organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,6-di­methyl-4-(4-pyrid­yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aDepartment of Chemistry, Dezhou University, Shandong 253023, People's Republic of China
*Correspondence e-mail: liyumei_dzc@yahoo.com.cn

(Received 20 April 2010; accepted 10 May 2010; online 15 May 2010)

In the title compound, C18H22N2O4, the dihedral angle between the two rings is 87.90 (6)°. The mean devation of the atoms in the dihydropyridine plane is 0.082 (3) Å. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, generating chains.

Related literature

For general background to the biological activity of 1,4-dihydro­pyridine derivatives, see: Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A83, 1110-1115.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O4

  • Mr = 330.38

  • Monoclinic, P 21 /n

  • a = 11.5550 (2) Å

  • b = 13.1707 (2) Å

  • c = 11.8020 (2) Å

  • β = 92.705 (2)°

  • V = 1794.11 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.993

  • 9122 measured reflections

  • 3152 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.03

  • 3152 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1i 0.86 (2) 2.13 (2) 2.984 (2) 171.8 (18)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994).

The molecular structure of the title compound is shown in Fig 1. The dihedral angle between the two rings is 87.90 (6) °. The mean devation of the dihydropyridine plane is 0.082 (3)Å. The intermolecular hydrogen bonding of N(2)—H(2A)···N(1) leads to a consolidation of the structure (Fig. 2; Table 1).

Related literature top

For general background to the biological activity of 1,4-dihydropyridine derivatives, see: Gaudio et al. (1994).

Experimental top

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate was purchased from Jinan Henghua Science & Technology Co. Ltd. Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate (1 mmoL 0.39 g) was dissolved in 20 ml ethanol, which was evaporated in an open flask at room temperature. One week later, yellow block crystals suitable for the X-ray experiment were obained. Anal. C18H22N2O4: C, 65.37; H, 6.66; N, 8.48 %. Found: C, 65.32; H, 6.45; N, 8.39 %.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). For methyl groups C—H distances were 0.96 Å and Uiso = 1.5Ueq(C) . Two of the methyl groups were found to have two sets of methyl hydrogens and were refined with AFIX 127 and major part occupanices that refined to 0.60 (2) and 0.59 (2) for C17 and C18, respectively. The hydrogen atom attached to the hydropyridine nitrogen was freely refined.

Structure description top

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994).

The molecular structure of the title compound is shown in Fig 1. The dihedral angle between the two rings is 87.90 (6) °. The mean devation of the dihydropyridine plane is 0.082 (3)Å. The intermolecular hydrogen bonding of N(2)—H(2A)···N(1) leads to a consolidation of the structure (Fig. 2; Table 1).

For general background to the biological activity of 1,4-dihydropyridine derivatives, see: Gaudio et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C18H22N2O4F(000) = 704
Mr = 330.38Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2361 reflections
a = 11.5550 (2) Åθ = 2.3–24.5°
b = 13.1707 (2) ŵ = 0.09 mm1
c = 11.8020 (2) ÅT = 296 K
β = 92.705 (2)°Block, yellow
V = 1794.11 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1113
Tmin = 0.990, Tmax = 0.993k = 1515
9122 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2873P]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H22N2O4V = 1794.11 (5) Å3
Mr = 330.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5550 (2) ŵ = 0.09 mm1
b = 13.1707 (2) ÅT = 296 K
c = 11.8020 (2) Å0.12 × 0.10 × 0.08 mm
β = 92.705 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2308 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.993Rint = 0.032
9122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
3152 reflectionsΔρmin = 0.19 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.33862 (13)0.01201 (15)0.15684 (14)0.0917 (6)
O20.50534 (12)0.07176 (10)0.16753 (11)0.0597 (4)
O30.80150 (10)0.08444 (10)0.58574 (10)0.0539 (4)
O40.81559 (11)0.01782 (11)0.43654 (12)0.0630 (4)
N10.82662 (14)0.18151 (15)0.07048 (14)0.0616 (5)
N20.47955 (13)0.18372 (12)0.43985 (13)0.0472 (4)
H2N0.4391 (17)0.2279 (15)0.4751 (16)0.058 (6)*
C10.76016 (19)0.23648 (17)0.13643 (17)0.0626 (6)
H10.75950.30660.12720.075*
C20.69267 (17)0.19512 (14)0.21726 (16)0.0527 (5)
H20.64820.23740.26100.063*
C30.69017 (13)0.09216 (12)0.23420 (13)0.0376 (4)
C40.75744 (16)0.03451 (15)0.16496 (15)0.0525 (5)
H40.75860.03580.17170.063*
C50.82298 (17)0.08201 (18)0.08560 (17)0.0631 (6)
H50.86740.04150.03990.076*
C60.76250 (15)0.04661 (14)0.48574 (14)0.0431 (4)
C70.91311 (16)0.04589 (17)0.62964 (17)0.0601 (5)
H7A0.97390.06640.58060.072*
H7B0.91160.02770.63280.072*
C80.9350 (2)0.0879 (2)0.7438 (2)0.0949 (9)
H8A0.93860.16060.73940.142*
H8B1.00720.06220.77540.142*
H8C0.87340.06840.79110.142*
C90.43413 (16)0.00167 (16)0.20127 (15)0.0514 (5)
C100.4620 (2)0.13703 (19)0.0762 (2)0.0795 (7)
H10A0.44630.09740.00790.095*
H10B0.39050.16940.09670.095*
C110.5496 (3)0.2133 (3)0.0566 (3)0.1604 (18)
H11A0.62050.18050.03840.241*
H11B0.52360.25620.00530.241*
H11C0.56240.25360.12380.241*
C120.61631 (13)0.04467 (13)0.32414 (13)0.0373 (4)
H120.63080.02860.32520.045*
C130.48786 (14)0.06167 (13)0.29414 (14)0.0405 (4)
C140.42771 (14)0.13185 (13)0.34979 (14)0.0424 (4)
C150.58549 (14)0.15725 (13)0.49037 (14)0.0425 (4)
C160.65116 (13)0.08686 (12)0.44024 (13)0.0381 (4)
C170.61248 (18)0.21403 (17)0.59884 (16)0.0614 (6)
H17A0.63610.16690.65750.092*0.60 (2)
H17B0.54470.24990.62050.092*0.60 (2)
H17C0.67390.26150.58780.092*0.60 (2)
H17D0.60040.28540.58640.092*0.40 (2)
H17E0.69180.20230.62330.092*0.40 (2)
H17F0.56250.19070.65610.092*0.40 (2)
C180.30334 (15)0.16157 (17)0.32620 (17)0.0584 (5)
H18A0.25960.14660.39130.088*0.59 (2)
H18B0.27210.12420.26200.088*0.59 (2)
H18C0.29890.23300.31020.088*0.59 (2)
H18D0.29410.18920.25110.088*0.41 (2)
H18E0.28160.21160.38040.088*0.41 (2)
H18F0.25480.10280.33210.088*0.41 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (9)0.1327 (15)0.0895 (11)0.0078 (9)0.0249 (9)0.0411 (11)
O20.0560 (8)0.0669 (9)0.0552 (8)0.0058 (7)0.0078 (7)0.0177 (7)
O30.0388 (7)0.0738 (9)0.0480 (7)0.0130 (6)0.0106 (6)0.0075 (6)
O40.0505 (8)0.0732 (9)0.0643 (9)0.0217 (7)0.0080 (7)0.0164 (7)
N10.0482 (10)0.0823 (13)0.0547 (10)0.0138 (9)0.0065 (8)0.0115 (9)
N20.0358 (8)0.0622 (10)0.0436 (9)0.0121 (7)0.0003 (7)0.0067 (8)
C10.0689 (14)0.0555 (12)0.0637 (13)0.0175 (11)0.0050 (11)0.0075 (10)
C20.0552 (12)0.0487 (11)0.0551 (11)0.0048 (9)0.0113 (9)0.0026 (9)
C30.0289 (8)0.0479 (10)0.0355 (9)0.0015 (7)0.0038 (7)0.0004 (7)
C40.0520 (11)0.0542 (12)0.0522 (11)0.0069 (9)0.0121 (9)0.0029 (9)
C50.0491 (12)0.0853 (17)0.0563 (13)0.0091 (11)0.0171 (10)0.0050 (11)
C60.0383 (10)0.0507 (10)0.0401 (10)0.0015 (8)0.0004 (8)0.0003 (8)
C70.0367 (10)0.0759 (14)0.0662 (13)0.0114 (10)0.0129 (9)0.0020 (11)
C80.0617 (15)0.144 (2)0.0762 (16)0.0252 (16)0.0278 (13)0.0237 (17)
C90.0433 (11)0.0666 (13)0.0441 (11)0.0083 (9)0.0010 (9)0.0025 (9)
C100.0852 (17)0.0833 (17)0.0684 (14)0.0116 (14)0.0149 (13)0.0286 (13)
C110.172 (4)0.139 (3)0.164 (3)0.065 (3)0.066 (3)0.101 (3)
C120.0350 (9)0.0402 (9)0.0366 (9)0.0001 (7)0.0009 (7)0.0014 (7)
C130.0342 (9)0.0510 (10)0.0362 (9)0.0058 (8)0.0011 (7)0.0040 (8)
C140.0329 (9)0.0555 (11)0.0386 (9)0.0012 (8)0.0011 (7)0.0066 (8)
C150.0363 (9)0.0543 (11)0.0366 (9)0.0025 (8)0.0002 (8)0.0015 (8)
C160.0324 (9)0.0443 (10)0.0374 (9)0.0013 (7)0.0002 (7)0.0008 (7)
C170.0537 (12)0.0806 (14)0.0493 (11)0.0159 (10)0.0048 (9)0.0170 (10)
C180.0339 (10)0.0825 (14)0.0586 (12)0.0053 (9)0.0019 (9)0.0038 (11)
Geometric parameters (Å, º) top
O1—C91.207 (2)C9—C131.465 (2)
O2—C91.342 (2)C10—C111.452 (4)
O2—C101.449 (2)C10—H10A0.9700
O3—C61.339 (2)C10—H10B0.9700
O3—C71.458 (2)C11—H11A0.9600
O4—C61.211 (2)C11—H11B0.9600
N1—C51.324 (3)C11—H11C0.9600
N1—C11.333 (3)C12—C161.515 (2)
N2—C141.377 (2)C12—C131.526 (2)
N2—C151.381 (2)C12—H120.9800
N2—H2N0.86 (2)C13—C141.346 (2)
C1—C21.373 (3)C14—C181.503 (2)
C1—H10.9300C15—C161.352 (2)
C2—C31.371 (2)C15—C171.503 (2)
C2—H20.9300C17—H17A0.9600
C3—C41.381 (2)C17—H17B0.9600
C3—C121.527 (2)C17—H17C0.9600
C4—C51.382 (3)C17—H17D0.9600
C4—H40.9300C17—H17E0.9600
C5—H50.9300C17—H17F0.9600
C6—C161.470 (2)C18—H18A0.9600
C7—C81.467 (3)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700C18—H18D0.9600
C8—H8A0.9600C18—H18E0.9600
C8—H8B0.9600C18—H18F0.9600
C8—H8C0.9600
C9—O2—C10116.92 (16)H11A—C11—H11B109.5
C6—O3—C7116.02 (14)C10—C11—H11C109.5
C5—N1—C1115.87 (17)H11A—C11—H11C109.5
C14—N2—C15123.55 (16)H11B—C11—H11C109.5
C14—N2—H2N118.7 (13)C16—C12—C13111.71 (13)
C15—N2—H2N116.8 (13)C16—C12—C3110.18 (13)
N1—C1—C2123.51 (19)C13—C12—C3110.37 (13)
N1—C1—H1118.2C16—C12—H12108.2
C2—C1—H1118.2C13—C12—H12108.2
C3—C2—C1120.68 (18)C3—C12—H12108.2
C3—C2—H2119.7C14—C13—C9121.67 (16)
C1—C2—H2119.7C14—C13—C12120.43 (15)
C2—C3—C4116.16 (16)C9—C13—C12117.87 (15)
C2—C3—C12121.52 (15)C13—C14—N2120.11 (15)
C4—C3—C12122.32 (15)C13—C14—C18126.85 (16)
C3—C4—C5119.59 (18)N2—C14—C18113.03 (16)
C3—C4—H4120.2C16—C15—N2119.26 (15)
C5—C4—H4120.2C16—C15—C17128.02 (15)
N1—C5—C4124.17 (19)N2—C15—C17112.72 (15)
N1—C5—H5117.9C15—C16—C6125.97 (15)
C4—C5—H5117.9C15—C16—C12121.10 (14)
O4—C6—O3121.74 (15)C6—C16—C12112.88 (14)
O4—C6—C16122.14 (16)C15—C17—H17A109.5
O3—C6—C16116.11 (15)C15—C17—H17B109.5
O3—C7—C8107.81 (17)H17A—C17—H17B109.5
O3—C7—H7A110.1C15—C17—H17C109.5
C8—C7—H7A110.1H17A—C17—H17C109.5
O3—C7—H7B110.1H17B—C17—H17C109.5
C8—C7—H7B110.1C15—C17—H17D109.5
H7A—C7—H7B108.5C15—C17—H17E109.5
C7—C8—H8A109.5H17D—C17—H17E109.5
C7—C8—H8B109.5C15—C17—H17F109.5
H8A—C8—H8B109.5H17D—C17—H17F109.5
C7—C8—H8C109.5H17E—C17—H17F109.5
H8A—C8—H8C109.5C14—C18—H18A109.5
H8B—C8—H8C109.5C14—C18—H18B109.5
O1—C9—O2120.87 (17)H18A—C18—H18B109.5
O1—C9—C13127.63 (19)C14—C18—H18C109.5
O2—C9—C13111.50 (15)H18A—C18—H18C109.5
O2—C10—C11108.0 (2)H18B—C18—H18C109.5
O2—C10—H10A110.1C14—C18—H18D109.5
C11—C10—H10A110.1C14—C18—H18E109.5
O2—C10—H10B110.1H18D—C18—H18E109.5
C11—C10—H10B110.1C14—C18—H18F109.5
H10A—C10—H10B108.4H18D—C18—H18F109.5
C10—C11—H11A109.5H18E—C18—H18F109.5
C10—C11—H11B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.13 (2)2.984 (2)171.8 (18)
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O4
Mr330.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.5550 (2), 13.1707 (2), 11.8020 (2)
β (°) 92.705 (2)
V3)1794.11 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.990, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9122, 3152, 2308
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.03
No. of reflections3152
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.13 (2)2.984 (2)171.8 (18)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A83, 1110–1115.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds