organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N6,3′-cyclo-5′-O-Cyano­methyl­thymidine

aCollege of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: sunjb@jlu.edu.cn

(Received 6 April 2010; accepted 24 May 2010; online 29 May 2010)

The title compound, C19H20N4O4, is a cyclo­nucleoside with a C—N linkage. The furan­ose ring adopts a twist C3′-endo/C2′-exo (close to 3T2) conformation with a pseudorotational phase angle (P) of 8.1° and puckering amplitude (vm) of 30.6°. The orientation of the pyrimidine ring with respect to the sugar group is anti. One intra­molecular C—H⋯O hydrogen bond is observed. The packing features an N—H⋯O hydrogen bond.

Related literature

For nucleosides, see: Kaur et al. (2007[Kaur, H., Babu, B. R. & Maiti, S. (2007). Chem. Rev. 107, 4672-4697.]); Imanishi & Satoshi (2002[Imanishi, T. & Satoshi, O. (2002). Chem. Commun. pp. 1653-1659.]); Len et al. (2008[Len, C., Mondon, M. & Lebreton, J. (2008). Tetrahedron, 64, 7453-7475.]); Mieczkowski et al. (2010[Mieczkowski, A., Roy, V. & Agrofoglio, L. A. (2010). Chem. Rev. 110, 1828-1856.]); Sanger (1984[Sanger, W. (1984). Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer Verlag.]); Altona & Sundaralingam (1972[Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.], 1973[Altona, C. & Sundaralingam, M. (1973). J. Am. Chem. Soc. 95, 2333-2344.]); Zhou & Chattopadhyaya (2009[Zhou, C. & Chattopadhyaya, J. (2009). Curr. Opin. Drug. Discov. Devel. 12, 876-898.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N4O4

  • Mr = 368.39

  • Orthorhombic, P 21 21 21

  • a = 10.1682 (7) Å

  • b = 11.0867 (8) Å

  • c = 15.8882 (11) Å

  • V = 1791.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.15 × 0.11 × 0.09 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.991

  • 10105 measured reflections

  • 2036 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.04

  • 2036 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.85 (2) 2.12 (2) 2.938 (2) 161 (2)
C6—H6⋯O2 0.93 2.89 3.492 (3) 123
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nucleosides with restricted conformations have attracted attention with the development of LNAs (Kaur, et al. 2007) and BNAs (Imanishi & Satoshi, 2002) in recent years. Cyclonucleosides in which there is a linkage between nucleobase and the sugar moiety of nucleosides constrains both the puckering of the sugar ring and the glycosyl torsion angle (Len, et al., 2008). Although many cyclonucleosides were synthesized since the early years (Mieczkowski, et al., 2010), the study of their conformations and evaluation of their biological properties is relatively rare. Here we report the structure of a cyclonucleoside with a C—N linkage between C6 and C2' of thymidine.

In the title compound (Fig. 1), the five-membered ribose ring C13/C14/C15/C16/O3 adopts a North conformation (close to 3T2), with a pseudorotational phase angle (P) of 8.1° and puckering amplitude (vm) of 30.6° (Sanger, 1984; Altona & Sundaralingam, 1972; Altona & Sundaralingam, 1973). The glycosydic torsion angle ξ (O3—C6—N1—C1) of 99.4 (18)° shows the orientation of the pyrimidine ring to be anti with respect to the sugar group. The torsion angle ρ (C8—C9—C12—N3) is 174.15 (15)°. The C15—N1 and C10—N1 bond lengths in the linkage are 1.463 (2) and 1.355 (2)Å, it is clearly that the bond between the nucleobase and linkage is nearly double bond because of conjugation. The linkage bond angle of C10—N1—C15 is 121.36 (16)°.

Related literature top

For nucleosides, see: Kaur et al. (2007); Imanishi & Satoshi (2002); Len et al. (2008); Mieczkowski et al. (2010); Sanger (1984); Altona & Sundaralingam (1972, 1973); Zhou & Chattopadhyaya (2009)

Experimental top

The compound was separated from refluxing toluene solution of 1-(3-azido-2,3-dideoxy-5-cyanomethyl-5-deoxy-β-D-threo-pentofuranosy1) thymine (manuscript in preparation). It was crystallized slowly from a mixture of ethanol and ethyl acetate(1:2) at 298 K.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic carbon), 0.97 (methylene), 0.96 (methyl) and 0.98 (methenyl)Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The atom H1 was located in a difference Fourier map and refined isotropically. In the absence of significant anomalous scattering effect, Friedel opposites were merged.

Structure description top

Nucleosides with restricted conformations have attracted attention with the development of LNAs (Kaur, et al. 2007) and BNAs (Imanishi & Satoshi, 2002) in recent years. Cyclonucleosides in which there is a linkage between nucleobase and the sugar moiety of nucleosides constrains both the puckering of the sugar ring and the glycosyl torsion angle (Len, et al., 2008). Although many cyclonucleosides were synthesized since the early years (Mieczkowski, et al., 2010), the study of their conformations and evaluation of their biological properties is relatively rare. Here we report the structure of a cyclonucleoside with a C—N linkage between C6 and C2' of thymidine.

In the title compound (Fig. 1), the five-membered ribose ring C13/C14/C15/C16/O3 adopts a North conformation (close to 3T2), with a pseudorotational phase angle (P) of 8.1° and puckering amplitude (vm) of 30.6° (Sanger, 1984; Altona & Sundaralingam, 1972; Altona & Sundaralingam, 1973). The glycosydic torsion angle ξ (O3—C6—N1—C1) of 99.4 (18)° shows the orientation of the pyrimidine ring to be anti with respect to the sugar group. The torsion angle ρ (C8—C9—C12—N3) is 174.15 (15)°. The C15—N1 and C10—N1 bond lengths in the linkage are 1.463 (2) and 1.355 (2)Å, it is clearly that the bond between the nucleobase and linkage is nearly double bond because of conjugation. The linkage bond angle of C10—N1—C15 is 121.36 (16)°.

For nucleosides, see: Kaur et al. (2007); Imanishi & Satoshi (2002); Len et al. (2008); Mieczkowski et al. (2010); Sanger (1984); Altona & Sundaralingam (1972, 1973); Zhou & Chattopadhyaya (2009)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
N6,3'-cyclo-5'-O-Cyanomethylthymidine top
Crystal data top
C19H20N4O4F(000) = 776
Mr = 368.39Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2856 reflections
a = 10.1682 (7) Åθ = 2.2–26.1°
b = 11.0867 (8) ŵ = 0.10 mm1
c = 15.8882 (11) ÅT = 295 K
V = 1791.1 (2) Å3Block, colourless
Z = 40.15 × 0.11 × 0.09 mm
Data collection top
Bruker SMART 1000
diffractometer
2036 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.00 pixels mm-1θmax = 26.1°, θmin = 2.2°
φ and ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.985, Tmax = 0.991l = 1918
10105 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.3497P]
where P = (Fo2 + 2Fc2)/3
2036 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H20N4O4V = 1791.1 (2) Å3
Mr = 368.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1682 (7) ŵ = 0.10 mm1
b = 11.0867 (8) ÅT = 295 K
c = 15.8882 (11) Å0.15 × 0.11 × 0.09 mm
Data collection top
Bruker SMART 1000
diffractometer
2036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1756 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.991Rint = 0.031
10105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
2036 reflectionsΔρmin = 0.15 e Å3
249 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26037 (18)0.41221 (14)0.18977 (11)0.0419 (4)
O20.2659 (2)0.16696 (16)0.04016 (11)0.0476 (5)
O30.01006 (15)0.29016 (14)0.30360 (10)0.0331 (4)
O40.26649 (17)0.29459 (15)0.27577 (11)0.0414 (4)
N10.0436 (2)0.04989 (18)0.20934 (13)0.0322 (5)
H10.034 (2)0.023 (2)0.1935 (14)0.027 (6)*
N20.16403 (18)0.22763 (16)0.20033 (12)0.0280 (4)
N30.2616 (2)0.29017 (17)0.07452 (12)0.0345 (5)
N40.5475 (2)0.1380 (3)0.2508 (2)0.0720 (8)
C10.2157 (3)0.4766 (2)0.00647 (16)0.0382 (6)
C20.2429 (3)0.5985 (2)0.01234 (16)0.0434 (7)
H20.32470.62740.00440.052*
C30.1488 (3)0.6782 (2)0.04317 (17)0.0481 (7)
H30.16880.75980.04760.058*
C40.0270 (3)0.6379 (3)0.06705 (17)0.0493 (7)
H40.03600.69170.08670.059*
C50.0002 (3)0.5186 (3)0.0617 (2)0.0651 (9)
H50.08230.49030.07840.078*
C60.0925 (3)0.4386 (3)0.0316 (2)0.0612 (9)
H60.07150.35710.02820.073*
C70.3192 (3)0.3888 (2)0.02538 (17)0.0415 (6)
H7A0.36650.35540.02220.050*
H7B0.38190.43210.06010.050*
C80.2318 (3)0.1800 (2)0.03381 (15)0.0343 (5)
C90.1612 (2)0.0937 (2)0.08223 (15)0.0316 (5)
C100.1238 (2)0.12081 (19)0.16251 (15)0.0277 (5)
C110.2314 (2)0.3165 (2)0.15690 (15)0.0314 (5)
C120.1264 (3)0.0252 (2)0.04249 (17)0.0399 (6)
H12A0.17880.08800.06720.060*
H12B0.14330.02150.01690.060*
H12C0.03490.04200.05180.060*
C130.1405 (2)0.2471 (2)0.29099 (15)0.0301 (5)
H130.20540.30270.31490.036*
C140.1430 (2)0.1270 (2)0.33571 (15)0.0348 (6)
H14A0.13740.13560.39640.042*
H14B0.21970.07940.32100.042*
C150.0176 (2)0.0765 (2)0.29797 (14)0.0317 (5)
H150.01330.00510.32850.038*
C160.0762 (2)0.1842 (2)0.30890 (15)0.0315 (5)
H160.11370.18090.36570.038*
C170.1865 (2)0.1961 (2)0.24724 (16)0.0350 (5)
H17A0.15240.21250.19140.042*
H17B0.23760.12230.24520.042*
C180.3794 (3)0.3126 (3)0.22543 (18)0.0475 (7)
H18A0.35400.31500.16660.057*
H18B0.41920.38950.23950.057*
C190.4758 (3)0.2153 (3)0.23850 (19)0.0499 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0471 (11)0.0284 (9)0.0502 (10)0.0092 (9)0.0064 (9)0.0036 (8)
O20.0649 (13)0.0443 (11)0.0336 (10)0.0056 (10)0.0107 (9)0.0019 (8)
O30.0327 (9)0.0251 (8)0.0416 (9)0.0000 (7)0.0067 (8)0.0025 (7)
O40.0349 (9)0.0366 (9)0.0525 (11)0.0061 (8)0.0015 (8)0.0049 (8)
N10.0373 (12)0.0202 (10)0.0391 (12)0.0018 (9)0.0062 (9)0.0028 (9)
N20.0299 (10)0.0229 (9)0.0313 (10)0.0010 (8)0.0031 (8)0.0003 (8)
N30.0366 (11)0.0300 (10)0.0368 (11)0.0005 (9)0.0073 (9)0.0067 (9)
N40.0401 (15)0.0722 (18)0.104 (2)0.0030 (14)0.0069 (16)0.0095 (18)
C10.0470 (16)0.0323 (13)0.0354 (13)0.0036 (11)0.0094 (12)0.0060 (10)
C20.0494 (16)0.0363 (14)0.0445 (15)0.0087 (14)0.0147 (13)0.0039 (11)
C30.075 (2)0.0226 (12)0.0470 (16)0.0023 (13)0.0218 (15)0.0018 (12)
C40.063 (2)0.0403 (16)0.0445 (16)0.0120 (14)0.0054 (14)0.0070 (12)
C50.0517 (18)0.0491 (19)0.094 (3)0.0004 (15)0.0155 (19)0.0119 (17)
C60.0521 (19)0.0343 (15)0.097 (3)0.0099 (13)0.0142 (18)0.0167 (16)
C70.0393 (14)0.0401 (15)0.0451 (16)0.0067 (12)0.0080 (12)0.0072 (12)
C80.0381 (13)0.0304 (12)0.0345 (13)0.0092 (11)0.0015 (11)0.0026 (10)
C90.0340 (13)0.0279 (12)0.0330 (13)0.0035 (10)0.0009 (10)0.0009 (10)
C100.0262 (11)0.0210 (11)0.0359 (13)0.0043 (9)0.0012 (10)0.0011 (9)
C110.0281 (12)0.0247 (11)0.0416 (13)0.0001 (9)0.0025 (11)0.0023 (10)
C120.0511 (16)0.0314 (13)0.0373 (14)0.0026 (12)0.0013 (13)0.0036 (11)
C130.0291 (12)0.0286 (12)0.0327 (12)0.0011 (9)0.0008 (10)0.0021 (10)
C140.0342 (14)0.0377 (13)0.0325 (13)0.0012 (11)0.0003 (11)0.0055 (11)
C150.0353 (13)0.0267 (12)0.0329 (13)0.0023 (10)0.0058 (11)0.0048 (10)
C160.0342 (12)0.0276 (12)0.0326 (12)0.0039 (10)0.0080 (10)0.0007 (10)
C170.0332 (13)0.0281 (12)0.0437 (14)0.0007 (10)0.0063 (11)0.0036 (11)
C180.0406 (15)0.0482 (16)0.0539 (17)0.0105 (13)0.0022 (13)0.0076 (13)
C190.0331 (14)0.0575 (18)0.0592 (18)0.0073 (14)0.0008 (13)0.0053 (15)
Geometric parameters (Å, º) top
O1—C111.219 (3)C5—C61.380 (4)
O2—C81.234 (3)C5—H50.9300
O3—C131.424 (3)C6—H60.9300
O3—C161.468 (3)C7—H7A0.9700
O4—C181.413 (3)C7—H7B0.9700
O4—C171.435 (3)C8—C91.422 (3)
N1—C101.355 (3)C9—C101.365 (3)
N1—C151.463 (3)C9—C121.504 (3)
N1—H10.85 (2)C12—H12A0.9600
N2—C111.384 (3)C12—H12B0.9600
N2—C101.390 (3)C12—H12C0.9600
N2—C131.476 (3)C13—C141.509 (3)
N3—C111.376 (3)C13—H130.9800
N3—C81.415 (3)C14—C151.517 (3)
N3—C71.466 (3)C14—H14A0.9700
N4—C191.142 (4)C14—H14B0.9700
C1—C61.381 (4)C15—C161.539 (3)
C1—C21.382 (4)C15—H150.9800
C1—C71.520 (4)C16—C171.495 (3)
C2—C31.392 (4)C16—H160.9800
C2—H20.9300C17—H17A0.9700
C3—C41.370 (4)C17—H17B0.9700
C3—H30.9300C18—C191.472 (4)
C4—C51.354 (4)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C13—O3—C16107.23 (16)O1—C11—N2121.7 (2)
C18—O4—C17112.91 (19)N3—C11—N2115.7 (2)
C10—N1—C15121.4 (2)C9—C12—H12A109.5
C10—N1—H1117.2 (16)C9—C12—H12B109.5
C15—N1—H1117.0 (16)H12A—C12—H12B109.5
C11—N2—C10122.47 (19)C9—C12—H12C109.5
C11—N2—C13117.56 (19)H12A—C12—H12C109.5
C10—N2—C13119.92 (19)H12B—C12—H12C109.5
C11—N3—C8124.78 (19)O3—C13—N2109.69 (18)
C11—N3—C7115.9 (2)O3—C13—C14104.21 (18)
C8—N3—C7119.09 (19)N2—C13—C14109.15 (19)
C6—C1—C2117.4 (3)O3—C13—H13111.2
C6—C1—C7121.9 (2)N2—C13—H13111.2
C2—C1—C7120.6 (2)C14—C13—H13111.2
C1—C2—C3120.4 (3)C13—C14—C1597.21 (19)
C1—C2—H2119.8C13—C14—H14A112.3
C3—C2—H2119.8C15—C14—H14A112.3
C4—C3—C2120.8 (3)C13—C14—H14B112.3
C4—C3—H3119.6C15—C14—H14B112.3
C2—C3—H3119.6H14A—C14—H14B109.9
C5—C4—C3119.1 (3)N1—C15—C14107.63 (19)
C5—C4—H4120.5N1—C15—C16112.16 (19)
C3—C4—H4120.5C14—C15—C16100.96 (18)
C4—C5—C6120.6 (3)N1—C15—H15111.8
C4—C5—H5119.7C14—C15—H15111.8
C6—C5—H5119.7C16—C15—H15111.8
C5—C6—C1121.6 (3)O3—C16—C17109.88 (18)
C5—C6—H6119.2O3—C16—C15104.13 (17)
C1—C6—H6119.2C17—C16—C15117.36 (19)
N3—C7—C1112.2 (2)O3—C16—H16108.4
N3—C7—H7A109.2C17—C16—H16108.4
C1—C7—H7A109.2C15—C16—H16108.4
N3—C7—H7B109.2O4—C17—C16106.58 (19)
C1—C7—H7B109.2O4—C17—H17A110.4
H7A—C7—H7B107.9C16—C17—H17A110.4
O2—C8—N3118.5 (2)O4—C17—H17B110.4
O2—C8—C9125.3 (2)C16—C17—H17B110.4
N3—C8—C9116.2 (2)H17A—C17—H17B108.6
C10—C9—C8119.9 (2)O4—C18—C19110.9 (2)
C10—C9—C12121.3 (2)O4—C18—H18A109.5
C8—C9—C12118.8 (2)C19—C18—H18A109.5
N1—C10—C9123.6 (2)O4—C18—H18B109.5
N1—C10—N2115.7 (2)C19—C18—H18B109.5
C9—C10—N2120.6 (2)H18A—C18—H18B108.0
O1—C11—N3122.6 (2)N4—C19—C18177.4 (3)
C6—C1—C2—C30.5 (4)C8—N3—C11—O1179.1 (2)
C7—C1—C2—C3178.7 (2)C7—N3—C11—O16.0 (3)
C1—C2—C3—C41.0 (4)C8—N3—C11—N21.7 (3)
C2—C3—C4—C51.1 (4)C7—N3—C11—N2173.2 (2)
C3—C4—C5—C60.8 (5)C10—N2—C11—O1176.3 (2)
C4—C5—C6—C10.3 (6)C13—N2—C11—O16.4 (3)
C2—C1—C6—C50.2 (5)C10—N2—C11—N32.9 (3)
C7—C1—C6—C5179.0 (3)C13—N2—C11—N3174.4 (2)
C11—N3—C7—C180.4 (3)C16—O3—C13—N285.9 (2)
C8—N3—C7—C194.8 (3)C16—O3—C13—C1430.8 (2)
C6—C1—C7—N335.9 (4)C11—N2—C13—O399.4 (2)
C2—C1—C7—N3145.0 (2)C10—N2—C13—O383.3 (2)
C11—N3—C8—O2179.0 (2)C11—N2—C13—C14147.0 (2)
C7—N3—C8—O26.3 (3)C10—N2—C13—C1430.3 (3)
C11—N3—C8—C92.4 (3)O3—C13—C14—C1548.7 (2)
C7—N3—C8—C9172.4 (2)N2—C13—C14—C1568.4 (2)
O2—C8—C9—C10177.0 (2)C10—N1—C15—C1435.7 (3)
N3—C8—C9—C101.5 (3)C10—N1—C15—C1674.5 (3)
O2—C8—C9—C121.4 (4)C13—C14—C15—N170.8 (2)
N3—C8—C9—C12179.9 (2)C13—C14—C15—C1646.9 (2)
C15—N1—C10—C9173.5 (2)C13—O3—C16—C17126.6 (2)
C15—N1—C10—N28.5 (3)C13—O3—C16—C150.1 (2)
C8—C9—C10—N1172.0 (2)N1—C15—C16—O384.0 (2)
C12—C9—C10—N16.3 (4)C14—C15—C16—O330.3 (2)
C8—C9—C10—N25.9 (3)N1—C15—C16—C1737.7 (3)
C12—C9—C10—N2175.7 (2)C14—C15—C16—C17152.0 (2)
C11—N2—C10—N1171.3 (2)C18—O4—C17—C16176.96 (19)
C13—N2—C10—N111.5 (3)O3—C16—C17—O467.2 (2)
C11—N2—C10—C96.8 (3)C15—C16—C17—O4174.11 (18)
C13—N2—C10—C9170.4 (2)C17—O4—C18—C1971.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.85 (2)2.12 (2)2.938 (2)161 (2)
C6—H6···O20.932.893.492 (3)123
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20N4O4
Mr368.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.1682 (7), 11.0867 (8), 15.8882 (11)
V3)1791.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.985, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10105, 2036, 1756
Rint0.031
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.04
No. of reflections2036
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.85 (2)2.12 (2)2.938 (2)161 (2)
C6—H6···O20.932.893.492 (3)123.2
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20572034). JS is grateful for the support from the Jilin University.

References

First citationAltona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAltona, C. & Sundaralingam, M. (1973). J. Am. Chem. Soc. 95, 2333–2344.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationImanishi, T. & Satoshi, O. (2002). Chem. Commun. pp. 1653–1659.  Web of Science CrossRef Google Scholar
First citationKaur, H., Babu, B. R. & Maiti, S. (2007). Chem. Rev. 107, 4672–4697.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLen, C., Mondon, M. & Lebreton, J. (2008). Tetrahedron, 64, 7453–7475.  Web of Science CrossRef CAS Google Scholar
First citationMieczkowski, A., Roy, V. & Agrofoglio, L. A. (2010). Chem. Rev. 110, 1828-1856.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSanger, W. (1984). Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C. & Chattopadhyaya, J. (2009). Curr. Opin. Drug. Discov. Devel. 12, 876–898.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds