organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-(9-Ethyl-9H-carbazol-3-yl)methyl­­idene]aniline

aDepartment of Physics, Faculty of Arts and Sciences, Balıkesir University, 10615 Cağış–Balıkesir, Turkey, and bNecatibey Faculty of Education, Balıkesir University, 10100 Balıkesir, Turkey
*Correspondence e-mail: asker@balikesir.edu.tr

(Received 3 May 2010; accepted 19 May 2010; online 26 May 2010)

The title compound, C21H18N2, was obtained as the product of the reaction between 9-ethyl-9H-carbazole-3-carbaldehyde and aniline in ethanol. The crystal packing is stabilized mainly by C—H⋯π inter­actions between the carbazole benzene rings and the methyl­ene H atoms.

Related literature

For background to photoconductive properties see: Segura (1998[Segura, J. L. (1998). Acta Polym. 49, 319-344.]); Grigoras & Antonoaia (2005[Grigoras, M. & Antonoaia, N. C. (2005). Eur. Polym. J. 41, 1079-1089.]). For geometrical parameters in related structures, see: Wang et al. (2008[Wang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.]); Huang et al. (2008[Huang, P.-H., Chen, G.-J. & Wen, Y.-S. (2008). Acta Cryst. E64, o2407.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2

  • Mr = 298.37

  • Monoclinic, P 21 /n

  • a = 15.3350 (3) Å

  • b = 5.9692 (10) Å

  • c = 17.5447 (3) Å

  • β = 91.162 (1)°

  • V = 1605.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.6 × 0.4 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID S diffractometer

  • 28963 measured reflections

  • 2838 independent reflections

  • 2821 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.148

  • S = 1.41

  • 2838 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C4A/C9A and C4B/C5–C8/C8A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.87 3.587 (3) 135
C12—H12⋯Cg2i 0.93 2.98 3.660 (3) 131
C10—H10ACg2ii 0.97 3.25 4.050 (4) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalStructure (Rigaku & Rigaku/MSC, 2003[Rigaku & Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalStructure; data reduction: SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of the title compound is depicted in (Fig. 1). The bond lengths and internal bond angles of the carbazole skeleton are comparable to those of related molecules (Wang et al., 2008; Huang et al., 2008). The carbazole and phenyl skeletons are essentially planar with r.m.s deviations of 0.021Å (carbazole ring) and 0.008Å (phenyl ring). The phenyl ring is twisted away from the carbazole ring by 67.45 (05)°. The ethyl group protrudes out of the plane of the carbazole skeleton as indicated by the C9A—N9—C10—C11 torsion angle of 86.0 (3)°. The only force that stack the molecules appears to be π-ring C—H···Cg intermolecular interactions among the benzene rings of carbazole and the hydrogen atoms H5, H10A and H12 (Fig. 2).

Related literature top

For background to photoconductive properties see: Segura (1998); Grigoras & Antonoaia (2005). For geometrical parameters in related structures, see: Wang et al. (2008); Huang et al. (2008).

Experimental top

The title compound was synthesized via the imine reaction between aniline and 9-ethyl-9H-carbazol-3-carbaldehyde in ethanol. In a round bottom flask fitted with a magnetic stirrer a solution was prepared from 9-ethyl-9H-carbazol-3-carbaldehyde (1.116 g, 5 mmol) and aniline (0.70 g, 7.5 mmol) in 50 ml ethanol at ambient temperature. After stirring for 2 h, the solution was left for crystallization overnight, after which time the product was precipitated as yellow crystals. The crude product was separated by filtration and washed with ethanol. Yellow, transparent crystals suitable for the X-ray diffraction analysis were grown from tetrahydrofuran by slow evaporation technique at ambient temperature, mp. 407 K. FT—IR (KBr) νmax (cm-1): 3048 (Ar—H), 2973 (-CH3), 2930 (-CH2-), 1618 (C=N), 1587, 1567 (Ar—N), 1489, 1473, 1461 (Ar C=C); 1HNMR (300 MHz, CDCl3, ppm): 1.46 (t, J = 7.3 Hz, 3H, CH3), 4.38 (q, J = 7.3 Hz, 2H, -CH2-), 7.21-7.59 (m, 9H, ArH), 8.07 (dd, J = 8.5 and 1.8 Hz, 1H, H2), 8.18 (dt, J = 7.9 and 0.8 Hz, 1H, H5), 8.64 (s, 1H, H12), 8.65 (d, J= 1.8, 1H, H4). UV-Vis, [EtOH, λmax (nm), (ε)] = 238 (25800), 293 (22100), 338 (18500).

Refinement top

All non-hydrogen atoms were refined anisotropically; the hydrogen atoms were positioned geometrically and allowed to ride on their corresponding parent atoms with C—H distances of 0.93Å (aromatic), 0.96Å (methyl), and 0.97Å (methylene) with Uiso(H) =1.5Ueq(C) of the parent atom for the methyl group and 1.2Ueq(C) for the rest.

Structure description top

The structure of the title compound is depicted in (Fig. 1). The bond lengths and internal bond angles of the carbazole skeleton are comparable to those of related molecules (Wang et al., 2008; Huang et al., 2008). The carbazole and phenyl skeletons are essentially planar with r.m.s deviations of 0.021Å (carbazole ring) and 0.008Å (phenyl ring). The phenyl ring is twisted away from the carbazole ring by 67.45 (05)°. The ethyl group protrudes out of the plane of the carbazole skeleton as indicated by the C9A—N9—C10—C11 torsion angle of 86.0 (3)°. The only force that stack the molecules appears to be π-ring C—H···Cg intermolecular interactions among the benzene rings of carbazole and the hydrogen atoms H5, H10A and H12 (Fig. 2).

For background to photoconductive properties see: Segura (1998); Grigoras & Antonoaia (2005). For geometrical parameters in related structures, see: Wang et al. (2008); Huang et al. (2008).

Computing details top

Data collection: CrystalStructure (Rigaku & Rigaku/MSC, 2003); cell refinement: CrystalStructure (Rigaku & Rigaku/MSC, 2003); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and arbitrary spheres are shown for the H atoms.
[Figure 2] Fig. 2. Packing diagram of showing C—H···Cg intermolecular interactions; red spheres represent ring centroids.
N-[(E)-(9-Ethyl-9H-carbazol-3-yl)methylidene]aniline top
Crystal data top
C21H18N2F(000) = 632
Mr = 298.37Dx = 1.234 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8828 reflections
a = 15.3350 (3) Åθ = 2.3–25.3°
b = 5.9692 (10) ŵ = 0.07 mm1
c = 17.5447 (3) ÅT = 295 K
β = 91.162 (1)°Prism, yellow
V = 1605.7 (3) Å30.6 × 0.4 × 0.2 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID S
diffractometer
Rint = 0.030
Graphite monochromatorθmax = 25.2°, θmin = 2.3°
ω scansh = 1818
28963 measured reflectionsk = 67
2838 independent reflectionsl = 2020
2821 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.4831P]
where P = (Fo2 + 2Fc2)/3
S = 1.41(Δ/σ)max = 0.002
2838 reflectionsΔρmax = 0.14 e Å3
209 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (17)
Crystal data top
C21H18N2V = 1605.7 (3) Å3
Mr = 298.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3350 (3) ŵ = 0.07 mm1
b = 5.9692 (10) ÅT = 295 K
c = 17.5447 (3) Å0.6 × 0.4 × 0.2 mm
β = 91.162 (1)°
Data collection top
Rigaku R-AXIS RAPID S
diffractometer
2821 reflections with I > 2σ(I)
28963 measured reflectionsRint = 0.030
2838 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.41Δρmax = 0.14 e Å3
2838 reflectionsΔρmin = 0.13 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.53644 (12)0.2326 (3)0.39241 (11)0.0627 (5)
N90.15252 (12)0.1918 (3)0.39179 (10)0.0567 (5)
C10.31091 (15)0.1662 (4)0.42835 (13)0.0583 (6)
H10.31270.29910.4560.07*
C20.38396 (14)0.0359 (4)0.42111 (12)0.0580 (6)
H20.4360.08290.4440.07*
C30.38256 (14)0.1669 (4)0.38000 (12)0.0530 (5)
C40.30554 (14)0.2380 (4)0.34500 (12)0.0531 (5)
H40.3040.37170.31780.064*
C4A0.23047 (13)0.1080 (4)0.35070 (11)0.0511 (5)
C4B0.14167 (13)0.1318 (4)0.32328 (11)0.0520 (5)
C50.09773 (15)0.2925 (4)0.27965 (12)0.0611 (6)
H50.12740.41540.26050.073*
C60.00979 (16)0.2669 (5)0.26525 (14)0.0678 (7)
H60.02020.37370.23640.081*
C70.03468 (16)0.0827 (5)0.29346 (14)0.0684 (7)
H70.09420.06970.28330.082*
C80.00672 (15)0.0809 (4)0.33593 (13)0.0636 (6)
H80.02350.20440.3540.076*
C8A0.09549 (14)0.0541 (4)0.35072 (11)0.0542 (5)
C9A0.23398 (14)0.0931 (4)0.39289 (11)0.0522 (5)
C100.12624 (16)0.3717 (4)0.44220 (14)0.0651 (6)
H10A0.08080.45940.41710.078*
H10B0.17570.46970.4520.078*
C110.0931 (2)0.2849 (5)0.51707 (15)0.0874 (9)
H11A0.07660.40880.54860.131*
H11B0.13820.20030.54250.131*
H11C0.04340.19040.50770.131*
C120.46110 (14)0.3017 (4)0.37283 (12)0.0553 (5)
H120.45570.44560.35290.066*
C130.60811 (14)0.3801 (4)0.38491 (12)0.0550 (5)
C140.61128 (15)0.5881 (4)0.41922 (13)0.0636 (6)
H140.56460.63630.4480.076*
C150.68271 (18)0.7249 (5)0.41133 (16)0.0767 (7)
H150.68440.86390.43520.092*
C160.75146 (18)0.6566 (5)0.36830 (18)0.0818 (8)
H160.79920.75050.3620.098*
C170.74958 (16)0.4498 (5)0.33467 (16)0.0795 (8)
H170.79640.40320.30570.095*
C180.67877 (15)0.3096 (4)0.34333 (14)0.0674 (6)
H180.67860.16790.32120.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0557 (11)0.0652 (12)0.0671 (12)0.0002 (9)0.0018 (9)0.0068 (10)
N90.0579 (11)0.0550 (11)0.0573 (10)0.0052 (9)0.0051 (8)0.0043 (9)
C10.0646 (13)0.0538 (13)0.0566 (12)0.0033 (11)0.0010 (10)0.0071 (10)
C20.0570 (12)0.0616 (14)0.0553 (12)0.0056 (11)0.0028 (10)0.0016 (11)
C30.0549 (12)0.0564 (13)0.0477 (11)0.0000 (10)0.0020 (9)0.0005 (10)
C40.0592 (12)0.0516 (12)0.0485 (11)0.0004 (10)0.0014 (9)0.0044 (9)
C4A0.0549 (12)0.0514 (12)0.0470 (11)0.0026 (10)0.0012 (9)0.0000 (9)
C4B0.0558 (12)0.0567 (12)0.0435 (10)0.0015 (10)0.0022 (9)0.0047 (9)
C50.0686 (14)0.0626 (14)0.0519 (12)0.0042 (11)0.0041 (10)0.0013 (11)
C60.0647 (14)0.0795 (17)0.0589 (13)0.0129 (13)0.0095 (11)0.0054 (12)
C70.0551 (13)0.0889 (19)0.0611 (14)0.0045 (13)0.0032 (11)0.0162 (13)
C80.0590 (13)0.0738 (16)0.0582 (13)0.0065 (12)0.0053 (10)0.0093 (12)
C8A0.0573 (12)0.0593 (13)0.0461 (11)0.0012 (10)0.0037 (9)0.0062 (10)
C9A0.0569 (12)0.0518 (12)0.0480 (11)0.0003 (10)0.0051 (9)0.0009 (9)
C100.0702 (15)0.0567 (13)0.0688 (15)0.0077 (12)0.0092 (12)0.0066 (11)
C110.101 (2)0.102 (2)0.0603 (15)0.0029 (18)0.0132 (14)0.0073 (15)
C120.0577 (13)0.0579 (13)0.0505 (12)0.0021 (10)0.0031 (9)0.0029 (10)
C130.0519 (12)0.0608 (13)0.0524 (12)0.0049 (10)0.0024 (9)0.0068 (10)
C140.0626 (14)0.0665 (15)0.0619 (14)0.0044 (12)0.0076 (11)0.0003 (11)
C150.0802 (17)0.0668 (16)0.0833 (18)0.0074 (14)0.0044 (14)0.0030 (14)
C160.0649 (16)0.082 (2)0.099 (2)0.0120 (14)0.0043 (14)0.0125 (17)
C170.0560 (14)0.093 (2)0.0902 (19)0.0115 (14)0.0155 (13)0.0126 (16)
C180.0640 (14)0.0665 (15)0.0720 (15)0.0111 (12)0.0052 (12)0.0017 (12)
Geometric parameters (Å, º) top
N1—C121.268 (3)C7—C81.376 (3)
N1—C131.416 (3)C7—H70.93
N9—C9A1.381 (3)C8—C8A1.390 (3)
N9—C8A1.391 (3)C8—H80.93
N9—C101.453 (3)C10—C111.510 (3)
C1—C21.372 (3)C10—H10A0.97
C1—C9A1.393 (3)C10—H10B0.97
C1—H10.93C11—H11A0.96
C2—C31.409 (3)C11—H11B0.96
C2—H20.93C11—H11C0.96
C3—C41.386 (3)C12—H120.93
C3—C121.456 (3)C13—C141.380 (3)
C4—C4A1.393 (3)C13—C181.384 (3)
C4—H40.93C14—C151.375 (3)
C4A—C9A1.411 (3)C14—H140.93
C4A—C4B1.442 (3)C15—C161.371 (4)
C4B—C51.393 (3)C15—H150.93
C4B—C8A1.407 (3)C16—C171.368 (4)
C5—C61.376 (3)C16—H160.93
C5—H50.93C17—C181.382 (4)
C6—C71.390 (4)C17—H170.93
C6—H60.93C18—H180.93
C12—N1—C13118.5 (2)N9—C9A—C1129.1 (2)
C9A—N9—C8A108.32 (18)N9—C9A—C4A109.32 (18)
C9A—N9—C10124.65 (19)C1—C9A—C4A121.6 (2)
C8A—N9—C10124.95 (19)N9—C10—C11112.2 (2)
C2—C1—C9A117.8 (2)N9—C10—H10A109.2
C2—C1—H1121.1C11—C10—H10A109.2
C9A—C1—H1121.1N9—C10—H10B109.2
C1—C2—C3122.0 (2)C11—C10—H10B109.2
C1—C2—H2119H10A—C10—H10B107.9
C3—C2—H2119C10—C11—H11A109.5
C4—C3—C2119.6 (2)C10—C11—H11B109.5
C4—C3—C12119.4 (2)H11A—C11—H11B109.5
C2—C3—C12121.0 (2)C10—C11—H11C109.5
C3—C4—C4A119.7 (2)H11A—C11—H11C109.5
C3—C4—H4120.1H11B—C11—H11C109.5
C4A—C4—H4120.1N1—C12—C3123.2 (2)
C4—C4A—C9A119.24 (19)N1—C12—H12118.4
C4—C4A—C4B134.2 (2)C3—C12—H12118.4
C9A—C4A—C4B106.53 (18)C14—C13—C18118.8 (2)
C5—C4B—C8A119.4 (2)C14—C13—N1122.6 (2)
C5—C4B—C4A134.0 (2)C18—C13—N1118.5 (2)
C8A—C4B—C4A106.66 (19)C15—C14—C13120.7 (2)
C6—C5—C4B119.1 (2)C15—C14—H14119.6
C6—C5—H5120.5C13—C14—H14119.6
C4B—C5—H5120.5C16—C15—C14120.1 (3)
C5—C6—C7120.6 (2)C16—C15—H15119.9
C5—C6—H6119.7C14—C15—H15119.9
C7—C6—H6119.7C17—C16—C15119.7 (3)
C8—C7—C6122.0 (2)C17—C16—H16120.1
C8—C7—H7119C15—C16—H16120.1
C6—C7—H7119C16—C17—C18120.6 (2)
C7—C8—C8A117.3 (2)C16—C17—H17119.7
C7—C8—H8121.3C18—C17—H17119.7
C8A—C8—H8121.3C17—C18—C13119.9 (2)
N9—C8A—C8129.2 (2)C17—C18—H18120
N9—C8A—C4B109.14 (18)C13—C18—H18120
C8—C8A—C4B121.7 (2)
C9A—C1—C2—C30.6 (3)C8A—N9—C9A—C1178.4 (2)
C1—C2—C3—C40.5 (3)C10—N9—C9A—C114.2 (4)
C1—C2—C3—C12179.7 (2)C8A—N9—C9A—C4A1.4 (2)
C2—C3—C4—C4A0.1 (3)C10—N9—C9A—C4A165.58 (19)
C12—C3—C4—C4A179.05 (19)C2—C1—C9A—N9179.7 (2)
C3—C4—C4A—C9A0.7 (3)C2—C1—C9A—C4A0.0 (3)
C3—C4—C4A—C4B178.9 (2)C4—C4A—C9A—N9179.11 (19)
C4—C4A—C4B—C51.2 (4)C4B—C4A—C9A—N90.5 (2)
C9A—C4A—C4B—C5179.6 (2)C4—C4A—C9A—C10.7 (3)
C4—C4A—C4B—C8A177.8 (2)C4B—C4A—C9A—C1179.34 (19)
C9A—C4A—C4B—C8A0.6 (2)C9A—N9—C10—C1186.0 (3)
C8A—C4B—C5—C60.8 (3)C8A—N9—C10—C1175.7 (3)
C4A—C4B—C5—C6178.0 (2)C13—N1—C12—C3178.29 (19)
C4B—C5—C6—C70.3 (3)C4—C3—C12—N1168.4 (2)
C5—C6—C7—C80.5 (4)C2—C3—C12—N110.7 (3)
C6—C7—C8—C8A0.8 (3)C12—N1—C13—C1456.6 (3)
C9A—N9—C8A—C8178.3 (2)C12—N1—C13—C18125.4 (2)
C10—N9—C8A—C814.1 (4)C18—C13—C14—C151.0 (3)
C9A—N9—C8A—C4B1.7 (2)N1—C13—C14—C15179.1 (2)
C10—N9—C8A—C4B165.92 (19)C13—C14—C15—C160.8 (4)
C7—C8—C8A—N9179.8 (2)C14—C15—C16—C171.5 (4)
C7—C8—C8A—C4B0.3 (3)C15—C16—C17—C180.4 (4)
C5—C4B—C8A—N9179.41 (18)C16—C17—C18—C131.5 (4)
C4A—C4B—C8A—N91.4 (2)C14—C13—C18—C172.1 (3)
C5—C4B—C8A—C80.5 (3)N1—C13—C18—C17179.7 (2)
C4A—C4B—C8A—C8178.60 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C4A/C9A and C4B/C5–C8/C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.873.587 (3)135
C12—H12···Cg2i0.932.983.660 (3)131
C10—H10A···Cg2ii0.973.254.050 (4)142
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H18N2
Mr298.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)15.3350 (3), 5.9692 (10), 17.5447 (3)
β (°) 91.162 (1)
V3)1605.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.4 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID S
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28963, 2838, 2821
Rint0.030
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.148, 1.41
No. of reflections2838
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: CrystalStructure (Rigaku & Rigaku/MSC, 2003), SORTAV (Blessing, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected torsion angles (º) top
C9A—N9—C10—C1186.0 (3)C2—C3—C12—N110.7 (3)
C13—N1—C12—C3178.29 (19)C12—N1—C13—C1456.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C4A/C9A and C4B/C5–C8/C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.873.587 (3)134.7
C12—H12···Cg2i0.932.983.660 (3)130.9
C10—H10A···Cg2ii0.973.254.050 (4)141.6
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Scientific Research Projects Department (BAP) at Balikesir University for financial support (Project No. 08/06).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrigoras, M. & Antonoaia, N. C. (2005). Eur. Polym. J. 41, 1079–1089.  Web of Science CrossRef CAS Google Scholar
First citationHuang, P.-H., Chen, G.-J. & Wen, Y.-S. (2008). Acta Cryst. E64, o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku & Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSegura, J. L. (1998). Acta Polym. 49, 319–344.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds