organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 5α-androstane-3,17-dione

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 15 May 2010; accepted 25 May 2010; online 29 May 2010)

The structure of the title compound, C19H28O2, has been redermined at 295 (2) K, with much improved precision. The structure and mol­ecular packing of the title compound was first reported by Coiro et al. [Acta Cryst. (1973). B29, 1404–1409] by means of potential-energy calculations. The cell parameters in this study differ considerably in space group C2. It is a derivative of testosterone and consists of a cyclo­penta­none ring (A) fused to to successive cyclo­hexane (B and C) and cyclo­hexa­none (D) rings. The three cyclo­hexa­none rings are in slightly distorted boat configurations and the cyclo­penta­none ring is a distorted half-chair. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions involving O atoms from each of the cyclo­hexa­none and cyclo­penta­none rings and H atoms from each of their respective rings.

Related literature

For biotransformation studies, see: Fiorentino et al. (1991[Fiorentino, A., Pinto, G., Pollio, A. & Previtera, L. (1991). Bioorg. Med. Chem. Lett. 1, 673-674.]). For the previous report of this structure, see: Coiro et al. (1973[Coiro, V. M., Giglio, E., Lucano, A. & Puliti, R. (1973). Acta Cryst. B29, 1404-1409.]); For related structures, see: Anthony et al. (1998[Anthony, A., Jaskolski, M., Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. C54, 1898-1900.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Mallesha, L., Mohana, K. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 458-465.]); Norton et al. (1962[Norton, D. A., Lu, C. T. & Campbell, A. E. (1962). Acta Cryst. 15, 1189.]); Ohrt et al. (1965[Ohrt, J. M., Haner, B. A. & Norton, D. A. (1965). Acta Cryst. 19, 479.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28O2

  • Mr = 288.41

  • Monoclinic, C 2

  • a = 12.7786 (6) Å

  • b = 6.7850 (4) Å

  • c = 19.6242 (10) Å

  • β = 106.444 (5)°

  • V = 1631.88 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.53 × 0.35 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.881, Tmax = 0.989

  • 4151 measured reflections

  • 2082 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 0.96

  • 2082 reflections

  • 188 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.97 2.61 3.247 (3) 123
C5—H5A⋯O1ii 0.97 2.61 3.335 (3) 131
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, C19H28O2 (systematic iupac name: (8R,9S,10R,13S,14S)-10,13-Dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16- tridecahydrocyclopenta[a]phenanthrane-3,17-dione or dodecahydro-10,13-dimethyl-2H-cyclopenta[a]phenanthrene-3,17(4H,14H)-dione) is a derivative of testosterone. The crystal structure of the title compound (CSD code: ANDION10) was first reported by Coiro et al. (1973) with cell parameters of a = 12.700 (20); b = 6.190 (10); c = 21.340 (30) Å; c = 91.27 (10)° and an R-factor of 12% at T = 295 K. These values coincide with those reported earlier (Ohrt et al., 1965). How ever in the present investigations, the cell parameters are a = 12.7786 (6); b = 6.7850 (4); c = 19.6242 (10) Å and β = 106.444 (5)° with an R-factor of 3.86% at 295 K. The crystal structure of 5β-androstane-3,17-dione is already reported (Norton et al., 1962; Anthony et al., 1998). The biotransformation of 5α-androstane-3,17-dione by microalgal cultures is reported (Fiorentino et al., 1991). We have recently reported the crystal structure of 3-oxo-4-aza-5-alpha-androstone-17b-tert -butyl carboxamide (Jasinski et al., 2009). In view of the importance of steroids and taking into account the importance of the title compound, this paper reports the redetermination of its crystal structure with an improved precision.

The title compound, C19H28O2, consists of a cyclopentanone ring (A) fused to to successive cyclohexane (B & C) and cyclohexanone (D) rings. The three cyclohexanone rings are in slightly distorted chair configurations with Cremer & Pople (1975) puckering parameters Q, θ and φ of 0.530 (2) Å, 9.5 (2)° & 3.5 (13)°, for A, 0.5778 (19) Å, 5.77 (19)° & 344.7 (19)°, for B, and 0.5697 (19) Å, 173.01 (19)° & 65.5 (16)°,for C, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The cyclopentanone ring is a distorted half-chair, phi(2) = 22.5 (3)°. For an ideal half-chair, phi(2) = k x 36 + 18. The crystal packing is stabilized by weak intermolecular C–H···O interactions between a hydrogen atom from the cyclohexanone ring (H5A) with an oxygen atom from a nearby cyclohexanone ring (O1) and between a hydrogen atom from the cyclopentanone ring (H16A) with an oxygen atom from a nearby cyclopentanone ring (O2), respectively (Fig. 2, Table 1).

Related literature top

For biotransformation studies, see: Fiorentino et al. (1991). For the previous report of this structure, see: Coiro et al. (1973); For related structures, see: Anthony et al. (1998); Jasinski et al. (2009); Norton et al. (1962); Ohrt et al. (1965). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem., Bangalore, India. The compound was used without further purification. X-ray quality crystals were obtained from slow evaporation of acetone solution (m.p.: 373–375 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.96–0.98 Å, and with Uiso(H) = 1.18–1.50Ueq(C).

Structure description top

The title compound, C19H28O2 (systematic iupac name: (8R,9S,10R,13S,14S)-10,13-Dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16- tridecahydrocyclopenta[a]phenanthrane-3,17-dione or dodecahydro-10,13-dimethyl-2H-cyclopenta[a]phenanthrene-3,17(4H,14H)-dione) is a derivative of testosterone. The crystal structure of the title compound (CSD code: ANDION10) was first reported by Coiro et al. (1973) with cell parameters of a = 12.700 (20); b = 6.190 (10); c = 21.340 (30) Å; c = 91.27 (10)° and an R-factor of 12% at T = 295 K. These values coincide with those reported earlier (Ohrt et al., 1965). How ever in the present investigations, the cell parameters are a = 12.7786 (6); b = 6.7850 (4); c = 19.6242 (10) Å and β = 106.444 (5)° with an R-factor of 3.86% at 295 K. The crystal structure of 5β-androstane-3,17-dione is already reported (Norton et al., 1962; Anthony et al., 1998). The biotransformation of 5α-androstane-3,17-dione by microalgal cultures is reported (Fiorentino et al., 1991). We have recently reported the crystal structure of 3-oxo-4-aza-5-alpha-androstone-17b-tert -butyl carboxamide (Jasinski et al., 2009). In view of the importance of steroids and taking into account the importance of the title compound, this paper reports the redetermination of its crystal structure with an improved precision.

The title compound, C19H28O2, consists of a cyclopentanone ring (A) fused to to successive cyclohexane (B & C) and cyclohexanone (D) rings. The three cyclohexanone rings are in slightly distorted chair configurations with Cremer & Pople (1975) puckering parameters Q, θ and φ of 0.530 (2) Å, 9.5 (2)° & 3.5 (13)°, for A, 0.5778 (19) Å, 5.77 (19)° & 344.7 (19)°, for B, and 0.5697 (19) Å, 173.01 (19)° & 65.5 (16)°,for C, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The cyclopentanone ring is a distorted half-chair, phi(2) = 22.5 (3)°. For an ideal half-chair, phi(2) = k x 36 + 18. The crystal packing is stabilized by weak intermolecular C–H···O interactions between a hydrogen atom from the cyclohexanone ring (H5A) with an oxygen atom from a nearby cyclohexanone ring (O1) and between a hydrogen atom from the cyclopentanone ring (H16A) with an oxygen atom from a nearby cyclopentanone ring (O2), respectively (Fig. 2, Table 1).

For biotransformation studies, see: Fiorentino et al. (1991). For the previous report of this structure, see: Coiro et al. (1973); For related structures, see: Anthony et al. (1998); Jasinski et al. (2009); Norton et al. (1962); Ohrt et al. (1965). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of C19H28O2, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis.
5α-androstane-3,17-dione top
Crystal data top
C19H28O2F(000) = 632
Mr = 288.41Dx = 1.174 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1842 reflections
a = 12.7786 (6) Åθ = 5.1–29.4°
b = 6.7850 (4) ŵ = 0.07 mm1
c = 19.6242 (10) ÅT = 295 K
β = 106.444 (5)°Plate, colorless
V = 1631.88 (15) Å30.53 × 0.35 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2082 independent reflections
Radiation source: Enhance (Mo) X-ray Source1441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 29.5°, θmin = 5.2°
ω scansh = 1716
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 79
Tmin = 0.881, Tmax = 0.989l = 2224
4151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C19H28O2V = 1631.88 (15) Å3
Mr = 288.41Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.7786 (6) ŵ = 0.07 mm1
b = 6.7850 (4) ÅT = 295 K
c = 19.6242 (10) Å0.53 × 0.35 × 0.15 mm
β = 106.444 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2082 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1441 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.989Rint = 0.020
4151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 0.96Δρmax = 0.16 e Å3
2082 reflectionsΔρmin = 0.12 e Å3
188 parameters
Special details top

Experimental. In the absence of anolmalous scattering effects Friedel opposites were merged.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24755 (15)0.2050 (4)0.04123 (10)0.0831 (6)
O20.70862 (13)0.4649 (3)0.51542 (8)0.0661 (5)
C10.42695 (14)0.2013 (3)0.18578 (9)0.0343 (5)
C20.31200 (15)0.1301 (4)0.18422 (10)0.0463 (6)
H2A0.31860.01440.21410.056*
H2B0.27640.23220.20420.056*
C30.23997 (15)0.0794 (4)0.10955 (11)0.0517 (6)
H3A0.17210.02250.11310.062*
H3B0.22260.19940.08180.062*
C40.29440 (18)0.0622 (4)0.07223 (11)0.0524 (6)
C50.40981 (16)0.0152 (4)0.07567 (10)0.0499 (6)
H5A0.41080.09400.04390.060*
H5B0.44230.12820.05920.060*
C60.47906 (15)0.0392 (3)0.15109 (10)0.0409 (5)
H6A0.48210.07930.18010.049*
C70.59602 (15)0.0857 (4)0.15289 (10)0.0474 (6)
H7A0.59710.20110.12390.057*
H7B0.62620.02400.13290.057*
C80.66634 (15)0.1239 (4)0.22867 (10)0.0470 (6)
H8A0.73800.16730.22730.056*
H8B0.67540.00130.25510.056*
C90.61800 (14)0.2786 (3)0.26770 (10)0.0379 (5)
H9A0.61790.40620.24420.045*
C100.49888 (15)0.2242 (3)0.26409 (9)0.0354 (5)
H10A0.50240.09280.28530.043*
C110.44999 (15)0.3593 (4)0.31000 (10)0.0453 (6)
H11A0.43790.48890.28830.054*
H11B0.37970.30710.31080.054*
C120.52271 (16)0.3798 (4)0.38663 (10)0.0494 (6)
H12A0.49080.47430.41200.059*
H12B0.52790.25390.41080.059*
C130.63549 (15)0.4483 (3)0.38639 (9)0.0414 (5)
C140.68430 (14)0.2984 (4)0.34512 (10)0.0407 (5)
H14A0.68120.16980.36720.049*
C150.80574 (15)0.3562 (4)0.36433 (11)0.0566 (7)
H15A0.85040.24570.35830.068*
H15B0.81720.46540.33540.068*
C160.83153 (18)0.4161 (5)0.44290 (11)0.0575 (7)
H16A0.87220.31280.47320.069*
H16B0.87440.53620.45170.069*
C170.72336 (18)0.4479 (4)0.45736 (11)0.0492 (6)
C180.41689 (15)0.3991 (3)0.14581 (8)0.0457 (6)
H18A0.37700.37960.09690.069*
H18B0.48840.44840.14860.069*
H18C0.37900.49230.16700.069*
C190.63290 (18)0.6613 (3)0.35832 (8)0.0579 (6)
H19A0.60020.74650.38560.087*
H19B0.59090.66510.30930.087*
H19C0.70600.70460.36260.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0922 (13)0.0866 (15)0.0664 (12)0.0309 (13)0.0158 (9)0.0327 (12)
O20.0834 (11)0.0740 (13)0.0335 (8)0.0045 (10)0.0042 (7)0.0029 (9)
C10.0359 (9)0.0376 (12)0.0287 (10)0.0022 (9)0.0080 (7)0.0006 (9)
C20.0453 (11)0.0547 (16)0.0382 (12)0.0025 (11)0.0108 (9)0.0039 (11)
C30.0444 (11)0.0677 (18)0.0398 (12)0.0127 (12)0.0065 (9)0.0080 (12)
C40.0608 (13)0.0567 (16)0.0332 (11)0.0103 (14)0.0029 (9)0.0024 (12)
C50.0587 (13)0.0544 (16)0.0340 (11)0.0040 (12)0.0090 (9)0.0069 (11)
C60.0471 (11)0.0378 (12)0.0354 (11)0.0026 (10)0.0079 (8)0.0010 (10)
C70.0475 (11)0.0560 (16)0.0400 (12)0.0092 (12)0.0148 (9)0.0080 (11)
C80.0383 (10)0.0544 (15)0.0481 (13)0.0069 (11)0.0117 (9)0.0061 (11)
C90.0395 (10)0.0398 (13)0.0329 (10)0.0032 (10)0.0077 (8)0.0021 (9)
C100.0400 (10)0.0353 (12)0.0293 (10)0.0012 (9)0.0071 (8)0.0014 (9)
C110.0417 (10)0.0557 (15)0.0386 (11)0.0009 (11)0.0115 (8)0.0092 (11)
C120.0562 (12)0.0582 (16)0.0351 (11)0.0015 (12)0.0150 (9)0.0058 (11)
C130.0488 (11)0.0417 (13)0.0293 (10)0.0016 (11)0.0041 (8)0.0008 (10)
C140.0426 (10)0.0389 (12)0.0371 (11)0.0008 (11)0.0056 (8)0.0035 (10)
C150.0448 (11)0.073 (2)0.0465 (12)0.0008 (12)0.0040 (9)0.0025 (13)
C160.0530 (12)0.0652 (18)0.0446 (12)0.0114 (13)0.0020 (9)0.0021 (13)
C170.0635 (14)0.0407 (14)0.0354 (12)0.0027 (12)0.0012 (9)0.0036 (11)
C180.0497 (11)0.0443 (14)0.0389 (11)0.0036 (11)0.0055 (8)0.0035 (11)
C190.0737 (15)0.0435 (14)0.0460 (14)0.0014 (14)0.0000 (11)0.0005 (12)
Geometric parameters (Å, º) top
O1—C41.209 (3)C9—H9A0.9800
O2—C171.212 (2)C10—C111.536 (3)
C1—C21.538 (3)C10—H10A0.9800
C1—C61.541 (3)C11—C121.534 (3)
C1—C181.541 (3)C11—H11A0.9700
C1—C101.559 (2)C11—H11B0.9700
C2—C31.533 (3)C12—C131.515 (3)
C2—H2A0.9700C12—H12A0.9700
C2—H2B0.9700C12—H12B0.9700
C3—C41.494 (3)C13—C171.521 (3)
C3—H3A0.9700C13—C141.538 (3)
C3—H3B0.9700C13—C191.544
C4—C51.492 (3)C14—C151.540 (3)
C5—C61.539 (3)C14—H14A0.9800
C5—H5A0.9700C15—C161.538 (3)
C5—H5B0.9700C15—H15A0.9700
C6—C71.518 (3)C15—H15B0.9700
C6—H6A0.9800C16—C171.503 (3)
C7—C81.526 (3)C16—H16A0.9700
C7—H7A0.9700C16—H16B0.9700
C7—H7B0.9700C18—H18A0.9600
C8—C91.529 (3)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700C19—H19A0.9600
C9—C141.522 (2)C19—H19B0.9600
C9—C101.548 (2)C19—H19C0.9600
C2—C1—C6107.26 (17)C11—C10—H10A105.7
C2—C1—C18108.76 (16)C9—C10—H10A105.7
C6—C1—C18112.39 (15)C1—C10—H10A105.7
C2—C1—C10110.12 (14)C12—C11—C10113.26 (16)
C6—C1—C10107.39 (15)C12—C11—H11A108.9
C18—C1—C10110.84 (16)C10—C11—H11A108.9
C3—C2—C1113.65 (15)C12—C11—H11B108.9
C3—C2—H2A108.8C10—C11—H11B108.9
C1—C2—H2A108.8H11A—C11—H11B107.7
C3—C2—H2B108.8C13—C12—C11109.73 (15)
C1—C2—H2B108.8C13—C12—H12A109.7
H2A—C2—H2B107.7C11—C12—H12A109.7
C4—C3—C2112.10 (18)C13—C12—H12B109.7
C4—C3—H3A109.2C11—C12—H12B109.7
C2—C3—H3A109.2H12A—C12—H12B108.2
C4—C3—H3B109.2C12—C13—C17116.93 (17)
C2—C3—H3B109.2C12—C13—C14109.07 (18)
H3A—C3—H3B107.9C17—C13—C14100.18 (16)
O1—C4—C5122.5 (2)C12—C13—C19111.32
O1—C4—C3122.0 (2)C17—C13—C19105.30
C5—C4—C3115.6 (2)C14—C13—C19113.70
C4—C5—C6112.76 (16)C9—C14—C13112.95 (16)
C4—C5—H5A109.0C9—C14—C15120.29 (16)
C6—C5—H5A109.0C13—C14—C15103.50 (18)
C4—C5—H5B109.0C9—C14—H14A106.4
C6—C5—H5B109.0C13—C14—H14A106.4
H5A—C5—H5B107.8C15—C14—H14A106.4
C7—C6—C5111.51 (16)C16—C15—C14103.17 (17)
C7—C6—C1112.77 (17)C16—C15—H15A111.1
C5—C6—C1113.16 (16)C14—C15—H15A111.1
C7—C6—H6A106.3C16—C15—H15B111.1
C5—C6—H6A106.3C14—C15—H15B111.1
C1—C6—H6A106.3H15A—C15—H15B109.1
C6—C7—C8111.24 (16)C17—C16—C15106.24 (17)
C6—C7—H7A109.4C17—C16—H16A110.5
C8—C7—H7A109.4C15—C16—H16A110.5
C6—C7—H7B109.4C17—C16—H16B110.5
C8—C7—H7B109.4C15—C16—H16B110.5
H7A—C7—H7B108.0H16A—C16—H16B108.7
C7—C8—C9113.24 (17)O2—C17—C16125.95 (19)
C7—C8—H8A108.9O2—C17—C13126.1 (2)
C9—C8—H8A108.9C16—C17—C13107.90 (17)
C7—C8—H8B108.9C1—C18—H18A109.5
C9—C8—H8B108.9C1—C18—H18B109.5
H8A—C8—H8B107.7H18A—C18—H18B109.5
C14—C9—C8111.77 (16)C1—C18—H18C109.5
C14—C9—C10109.20 (14)H18A—C18—H18C109.5
C8—C9—C10110.16 (17)H18B—C18—H18C109.5
C14—C9—H9A108.5C13—C19—H19A109.5
C8—C9—H9A108.5C13—C19—H19B109.4
C10—C9—H9A108.5H19A—C19—H19B109.5
C11—C10—C9112.88 (16)C13—C19—H19C109.5
C11—C10—C1114.42 (15)H19A—C19—H19C109.5
C9—C10—C1111.49 (14)H19B—C19—H19C109.5
C6—C1—C2—C356.4 (3)C6—C1—C10—C958.7 (2)
C18—C1—C2—C365.4 (2)C18—C1—C10—C964.4 (2)
C10—C1—C2—C3173.0 (2)C9—C10—C11—C1250.8 (2)
C1—C2—C3—C452.7 (3)C1—C10—C11—C12179.73 (17)
C2—C3—C4—O1133.4 (2)C10—C11—C12—C1354.9 (3)
C2—C3—C4—C546.8 (3)C11—C12—C13—C17171.28 (19)
O1—C4—C5—C6133.6 (2)C11—C12—C13—C1458.6 (2)
C3—C4—C5—C646.6 (3)C11—C12—C13—C1967.6
C4—C5—C6—C7179.9 (2)C8—C9—C14—C13178.12 (18)
C4—C5—C6—C151.8 (3)C10—C9—C14—C1356.0 (2)
C2—C1—C6—C7176.75 (16)C8—C9—C14—C1559.1 (3)
C18—C1—C6—C763.8 (2)C10—C9—C14—C15178.7 (2)
C10—C1—C6—C758.4 (2)C12—C13—C14—C961.7 (2)
C2—C1—C6—C555.5 (2)C17—C13—C14—C9175.01 (17)
C18—C1—C6—C564.0 (2)C19—C13—C14—C963.2
C10—C1—C6—C5173.87 (17)C12—C13—C14—C15166.62 (17)
C5—C6—C7—C8175.6 (2)C17—C13—C14—C1543.3 (2)
C1—C6—C7—C855.8 (2)C19—C13—C14—C1568.5
C6—C7—C8—C952.4 (3)C9—C14—C15—C16164.6 (2)
C7—C8—C9—C14174.44 (19)C13—C14—C15—C1637.4 (2)
C7—C8—C9—C1052.8 (2)C14—C15—C16—C1716.2 (3)
C14—C9—C10—C1149.8 (2)C15—C16—C17—O2167.1 (3)
C8—C9—C10—C11172.87 (17)C15—C16—C17—C1311.1 (3)
C14—C9—C10—C1179.82 (18)C12—C13—C17—O227.0 (3)
C8—C9—C10—C156.7 (2)C14—C13—C17—O2144.6 (3)
C2—C1—C10—C1155.2 (2)C19—C13—C17—O297.2
C6—C1—C10—C11171.69 (18)C12—C13—C17—C16151.2 (2)
C18—C1—C10—C1165.2 (2)C14—C13—C17—C1633.6 (2)
C2—C1—C10—C9175.18 (19)C19—C13—C17—C1684.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.972.613.247 (3)123
C5—H5A···O1ii0.972.613.335 (3)131
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H28O2
Mr288.41
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)12.7786 (6), 6.7850 (4), 19.6242 (10)
β (°) 106.444 (5)
V3)1631.88 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.53 × 0.35 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.881, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4151, 2082, 1441
Rint0.020
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 0.96
No. of reflections2082
No. of parameters188
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.972.613.247 (3)123.3
C5—H5A···O1ii0.972.613.335 (3)131.4
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer. QNMHA thanks R. L. Fine Chem, Bangalore, for the gift sample of the title compound and HSY thanks the University of Mysore for the sanction of sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAnthony, A., Jaskolski, M., Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. C54, 1898–1900.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCoiro, V. M., Giglio, E., Lucano, A. & Puliti, R. (1973). Acta Cryst. B29, 1404–1409.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFiorentino, A., Pinto, G., Pollio, A. & Previtera, L. (1991). Bioorg. Med. Chem. Lett. 1, 673–674.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mallesha, L., Mohana, K. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 458–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorton, D. A., Lu, C. T. & Campbell, A. E. (1962). Acta Cryst. 15, 1189.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOhrt, J. M., Haner, B. A. & Norton, D. A. (1965). Acta Cryst. 19, 479.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds