Orthorhombic, P b c a

  • a = 11.972 (2) Å

  • b = 10.782 (2) Å

  • c = 21.165 (4) Å

  • V = 2732.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.191, Tmax = 0.303

  • 26313 measured reflections

  • 3124 independent reflections

  • 1881 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.108

  • S = 1.04

  • 3124 reflections

  • 198 parameters

  • 34 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br2 0.91 (7) 2.23 (7) 3.141 (5) 176 (6)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions, in which there is a dielectric anomaly at the transition temperature. Unluckily, the title compound has no dielectric disuniform from 93 K to 453 K( m.p. > 473 K ) and report here.

In this report we have established unambiguously the structure at 293 K of the title compound in the solid state by X-ray diffraction analysis. As shown in Fig. 1. Single crystal X-ray analysis reveals that there are weak hydrogen bonds between 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium cation and bromide anion.

For the crystal structures and properties of related compounds, see: Chen et al. (2009); Fu et al. (2009); Zhao et al. (2008).

Related literature top

For the crystal structures and properties of related compounds, see: Chen et al.(2009); Fu et al. (2009); Zhao et al. (2008).

Experimental top

1,4-Diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was dissolved in 20 ml of chloroform. To this solution 0.048 mol of 1,2-dibromoethane was added at once and the mixture was refluxed for 8 hours. On standing for 16 hours at room temperature, colorless crystals were obtained in large quantity. The crude product was collected and dissolved in 20 ml methanol, and 10ml HBF4 (1 mol/L) in methanol was added slowly with stirring, while white precipitate formed at once.The suspension was filtered, and dissolved in H2O, After a few weeks, colorless crystals were obtained by slow evaporation.

Refinement top

Positional parameters of all the H atoms except for H2 were calculated geometrically and the H atoms were set to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). The H2 on the N2 was freely refined. The BF4- anion was refined using a two-part disorder model with a major:minor occupancy ratio of 84:16%. Distance similarity and mild displacement parameter restraints were applied to the minor component.

Structure description top

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions, in which there is a dielectric anomaly at the transition temperature. Unluckily, the title compound has no dielectric disuniform from 93 K to 453 K( m.p. > 473 K ) and report here.

In this report we have established unambiguously the structure at 293 K of the title compound in the solid state by X-ray diffraction analysis. As shown in Fig. 1. Single crystal X-ray analysis reveals that there are weak hydrogen bonds between 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium cation and bromide anion.

For the crystal structures and properties of related compounds, see: Chen et al. (2009); Fu et al. (2009); Zhao et al. (2008).

For the crystal structures and properties of related compounds, see: Chen et al.(2009); Fu et al. (2009); Zhao et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the minor disorder component is omitted.
1-(2-Bromoethyl)-1,4-diazoniabicyclo[2.2.2]octane bromide tetrafluoroborate top
Crystal data top
C8H17BrN22+·BF4·BrF(000) = 1520
Mr = 387.87Dx = 1.886 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5732 reflections
a = 11.972 (2) Åθ = 3.7–27.5°
b = 10.782 (2) ŵ = 5.96 mm1
c = 21.165 (4) ÅT = 293 K
V = 2732.0 (10) Å3Prism, colourless
Z = 80.3 × 0.25 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube1881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1515
Tmin = 0.191, Tmax = 0.303k = 1414
26313 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0229P)2 + 7.8245P]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.47 e Å3
34 restraintsΔρmin = 0.47 e Å3
Crystal data top
C8H17BrN22+·BF4·BrV = 2732.0 (10) Å3
Mr = 387.87Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.972 (2) ŵ = 5.96 mm1
b = 10.782 (2) ÅT = 293 K
c = 21.165 (4) Å0.3 × 0.25 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1881 reflections with I > 2σ(I)
Tmin = 0.191, Tmax = 0.303Rint = 0.109
26313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05834 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
3124 reflectionsΔρmin = 0.47 e Å3
198 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.71717 (5)0.02659 (6)0.01789 (3)0.0522 (2)
Br21.27841 (5)0.46079 (6)0.27319 (3)0.0510 (2)
C10.7924 (4)0.1425 (6)0.0745 (3)0.0471 (15)
H1A0.78440.22680.05920.057*
H1B0.76090.13750.11670.057*
C20.9138 (4)0.1047 (5)0.0752 (3)0.0411 (14)
H2A0.94230.10820.03240.049*
H2B0.91890.01930.08930.049*
C30.9635 (5)0.1612 (6)0.1856 (2)0.0523 (17)
H3A0.97870.07510.19570.063*
H3B0.88530.17740.19420.063*
C41.0354 (5)0.2443 (6)0.2262 (2)0.0464 (15)
H4A0.98910.30480.24780.056*
H4B1.07410.19530.25780.056*
C50.9738 (5)0.3202 (5)0.1038 (3)0.0402 (14)
H5A0.98390.33580.05900.048*
H5B0.89910.34650.11540.048*
C61.0584 (5)0.3924 (5)0.1409 (3)0.0466 (15)
H6A1.11160.43050.11240.056*
H6B1.02130.45780.16440.056*
C71.1075 (4)0.1500 (6)0.1040 (3)0.0512 (16)
H7A1.12660.17170.06090.061*
H7B1.11740.06120.10900.061*
C81.1838 (4)0.2187 (6)0.1496 (3)0.0491 (16)
H8A1.21880.16030.17830.059*
H8B1.24220.26120.12630.059*
N10.9874 (3)0.1842 (4)0.11705 (17)0.0266 (10)
N21.1176 (4)0.3085 (5)0.1852 (2)0.0397 (12)
H21.165 (6)0.349 (6)0.212 (3)0.09 (2)*
B10.4770 (8)0.2507 (9)0.0910 (4)0.0421 (19)0.837 (14)
F10.5239 (8)0.1669 (6)0.1311 (3)0.086 (2)0.837 (14)
F20.4322 (7)0.3475 (6)0.1246 (4)0.074 (2)0.837 (14)
F30.3930 (7)0.1935 (9)0.0574 (5)0.090 (3)0.837 (14)
F40.5562 (5)0.2945 (7)0.0483 (3)0.0681 (19)0.837 (14)
B1'0.460 (3)0.244 (3)0.0923 (13)0.0421 (19)0.163 (14)
F1'0.454 (3)0.186 (2)0.1488 (12)0.067 (7)0.163 (14)
F2'0.401 (3)0.353 (3)0.0918 (18)0.065 (8)0.163 (14)
F3'0.419 (4)0.168 (5)0.0460 (19)0.082 (9)0.163 (14)
F4'0.569 (2)0.276 (4)0.078 (2)0.084 (9)0.163 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0483 (4)0.0598 (4)0.0485 (4)0.0138 (3)0.0101 (3)0.0049 (3)
Br20.0442 (4)0.0533 (4)0.0555 (4)0.0022 (3)0.0125 (3)0.0125 (3)
C10.039 (3)0.056 (4)0.046 (4)0.010 (3)0.010 (3)0.010 (3)
C20.036 (3)0.039 (3)0.048 (4)0.005 (3)0.004 (3)0.006 (3)
C30.051 (4)0.072 (4)0.033 (3)0.020 (3)0.002 (3)0.015 (3)
C40.047 (3)0.067 (4)0.025 (3)0.003 (3)0.000 (3)0.001 (3)
C50.048 (3)0.027 (3)0.045 (3)0.006 (3)0.016 (3)0.003 (3)
C60.064 (4)0.029 (3)0.047 (4)0.006 (3)0.007 (3)0.002 (3)
C70.034 (3)0.052 (4)0.067 (4)0.009 (3)0.008 (3)0.017 (3)
C80.028 (3)0.062 (4)0.057 (4)0.001 (3)0.002 (3)0.006 (3)
N10.026 (2)0.026 (2)0.028 (2)0.0026 (19)0.0001 (18)0.0006 (18)
N20.036 (3)0.049 (3)0.034 (3)0.011 (2)0.004 (2)0.002 (2)
B10.043 (5)0.041 (4)0.043 (5)0.004 (4)0.009 (4)0.000 (3)
F10.125 (7)0.079 (4)0.055 (4)0.022 (4)0.005 (4)0.019 (3)
F20.087 (5)0.054 (3)0.080 (5)0.002 (3)0.021 (4)0.022 (4)
F30.079 (5)0.118 (6)0.073 (5)0.021 (4)0.002 (4)0.040 (4)
F40.063 (3)0.090 (4)0.051 (4)0.003 (3)0.012 (3)0.017 (3)
B1'0.043 (5)0.041 (4)0.043 (5)0.004 (4)0.009 (4)0.000 (3)
F1'0.092 (17)0.063 (13)0.047 (13)0.037 (13)0.009 (12)0.001 (11)
F2'0.064 (15)0.048 (12)0.082 (18)0.007 (12)0.028 (14)0.004 (14)
F3'0.096 (18)0.097 (17)0.052 (15)0.041 (16)0.000 (15)0.040 (13)
F4'0.053 (14)0.099 (16)0.101 (19)0.009 (13)0.001 (15)0.015 (17)
Geometric parameters (Å, º) top
Br1—C11.952 (5)C6—H6A0.9700
C1—C21.509 (7)C6—H6B0.9700
C1—H1A0.9700C7—N11.510 (6)
C1—H1B0.9700C7—C81.521 (8)
C2—N11.515 (6)C7—H7A0.9700
C2—H2A0.9700C7—H7B0.9700
C2—H2B0.9700C8—N21.461 (7)
C3—N11.499 (6)C8—H8A0.9700
C3—C41.511 (7)C8—H8B0.9700
C3—H3A0.9700N2—H20.91 (7)
C3—H3B0.9700B1—F11.361 (9)
C4—N21.483 (7)B1—F21.371 (9)
C4—H4A0.9700B1—F31.377 (9)
C4—H4B0.9700B1—F41.393 (9)
C5—C61.500 (7)B1'—F1'1.354 (19)
C5—N11.502 (6)B1'—F2'1.364 (19)
C5—H5A0.9700B1'—F3'1.370 (19)
C5—H5B0.9700B1'—F4'1.388 (19)
C6—N21.484 (7)
C2—C1—Br1106.1 (4)N1—C7—C8109.7 (4)
C2—C1—H1A110.5N1—C7—H7A109.7
Br1—C1—H1A110.5C8—C7—H7A109.7
C2—C1—H1B110.5N1—C7—H7B109.7
Br1—C1—H1B110.5C8—C7—H7B109.7
H1A—C1—H1B108.7H7A—C7—H7B108.2
C1—C2—N1114.4 (4)N2—C8—C7108.9 (4)
C1—C2—H2A108.7N2—C8—H8A109.9
N1—C2—H2A108.7C7—C8—H8A109.9
C1—C2—H2B108.7N2—C8—H8B109.9
N1—C2—H2B108.7C7—C8—H8B109.9
H2A—C2—H2B107.6H8A—C8—H8B108.3
N1—C3—C4110.1 (4)C3—N1—C5108.8 (4)
N1—C3—H3A109.6C3—N1—C7108.5 (4)
C4—C3—H3A109.6C5—N1—C7107.9 (4)
N1—C3—H3B109.6C3—N1—C2111.2 (4)
C4—C3—H3B109.6C5—N1—C2112.3 (4)
H3A—C3—H3B108.2C7—N1—C2108.0 (4)
N2—C4—C3108.8 (4)C8—N2—C4110.7 (5)
N2—C4—H4A109.9C8—N2—C6109.7 (5)
C3—C4—H4A109.9C4—N2—C6109.7 (4)
N2—C4—H4B109.9C8—N2—H2108 (4)
C3—C4—H4B109.9C4—N2—H2106 (4)
H4A—C4—H4B108.3C6—N2—H2113 (4)
C6—C5—N1109.6 (4)F1—B1—F2110.1 (7)
C6—C5—H5A109.8F1—B1—F3109.0 (7)
N1—C5—H5A109.8F2—B1—F3108.8 (7)
C6—C5—H5B109.8F1—B1—F4110.4 (7)
N1—C5—H5B109.8F2—B1—F4110.1 (7)
H5A—C5—H5B108.2F3—B1—F4108.3 (7)
N2—C6—C5109.7 (4)F1'—B1'—F2'112 (2)
N2—C6—H6A109.7F1'—B1'—F3'109 (2)
C5—C6—H6A109.7F2'—B1'—F3'109 (2)
N2—C6—H6B109.7F1'—B1'—F4'111 (2)
C5—C6—H6B109.7F2'—B1'—F4'106 (2)
H6A—C6—H6B108.2F3'—B1'—F4'109 (2)
Br1—C1—C2—N1179.9 (4)C8—C7—N1—C563.8 (6)
N1—C3—C4—N28.1 (7)C8—C7—N1—C2174.6 (5)
N1—C5—C6—N27.7 (6)C1—C2—N1—C370.8 (6)
N1—C7—C8—N27.9 (7)C1—C2—N1—C551.3 (6)
C4—C3—N1—C554.1 (6)C1—C2—N1—C7170.2 (5)
C4—C3—N1—C763.1 (6)C7—C8—N2—C465.3 (6)
C4—C3—N1—C2178.3 (5)C7—C8—N2—C655.8 (6)
C6—C5—N1—C363.3 (6)C3—C4—N2—C856.3 (6)
C6—C5—N1—C754.3 (6)C3—C4—N2—C664.9 (6)
C6—C5—N1—C2173.2 (4)C5—C6—N2—C865.9 (6)
C8—C7—N1—C353.9 (6)C5—C6—N2—C455.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br20.91 (7)2.23 (7)3.141 (5)176 (6)

Experimental details

Crystal data
Chemical formulaC8H17BrN22+·BF4·Br
Mr387.87
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.972 (2), 10.782 (2), 21.165 (4)
V3)2732.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.191, 0.303
No. of measured, independent and
observed [I > 2σ(I)] reflections
26313, 3124, 1881
Rint0.109
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.108, 1.04
No. of reflections3124
No. of parameters198
No. of restraints34
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br20.91 (7)2.23 (7)3.141 (5)176 (6)
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationChen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2009). Cryst. Growth Des. 9, 3828–3831.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds