organic compounds
9-(4-Bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H15BrNO2+·CF3SO3−, the cations form inversion dimers through π–π interactions between the acridine ring systems. These dimers are further linked by C—H⋯π and C—Br⋯π interactions. The cations and anions are connected by multidirectional C—H⋯O and C—F⋯π interactions. The acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or almost parallel [inclined at an angle of 1.4 (1)°] in the crystal structure.
of the title compound, CRelated literature
For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Adamczyk & Mattingly (2002); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005a,b).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810016296/om2334sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016296/om2334Isup2.hkl
The title compound was obtained by treating 4-bromophenyl acridine-9-carboxylate [synthesized by heating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride and reacting the product thus obtained with an equimolar amount of 4-bromophenol (Sato, 1996; Sikorski et al., 2005b)] with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in dichloromethane (Sikorski et al., 2005a). The crude 9-(4-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from anhydrous ethanol (m.p. 504 - 505 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
The cations of 9-(phenoxycarbonyl)-10-methylacridinium salts react efficiently with H2O2 in alkaline media producing light (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002). This effect means that the compounds can serve as chemiluminescent indicators or as chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002; Roda et al. , 2003; King et al., 2007). The chemiluminogenic features of the compounds depend on the structure of the cations, particularly the phenoxycarbonyl fragment which is removed during their oxidation leading to electronically excited 10-methyl-9-acridinone molecules (Rak et al., 1999; Zomer & Jacquemijns, 2001). It has been found that the efficiency of
– crucial for analytical applications – is influenced by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to synthesize and investigate derivatives substituted in this latter fragment. In this paper, a continuation of a series on bromo-substituted derivatives (Sikorski et al., 2005a), we present the structure of the title compound.In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.0442 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or almost parallel (remain at an angle of 1.4 (1)°) in the lattice.
In the π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are further linked by C–H···π (Table 1, Fig. 2) and C–Br···π (Table 2, Fig. 2) interactions. The cations and anions are connected by multidirectional C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions. The C–Br···π interactions have been reported by others (Seo et al., 2009). The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
the inversely oriented cations form dimers throughFor background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Adamczyk & Mattingly (2002); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005a,b).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, C–Br–π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, y – 1/2, –z + 1/2; (ii) –x, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2; (vi) –x, –y + 1, –z.] |
C21H15BrNO2+·CF3O3S− | F(000) = 1088 |
Mr = 542.32 | Dx = 1.628 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 14728 reflections |
a = 9.5755 (2) Å | θ = 3.0–29.2° |
b = 20.4912 (7) Å | µ = 2.01 mm−1 |
c = 11.6241 (5) Å | T = 295 K |
β = 104.011 (3)° | Plate, yellow |
V = 2212.95 (13) Å3 | 0.37 × 0.15 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3910 independent reflections |
Radiation source: enhanced (Mo) X-ray Source | 2200 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −24→24 |
Tmin = 0.77, Tmax = 0.92 | l = −13→13 |
50472 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3 |
3910 reflections | (Δ/σ)max = 0.001 |
299 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
C21H15BrNO2+·CF3O3S− | V = 2212.95 (13) Å3 |
Mr = 542.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5755 (2) Å | µ = 2.01 mm−1 |
b = 20.4912 (7) Å | T = 295 K |
c = 11.6241 (5) Å | 0.37 × 0.15 × 0.05 mm |
β = 104.011 (3)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3910 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2200 reflections with I > 2σ(I) |
Tmin = 0.77, Tmax = 0.92 | Rint = 0.048 |
50472 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.56 e Å−3 |
3910 reflections | Δρmin = −0.62 e Å−3 |
299 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1494 (3) | 0.43387 (19) | 0.1754 (3) | 0.0703 (10) | |
H1 | 0.2493 | 0.4359 | 0.1910 | 0.084* | |
C2 | 0.0842 (4) | 0.3755 (2) | 0.1601 (4) | 0.0794 (11) | |
H2 | 0.1387 | 0.3376 | 0.1642 | 0.095* | |
C3 | −0.0654 (4) | 0.3715 (2) | 0.1382 (3) | 0.0787 (11) | |
H3 | −0.1092 | 0.3307 | 0.1283 | 0.094* | |
C4 | −0.1483 (3) | 0.4255 (2) | 0.1309 (3) | 0.0684 (10) | |
H4 | −0.2477 | 0.4213 | 0.1171 | 0.082* | |
C5 | −0.1859 (4) | 0.6625 (2) | 0.1220 (3) | 0.0773 (11) | |
H5 | −0.2858 | 0.6599 | 0.1022 | 0.093* | |
C6 | −0.1200 (4) | 0.7217 (2) | 0.1332 (4) | 0.0902 (12) | |
H6 | −0.1766 | 0.7591 | 0.1205 | 0.108* | |
C7 | 0.0303 (4) | 0.7284 (2) | 0.1631 (4) | 0.0896 (12) | |
H7 | 0.0725 | 0.7696 | 0.1708 | 0.108* | |
C8 | 0.1126 (4) | 0.67394 (19) | 0.1808 (3) | 0.0734 (10) | |
H8 | 0.2123 | 0.6781 | 0.2009 | 0.088* | |
C9 | 0.1328 (3) | 0.55402 (17) | 0.1829 (3) | 0.0544 (8) | |
N10 | −0.1650 (2) | 0.54462 (15) | 0.1304 (2) | 0.0582 (7) | |
C11 | 0.0688 (3) | 0.49303 (17) | 0.1682 (3) | 0.0574 (9) | |
C12 | −0.0853 (3) | 0.48819 (17) | 0.1439 (3) | 0.0553 (8) | |
C13 | 0.0508 (3) | 0.61081 (17) | 0.1694 (3) | 0.0601 (9) | |
C14 | −0.1030 (3) | 0.60523 (18) | 0.1404 (3) | 0.0596 (9) | |
C15 | 0.2939 (3) | 0.56004 (16) | 0.2072 (3) | 0.0573 (8) | |
O16 | 0.35203 (19) | 0.56616 (11) | 0.32302 (19) | 0.0620 (6) | |
O17 | 0.3586 (2) | 0.55888 (15) | 0.1321 (2) | 0.0855 (8) | |
C18 | 0.5032 (3) | 0.57634 (17) | 0.3564 (3) | 0.0521 (8) | |
C19 | 0.5556 (3) | 0.63811 (17) | 0.3571 (3) | 0.0606 (9) | |
H19 | 0.4934 | 0.6730 | 0.3332 | 0.073* | |
C20 | 0.7017 (3) | 0.64830 (17) | 0.3934 (3) | 0.0647 (9) | |
H20 | 0.7396 | 0.6901 | 0.3933 | 0.078* | |
C21 | 0.7905 (3) | 0.59614 (18) | 0.4296 (3) | 0.0639 (9) | |
C22 | 0.7375 (4) | 0.5340 (2) | 0.4306 (3) | 0.0796 (11) | |
H22 | 0.7995 | 0.4992 | 0.4566 | 0.095* | |
C23 | 0.5906 (4) | 0.52369 (18) | 0.3924 (3) | 0.0713 (10) | |
H23 | 0.5522 | 0.4819 | 0.3913 | 0.086* | |
Br24 | 0.99257 (4) | 0.61111 (2) | 0.48030 (5) | 0.1038 (2) | |
C25 | −0.3252 (3) | 0.5406 (2) | 0.1034 (3) | 0.0775 (11) | |
H25A | −0.3609 | 0.5716 | 0.1511 | 0.116* | |
H25B | −0.3533 | 0.4974 | 0.1205 | 0.116* | |
H25C | −0.3644 | 0.5501 | 0.0210 | 0.116* | |
S26 | 0.47869 (9) | 0.82754 (4) | 0.30872 (9) | 0.0676 (3) | |
O27 | 0.6132 (3) | 0.79768 (13) | 0.3588 (3) | 0.0980 (9) | |
O28 | 0.4780 (3) | 0.89700 (12) | 0.3260 (3) | 0.1005 (9) | |
O29 | 0.3556 (3) | 0.79269 (14) | 0.3249 (3) | 0.1026 (9) | |
C30 | 0.4620 (5) | 0.8203 (3) | 0.1534 (4) | 0.1024 (14) | |
F31 | 0.5746 (4) | 0.8502 (2) | 0.1247 (3) | 0.1619 (13) | |
F32 | 0.4639 (4) | 0.75825 (19) | 0.1220 (3) | 0.1721 (14) | |
F33 | 0.3479 (4) | 0.8468 (2) | 0.0881 (3) | 0.1719 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0475 (17) | 0.081 (3) | 0.084 (3) | 0.0049 (19) | 0.0198 (16) | 0.009 (2) |
C2 | 0.066 (2) | 0.077 (3) | 0.098 (3) | 0.009 (2) | 0.025 (2) | 0.010 (2) |
C3 | 0.068 (2) | 0.074 (3) | 0.094 (3) | −0.007 (2) | 0.019 (2) | 0.005 (2) |
C4 | 0.0476 (17) | 0.095 (3) | 0.065 (2) | −0.013 (2) | 0.0176 (15) | 0.004 (2) |
C5 | 0.053 (2) | 0.092 (3) | 0.086 (3) | 0.016 (2) | 0.0137 (18) | 0.001 (2) |
C6 | 0.077 (3) | 0.082 (3) | 0.108 (3) | 0.027 (2) | 0.016 (2) | 0.007 (3) |
C7 | 0.073 (2) | 0.074 (3) | 0.121 (3) | 0.004 (2) | 0.023 (2) | 0.002 (2) |
C8 | 0.0522 (18) | 0.075 (3) | 0.093 (3) | −0.0007 (19) | 0.0168 (17) | 0.001 (2) |
C9 | 0.0341 (14) | 0.074 (2) | 0.056 (2) | 0.0012 (15) | 0.0129 (13) | −0.0011 (16) |
N10 | 0.0343 (12) | 0.083 (2) | 0.0595 (17) | 0.0019 (14) | 0.0148 (11) | −0.0024 (14) |
C11 | 0.0371 (16) | 0.078 (3) | 0.059 (2) | 0.0031 (16) | 0.0150 (14) | 0.0038 (17) |
C12 | 0.0378 (15) | 0.078 (3) | 0.051 (2) | −0.0011 (16) | 0.0126 (13) | 0.0025 (16) |
C13 | 0.0408 (16) | 0.077 (3) | 0.064 (2) | −0.0013 (17) | 0.0166 (14) | 0.0001 (17) |
C14 | 0.0418 (16) | 0.077 (3) | 0.060 (2) | 0.0079 (17) | 0.0122 (14) | 0.0007 (17) |
C15 | 0.0400 (16) | 0.068 (2) | 0.065 (2) | −0.0002 (14) | 0.0159 (17) | 0.0015 (17) |
O16 | 0.0393 (10) | 0.0869 (17) | 0.0597 (15) | −0.0019 (10) | 0.0119 (10) | −0.0009 (12) |
O17 | 0.0402 (12) | 0.157 (3) | 0.0613 (15) | −0.0036 (13) | 0.0155 (11) | −0.0026 (15) |
C18 | 0.0389 (15) | 0.064 (2) | 0.0523 (19) | 0.0018 (15) | 0.0094 (13) | −0.0004 (16) |
C19 | 0.0491 (18) | 0.061 (2) | 0.069 (2) | 0.0097 (16) | 0.0088 (15) | 0.0051 (18) |
C20 | 0.0501 (18) | 0.060 (2) | 0.079 (2) | 0.0022 (16) | 0.0066 (16) | −0.0022 (18) |
C21 | 0.0429 (16) | 0.072 (3) | 0.072 (2) | 0.0043 (16) | 0.0035 (15) | −0.0055 (18) |
C22 | 0.059 (2) | 0.067 (3) | 0.102 (3) | 0.0148 (19) | −0.0019 (19) | 0.004 (2) |
C23 | 0.060 (2) | 0.058 (2) | 0.092 (3) | 0.0033 (17) | 0.0100 (18) | 0.0055 (19) |
Br24 | 0.0442 (2) | 0.1080 (4) | 0.1442 (5) | 0.00493 (19) | −0.0065 (2) | −0.0176 (3) |
C25 | 0.0321 (15) | 0.104 (3) | 0.093 (3) | 0.0019 (17) | 0.0103 (15) | −0.012 (2) |
S26 | 0.0539 (5) | 0.0615 (6) | 0.0876 (7) | 0.0009 (4) | 0.0176 (4) | 0.0017 (5) |
O27 | 0.0639 (14) | 0.086 (2) | 0.130 (2) | 0.0090 (13) | −0.0052 (14) | 0.0217 (16) |
O28 | 0.0918 (18) | 0.0651 (19) | 0.150 (3) | −0.0001 (13) | 0.0394 (18) | −0.0211 (16) |
O29 | 0.0775 (16) | 0.098 (2) | 0.144 (3) | −0.0196 (14) | 0.0486 (16) | 0.0098 (18) |
C30 | 0.104 (3) | 0.100 (4) | 0.102 (4) | −0.001 (3) | 0.020 (3) | −0.001 (3) |
F31 | 0.162 (3) | 0.227 (4) | 0.115 (2) | −0.019 (3) | 0.069 (2) | 0.029 (2) |
F32 | 0.250 (4) | 0.141 (3) | 0.120 (2) | 0.006 (3) | 0.034 (2) | −0.052 (2) |
F33 | 0.139 (3) | 0.201 (4) | 0.134 (3) | 0.005 (2) | −0.048 (2) | 0.047 (2) |
C1—C2 | 1.342 (5) | C13—C14 | 1.433 (4) |
C1—C11 | 1.429 (5) | C15—O17 | 1.187 (4) |
C1—H1 | 0.9300 | C15—O16 | 1.332 (4) |
C2—C3 | 1.395 (5) | O16—C18 | 1.421 (3) |
C2—H2 | 0.9300 | C18—C19 | 1.361 (4) |
C3—C4 | 1.352 (5) | C18—C23 | 1.367 (4) |
C3—H3 | 0.9300 | C19—C20 | 1.376 (4) |
C4—C12 | 1.411 (5) | C19—H19 | 0.9300 |
C4—H4 | 0.9300 | C20—C21 | 1.367 (5) |
C5—C6 | 1.359 (5) | C20—H20 | 0.9300 |
C5—C14 | 1.403 (5) | C21—C22 | 1.372 (5) |
C5—H5 | 0.9300 | C21—Br24 | 1.906 (3) |
C6—C7 | 1.403 (5) | C22—C23 | 1.385 (5) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.353 (5) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.415 (5) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C11 | 1.384 (4) | S26—O27 | 1.418 (2) |
C9—C13 | 1.391 (4) | S26—O29 | 1.429 (2) |
C9—C15 | 1.505 (4) | S26—O28 | 1.438 (3) |
N10—C14 | 1.369 (4) | S26—C30 | 1.779 (5) |
N10—C12 | 1.374 (4) | C30—F33 | 1.290 (5) |
N10—C25 | 1.491 (3) | C30—F32 | 1.325 (5) |
C11—C12 | 1.437 (4) | C30—F31 | 1.350 (5) |
C2—C1—C11 | 121.5 (3) | C5—C14—C13 | 118.7 (3) |
C2—C1—H1 | 119.3 | O17—C15—O16 | 125.5 (3) |
C11—C1—H1 | 119.3 | O17—C15—C9 | 123.6 (3) |
C1—C2—C3 | 120.0 (4) | O16—C15—C9 | 110.8 (3) |
C1—C2—H2 | 120.0 | C15—O16—C18 | 116.0 (2) |
C3—C2—H2 | 120.0 | C19—C18—C23 | 122.3 (3) |
C4—C3—C2 | 121.7 (4) | C19—C18—O16 | 119.2 (3) |
C4—C3—H3 | 119.1 | C23—C18—O16 | 118.4 (3) |
C2—C3—H3 | 119.1 | C18—C19—C20 | 119.3 (3) |
C3—C4—C12 | 120.6 (3) | C18—C19—H19 | 120.4 |
C3—C4—H4 | 119.7 | C20—C19—H19 | 120.4 |
C12—C4—H4 | 119.7 | C21—C20—C19 | 119.1 (3) |
C6—C5—C14 | 120.0 (3) | C21—C20—H20 | 120.5 |
C6—C5—H5 | 120.0 | C19—C20—H20 | 120.5 |
C14—C5—H5 | 120.0 | C20—C21—C22 | 121.7 (3) |
C5—C6—C7 | 122.4 (4) | C20—C21—Br24 | 118.6 (3) |
C5—C6—H6 | 118.8 | C22—C21—Br24 | 119.8 (2) |
C7—C6—H6 | 118.8 | C21—C22—C23 | 119.2 (3) |
C8—C7—C6 | 118.8 (4) | C21—C22—H22 | 120.4 |
C8—C7—H7 | 120.6 | C23—C22—H22 | 120.4 |
C6—C7—H7 | 120.6 | C18—C23—C22 | 118.4 (3) |
C7—C8—C13 | 121.6 (3) | C18—C23—H23 | 120.8 |
C7—C8—H8 | 119.2 | C22—C23—H23 | 120.8 |
C13—C8—H8 | 119.2 | N10—C25—H25A | 109.5 |
C11—C9—C13 | 121.4 (3) | N10—C25—H25B | 109.5 |
C11—C9—C15 | 120.0 (3) | H25A—C25—H25B | 109.5 |
C13—C9—C15 | 118.5 (3) | N10—C25—H25C | 109.5 |
C14—N10—C12 | 122.4 (2) | H25A—C25—H25C | 109.5 |
C14—N10—C25 | 118.1 (3) | H25B—C25—H25C | 109.5 |
C12—N10—C25 | 119.5 (3) | O27—S26—O29 | 115.25 (18) |
C9—C11—C1 | 122.9 (3) | O27—S26—O28 | 113.86 (17) |
C9—C11—C12 | 119.3 (3) | O29—S26—O28 | 116.39 (17) |
C1—C11—C12 | 117.9 (3) | O27—S26—C30 | 103.3 (2) |
N10—C12—C4 | 122.8 (3) | O29—S26—C30 | 102.6 (2) |
N10—C12—C11 | 118.7 (3) | O28—S26—C30 | 102.8 (2) |
C4—C12—C11 | 118.4 (3) | F33—C30—F32 | 107.9 (4) |
C9—C13—C8 | 122.8 (3) | F33—C30—F31 | 106.0 (4) |
C9—C13—C14 | 118.6 (3) | F32—C30—F31 | 107.6 (5) |
C8—C13—C14 | 118.5 (3) | F33—C30—S26 | 114.7 (4) |
N10—C14—C5 | 121.8 (3) | F32—C30—S26 | 110.9 (4) |
N10—C14—C13 | 119.5 (3) | F31—C30—S26 | 109.4 (3) |
C11—C1—C2—C3 | −0.8 (6) | C6—C5—C14—C13 | −0.8 (5) |
C1—C2—C3—C4 | 0.4 (6) | C9—C13—C14—N10 | 2.0 (5) |
C2—C3—C4—C12 | 0.8 (6) | C8—C13—C14—N10 | −179.2 (3) |
C14—C5—C6—C7 | −0.2 (6) | C9—C13—C14—C5 | −177.4 (3) |
C5—C6—C7—C8 | 0.5 (7) | C8—C13—C14—C5 | 1.4 (5) |
C6—C7—C8—C13 | 0.2 (6) | C11—C9—C15—O17 | 82.6 (4) |
C13—C9—C11—C1 | 176.7 (3) | C13—C9—C15—O17 | −93.9 (4) |
C15—C9—C11—C1 | 0.3 (5) | C11—C9—C15—O16 | −96.8 (3) |
C13—C9—C11—C12 | −2.9 (5) | C13—C9—C15—O16 | 86.6 (4) |
C15—C9—C11—C12 | −179.4 (3) | O17—C15—O16—C18 | 4.3 (5) |
C2—C1—C11—C9 | −179.7 (3) | C9—C15—O16—C18 | −176.2 (3) |
C2—C1—C11—C12 | −0.1 (5) | C15—O16—C18—C19 | 85.8 (4) |
C14—N10—C12—C4 | −178.4 (3) | C15—O16—C18—C23 | −97.4 (3) |
C25—N10—C12—C4 | 1.3 (4) | C23—C18—C19—C20 | 1.0 (5) |
C14—N10—C12—C11 | −0.6 (4) | O16—C18—C19—C20 | 177.7 (3) |
C25—N10—C12—C11 | 179.1 (3) | C18—C19—C20—C21 | −1.0 (5) |
C3—C4—C12—N10 | 176.1 (3) | C19—C20—C21—C22 | 0.0 (5) |
C3—C4—C12—C11 | −1.7 (5) | C19—C20—C21—Br24 | −179.7 (3) |
C9—C11—C12—N10 | 3.0 (4) | C20—C21—C22—C23 | 0.9 (6) |
C1—C11—C12—N10 | −176.6 (3) | Br24—C21—C22—C23 | −179.4 (3) |
C9—C11—C12—C4 | −179.1 (3) | C19—C18—C23—C22 | −0.1 (5) |
C1—C11—C12—C4 | 1.3 (4) | O16—C18—C23—C22 | −176.8 (3) |
C11—C9—C13—C8 | −178.3 (3) | C21—C22—C23—C18 | −0.9 (6) |
C15—C9—C13—C8 | −1.8 (5) | O27—S26—C30—F33 | −177.5 (4) |
C11—C9—C13—C14 | 0.5 (5) | O29—S26—C30—F33 | 62.4 (4) |
C15—C9—C13—C14 | 176.9 (3) | O28—S26—C30—F33 | −58.8 (4) |
C7—C8—C13—C9 | 177.7 (4) | O27—S26—C30—F32 | 60.0 (4) |
C7—C8—C13—C14 | −1.1 (5) | O29—S26—C30—F32 | −60.2 (4) |
C12—N10—C14—C5 | 177.5 (3) | O28—S26—C30—F32 | 178.7 (4) |
C25—N10—C14—C5 | −2.2 (5) | O27—S26—C30—F31 | −58.5 (4) |
C12—N10—C14—C13 | −1.9 (5) | O29—S26—C30—F31 | −178.6 (3) |
C25—N10—C14—C13 | 178.4 (3) | O28—S26—C30—F31 | 60.2 (4) |
C6—C5—C14—N10 | 179.8 (3) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O27i | 0.93 | 2.59 | 3.361 (5) | 141 |
C4—H4···O28ii | 0.93 | 2.50 | 3.365 (4) | 155 |
C20—H20···O27 | 0.93 | 2.50 | 3.176 (4) | 130 |
C25—H25A···Cg4iii | 0.96 | 2.81 | 3.569 (4) | 136 |
C25—H25B···O28ii | 0.96 | 2.53 | 3.472 (5) | 167 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C21H15BrNO2+·CF3O3S− |
Mr | 542.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 9.5755 (2), 20.4912 (7), 11.6241 (5) |
β (°) | 104.011 (3) |
V (Å3) | 2212.95 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.01 |
Crystal size (mm) | 0.37 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.77, 0.92 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 50472, 3910, 2200 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.112, 0.98 |
No. of reflections | 3910 |
No. of parameters | 299 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.62 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O27i | 0.93 | 2.59 | 3.361 (5) | 141 |
C4—H4···O28ii | 0.93 | 2.50 | 3.365 (4) | 155 |
C20—H20···O27 | 0.93 | 2.50 | 3.176 (4) | 130 |
C25—H25A···Cg4iii | 0.96 | 2.81 | 3.569 (4) | 136 |
C25—H25B···O28ii | 0.96 | 2.53 | 3.472 (5) | 167 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x−1, y, z. |
X | I | J | I···J | X···J | X–I···J |
C21 | Br24 | Cg1iv | 3.958 (2) | 4.158 (3) | 82.3 (1) |
C21 | Br24 | Cg3iv | 3.937 (2) | 4.235 (4) | 85.4 (2) |
C30 | F31 | Cg4v | 3.212 (4) | 4.305 (5) | 137.5 (3) |
Symmetry codes: (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2. Notes: Cg1, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C5–C8/C13/C14 and C18–C23 rings, respectively. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 2vi | 3.650 (2) | 2.82 (16) | 3.623 (2) | 0.444 (2) |
2 | 1vi | 3.650 (2) | 2.82 (16) | 3.623 (2) | 0.444 (2) |
Symmetry code: (vi) –x, –y + 1, –z. Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education) for the period 2007–2010.
References
Adamczyk, M. & Mattingly, P. G. (2002). Luminescence Biotechnology Instruments and Applications, edited by K. Van Dyke, C. Van Dyke & K. Woodfork, pp. 77–105. Boca Raton, London, New York, Washington, DC: CRC Press. Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. E61, o2131–o2133. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o3112–o3114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The cations of 9-(phenoxycarbonyl)-10-methylacridinium salts react efficiently with H2O2 in alkaline media producing light (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002). This effect means that the compounds can serve as chemiluminescent indicators or as chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002; Roda et al. , 2003; King et al., 2007). The chemiluminogenic features of the compounds depend on the structure of the cations, particularly the phenoxycarbonyl fragment which is removed during their oxidation leading to electronically excited 10-methyl-9-acridinone molecules (Rak et al., 1999; Zomer & Jacquemijns, 2001). It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is influenced by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to synthesize and investigate derivatives substituted in this latter fragment. In this paper, a continuation of a series on bromo-substituted derivatives (Sikorski et al., 2005a), we present the structure of the title compound.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.0442 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or almost parallel (remain at an angle of 1.4 (1)°) in the lattice.
In the crystal structure, the inversely oriented cations form dimers through π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are further linked by C–H···π (Table 1, Fig. 2) and C–Br···π (Table 2, Fig. 2) interactions. The cations and anions are connected by multidirectional C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions. The C–Br···π interactions have been reported by others (Seo et al., 2009). The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.