organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­bromo-2′,3′,4′,5′,6′-penta­methyl-1,1′-biphen­yl

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro

(Received 12 April 2010; accepted 26 April 2010; online 8 May 2010)

In the crystal structure of the title compound, C17H18Br2, the benzene rings are almost perpendicular [dihedral angle = 84.0 (3)°]. The crystal structure is consolidated by the presence of C—Br⋯π inter­actions.

Related literature

For structures of related methyl substituted biphenyls, see: Fröhlich & Musso (1985[Fröhlich, R. & Musso, H. (1985). Chem. Ber. 118, 4649-4651.]); Hafelinger & Strähle (1976[Hafelinger, G. & Strähle, J. (1976). Z. Naturforsch. Teil B, 31, 1155-1156.]); Hartmann & Niemeyer (2001[Hartmann, N. & Niemeyer, M. (2001). Synth. Commun. 31, 3839-3845.]); Niemeyer (2006[Niemeyer, M. (2006). Private communication (refcode: LESYOY). CCDC, Cambridge, England.]); Pickett (1936[Pickett, L. W. (1936). J. Am. Chem. Soc. 58, 2299-2303.]); Rathore et al. (1997[Rathore, R., Lindeman, S. V. & Kochi, J. K. (1997). J. Am. Chem. Soc. 119, 9393-9404.]). For background to ligands containing m-terphenyl groups, see: Berthiol et al. (2004[Berthiol, F., Kondolff, I., Doucet, H. & Santelli, M. (2004). J. Organomet. Chem. 689, 2786-2798.]); Cocchi et al. (2007[Cocchi, M., Virgili, D., Fattori, V., Rochester, D. L. & Williams, J. A. G. (2007). Adv. Funct. Mater. 17, 285-289.]); Collins et al. (2002[Collins, S. K., Yap, G. P. A. & Fallis, A. G. (2002). Org. Lett. 4, 11-14.]); Du et al. (1986[Du, C.-J. F., Hart, H. & Ng, K.-K. D. (1986). J. Org. Chem. 51, 3162-3165.]); Kim et al. (2005[Kim, J.-K., Hong, M.-K., Ahn, J.-H. & Lee, M. (2005). Angew. Chem. Int. Ed. 44, 328-332.]); Konishi et al. (2006[Konishi, K., Yamaguchi, H. & Harada, A. (2006). Chem. Lett. 35, 720-721.]); Matsumoto et al. (2004[Matsumoto, K., Hatano, K., Umezawa, N. & Higuchi, T. (2004). Synthesis, pp. 2181-2185.]); Power (2004[Power, P. P. (2004). J. Organomet. Chem. 689, 3904-3919.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18Br2

  • Mr = 382.13

  • Monoclinic, P 21 /n

  • a = 9.011 (5) Å

  • b = 14.065 (8) Å

  • c = 12.387 (7) Å

  • β = 94.613 (9)°

  • V = 1564.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.17 mm−1

  • T = 297 K

  • 0.35 × 0.32 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.265, Tmax = 0.316

  • 10702 measured reflections

  • 2760 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.127

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.150

  • S = 0.94

  • 2760 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
C–Br⋯π inter­actions (Å, °)

Cg2 is the centroid of the C7–C12 benzene ring.

YXCg YX XCg YCg YXCg
C1—Br1⋯Cg2i 1.883 (6) 3.464 (3) 5.283 (8) 161.4 (2)
Symmetry code: (i) 1 + x, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ligands containing m-terphenyl groups are known to stabilize many classes of compounds (Power, 2004).

The m-terphenyl organic precursors are prepared by coupling, via a two aryne sequence, between aromatic halides and two equivalents of Grignard reagent (Du et al., 1986) or by palladium catalyzed cross-coupling reactions (Collins et al., 2002; Matsumoto et al., 2004; Berthiol et al., 2004; Kim et al., 2005; Konishi et al., 2006; Cocchi et al., 2007).

The title compound was obtained as a side-product in the preparation of 3,5-(2,3,4,5,6-Me5C6)2C6H3Br by the Suzuki cross-coupling between 2,3,4,5,6-Me5C6B(OH)2 and 1,3,5-Br3C6H3.

The dihedral angle between the planes containing the two benzene rings is 84.0 (3)° (Fig. 1), similar to those observed for the closest related compounds 2,3,4,5,6,4'-hexamethylbiphenyl tetrachloro-p-benzoquinone adduct (Rathore et al., 1997) or 2-iodo-2',3',4',5',6'-pentamethylbiphenyl (Hartmann & Niemeyer, 2001). The bond lengths and bonding angles are normal.

In the crystal structure there are intermolecular interactions between the bromine atoms and the π electrons the methyl substituted benzene rings (Fig. 2 and Table 1).

Related literature top

For structures of related methyl substituted biphenyls, see: Fröhlich & Musso (1985); Hafelinger & Strähle (1976); Hartmann & Niemeyer (2001); Niemeyer (2006); Pickett (1936); Rathore et al. (1997). For background to ligands containing m-terphenyl groups, see: Berthiol et al. (2004); Cocchi et al. (2007); Collins et al. (2002); Du et al. (1986); Kim et al. (2005); Konishi et al. (2006); Matsumoto et al. (2004); Power (2004).

Experimental top

Colourless crystals were obtained by slow evaporation of the solvents from solutions of the title compound in a mixture of dichloromethane and hexane. mp = 177–178 °C. 1H NMR (300 MHz, CDCl3): δ 1.95 (s, 6H), 2.25 (s, 6H), 2.30 (s, 3H), 7.24 (d, J = 1.8 Hz, 2H), 7.66 (t, J = 1.8 Hz, 1H). 13C NMR (75 MHz, CDCl3): δ 16.71, 16.98, 18.56, 123.00, 131.32, 131.58, 132.15, 132.76, 135.02, 137.14, 146.98.

Refinement top

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.

Structure description top

Ligands containing m-terphenyl groups are known to stabilize many classes of compounds (Power, 2004).

The m-terphenyl organic precursors are prepared by coupling, via a two aryne sequence, between aromatic halides and two equivalents of Grignard reagent (Du et al., 1986) or by palladium catalyzed cross-coupling reactions (Collins et al., 2002; Matsumoto et al., 2004; Berthiol et al., 2004; Kim et al., 2005; Konishi et al., 2006; Cocchi et al., 2007).

The title compound was obtained as a side-product in the preparation of 3,5-(2,3,4,5,6-Me5C6)2C6H3Br by the Suzuki cross-coupling between 2,3,4,5,6-Me5C6B(OH)2 and 1,3,5-Br3C6H3.

The dihedral angle between the planes containing the two benzene rings is 84.0 (3)° (Fig. 1), similar to those observed for the closest related compounds 2,3,4,5,6,4'-hexamethylbiphenyl tetrachloro-p-benzoquinone adduct (Rathore et al., 1997) or 2-iodo-2',3',4',5',6'-pentamethylbiphenyl (Hartmann & Niemeyer, 2001). The bond lengths and bonding angles are normal.

In the crystal structure there are intermolecular interactions between the bromine atoms and the π electrons the methyl substituted benzene rings (Fig. 2 and Table 1).

For structures of related methyl substituted biphenyls, see: Fröhlich & Musso (1985); Hafelinger & Strähle (1976); Hartmann & Niemeyer (2001); Niemeyer (2006); Pickett (1936); Rathore et al. (1997). For background to ligands containing m-terphenyl groups, see: Berthiol et al. (2004); Cocchi et al. (2007); Collins et al. (2002); Du et al. (1986); Kim et al. (2005); Konishi et al. (2006); Matsumoto et al. (2004); Power (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids of Br and C atoms drawn at 25 % probability level.
[Figure 2] Fig. 2. Intermolecular Br···π interactions (shown as dashed lines) in the structure of the title compound. Cg2 is the centroid of the benzene ring C7–C12. Symmetry codes: (i) 1+x, y, z; (ii) -1+x, y, z.
3,5-Dibromo-2',3',4',5',6'-pentamethyl-1,1'-biphenyl top
Crystal data top
C17H18Br2F(000) = 760
Mr = 382.13Dx = 1.622 Mg m3
Monoclinic, P21/nMelting point = 451–450 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.011 (5) ÅCell parameters from 2189 reflections
b = 14.065 (8) Åθ = 2.7–22.4°
c = 12.387 (7) ŵ = 5.17 mm1
β = 94.613 (9)°T = 297 K
V = 1564.8 (15) Å3Blocks, colourless
Z = 40.35 × 0.32 × 0.29 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2760 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.127
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.265, Tmax = 0.316k = 1616
10702 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
2760 reflectionsΔρmax = 0.67 e Å3
178 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (15)
Crystal data top
C17H18Br2V = 1564.8 (15) Å3
Mr = 382.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.011 (5) ŵ = 5.17 mm1
b = 14.065 (8) ÅT = 297 K
c = 12.387 (7) Å0.35 × 0.32 × 0.29 mm
β = 94.613 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1588 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.316Rint = 0.127
10702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.94Δρmax = 0.67 e Å3
2760 reflectionsΔρmin = 0.53 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08347 (7)0.76924 (6)0.65316 (7)0.0714 (4)
Br20.65525 (8)1.06226 (5)0.62304 (8)0.0736 (4)
C10.8834 (7)0.8091 (5)0.6463 (5)0.0440 (16)
C20.8516 (6)0.9036 (5)0.6407 (5)0.0498 (17)
H20.92750.94850.64150.06*
C30.7030 (7)0.9318 (4)0.6337 (5)0.0473 (16)
C40.5917 (6)0.8654 (4)0.6332 (4)0.0376 (15)
H40.49280.8850.62790.045*
C50.6246 (6)0.7700 (4)0.6404 (5)0.0392 (15)
C60.7720 (6)0.7427 (4)0.6455 (5)0.0428 (15)
H60.79620.67840.64830.051*
C70.5039 (6)0.6982 (4)0.6411 (5)0.0394 (15)
C80.4465 (6)0.6539 (4)0.5448 (5)0.0445 (16)
C90.3389 (6)0.5839 (4)0.5454 (6)0.0468 (17)
C100.2872 (7)0.5553 (5)0.6454 (7)0.0544 (18)
C110.3451 (7)0.5992 (5)0.7412 (6)0.0484 (17)
C120.4511 (6)0.6700 (4)0.7391 (5)0.0444 (16)
C130.5038 (7)0.6859 (5)0.4388 (5)0.0609 (19)
H13A0.53040.63120.39810.091*
H13B0.58980.72550.45350.091*
H13C0.42760.72110.39760.091*
C140.2779 (8)0.5413 (5)0.4401 (6)0.067 (2)
H14A0.24680.59120.39040.101*
H14B0.19420.50160.45220.101*
H14C0.35360.50390.41010.101*
C150.1694 (8)0.4811 (6)0.6491 (8)0.086 (3)
H15A0.19190.44060.71060.129*
H15B0.16590.44370.5840.129*
H15C0.07470.51110.65490.129*
C160.2841 (9)0.5705 (6)0.8452 (7)0.084 (3)
H16A0.32780.60920.90310.126*
H16B0.30730.50490.85990.126*
H16C0.1780.57890.83920.126*
C170.5056 (8)0.7204 (5)0.8418 (6)0.065 (2)
H17A0.42640.75810.86680.097*
H17B0.58770.76090.82790.097*
H17C0.53740.67440.8960.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0413 (5)0.1017 (7)0.0722 (6)0.0182 (4)0.0113 (4)0.0009 (5)
Br20.0704 (6)0.0468 (5)0.1041 (8)0.0015 (4)0.0105 (5)0.0050 (4)
C10.041 (3)0.054 (4)0.038 (4)0.012 (3)0.011 (3)0.001 (3)
C20.037 (4)0.073 (5)0.042 (4)0.011 (3)0.016 (3)0.005 (4)
C30.042 (4)0.053 (4)0.048 (4)0.001 (3)0.009 (3)0.005 (3)
C40.035 (3)0.046 (4)0.032 (4)0.007 (3)0.008 (3)0.000 (3)
C50.040 (3)0.049 (4)0.030 (3)0.001 (3)0.011 (3)0.000 (3)
C60.044 (4)0.045 (4)0.040 (4)0.011 (3)0.006 (3)0.002 (3)
C70.040 (3)0.040 (3)0.039 (4)0.003 (3)0.009 (3)0.002 (3)
C80.044 (4)0.048 (4)0.041 (4)0.009 (3)0.006 (3)0.002 (3)
C90.030 (3)0.051 (4)0.059 (5)0.006 (3)0.002 (3)0.006 (3)
C100.043 (4)0.050 (4)0.072 (6)0.007 (3)0.013 (4)0.012 (4)
C110.042 (4)0.056 (4)0.050 (5)0.015 (3)0.022 (3)0.008 (4)
C120.038 (3)0.054 (4)0.043 (4)0.006 (3)0.011 (3)0.004 (3)
C130.070 (5)0.068 (5)0.046 (5)0.005 (4)0.016 (4)0.002 (4)
C140.061 (4)0.071 (5)0.068 (6)0.006 (4)0.001 (4)0.020 (4)
C150.060 (5)0.088 (6)0.113 (8)0.023 (4)0.024 (5)0.012 (5)
C160.067 (5)0.110 (7)0.080 (6)0.005 (5)0.036 (5)0.016 (5)
C170.077 (5)0.071 (5)0.048 (5)0.006 (4)0.019 (4)0.006 (4)
Geometric parameters (Å, º) top
Br1—C11.883 (6)C10—C151.491 (9)
Br2—C31.887 (6)C11—C121.381 (8)
C1—C21.361 (8)C11—C161.496 (10)
C1—C61.370 (8)C12—C171.504 (9)
C2—C31.392 (8)C13—H13A0.96
C2—H20.93C13—H13B0.96
C3—C41.370 (8)C13—H13C0.96
C4—C51.376 (8)C14—H14A0.96
C4—H40.93C14—H14B0.96
C5—C61.379 (7)C14—H14C0.96
C5—C71.484 (8)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—C121.397 (8)C15—H15C0.96
C7—C81.408 (8)C16—H16A0.96
C8—C91.382 (8)C16—H16B0.96
C8—C131.517 (9)C16—H16C0.96
C9—C101.417 (10)C17—H17A0.96
C9—C141.499 (9)C17—H17B0.96
C10—C111.401 (10)C17—H17C0.96
C2—C1—C6121.0 (6)C11—C12—C7120.4 (6)
C2—C1—Br1119.3 (5)C11—C12—C17120.2 (6)
C6—C1—Br1119.7 (5)C7—C12—C17119.3 (6)
C1—C2—C3118.6 (6)C8—C13—H13A109.5
C1—C2—H2120.7C8—C13—H13B109.5
C3—C2—H2120.7H13A—C13—H13B109.5
C4—C3—C2120.4 (6)C8—C13—H13C109.5
C4—C3—Br2120.0 (5)H13A—C13—H13C109.5
C2—C3—Br2119.6 (5)H13B—C13—H13C109.5
C3—C4—C5120.7 (6)C9—C14—H14A109.5
C3—C4—H4119.6C9—C14—H14B109.5
C5—C4—H4119.6H14A—C14—H14B109.5
C4—C5—C6118.4 (6)C9—C14—H14C109.5
C4—C5—C7120.6 (5)H14A—C14—H14C109.5
C6—C5—C7121.0 (5)H14B—C14—H14C109.5
C1—C6—C5120.9 (6)C10—C15—H15A109.5
C1—C6—H6119.6C10—C15—H15B109.5
C5—C6—H6119.6H15A—C15—H15B109.5
C12—C7—C8118.9 (6)C10—C15—H15C109.5
C12—C7—C5120.0 (6)H15A—C15—H15C109.5
C8—C7—C5121.0 (6)H15B—C15—H15C109.5
C9—C8—C7121.4 (6)C11—C16—H16A109.5
C9—C8—C13120.2 (6)C11—C16—H16B109.5
C7—C8—C13118.4 (6)H16A—C16—H16B109.5
C8—C9—C10119.2 (6)C11—C16—H16C109.5
C8—C9—C14119.2 (7)H16A—C16—H16C109.5
C10—C9—C14121.6 (6)H16B—C16—H16C109.5
C11—C10—C9119.3 (6)C12—C17—H17A109.5
C11—C10—C15120.1 (7)C12—C17—H17B109.5
C9—C10—C15120.7 (7)H17A—C17—H17B109.5
C12—C11—C10120.9 (6)C12—C17—H17C109.5
C12—C11—C16120.9 (7)H17A—C17—H17C109.5
C10—C11—C16118.2 (7)H17B—C17—H17C109.5
C6—C1—C2—C30.2 (9)C7—C8—C9—C101.0 (9)
Br1—C1—C2—C3178.9 (5)C13—C8—C9—C10180.0 (6)
C1—C2—C3—C40.4 (9)C7—C8—C9—C14177.9 (5)
C1—C2—C3—Br2178.8 (5)C13—C8—C9—C141.0 (9)
C2—C3—C4—C50.5 (9)C8—C9—C10—C110.6 (9)
Br2—C3—C4—C5179.7 (4)C14—C9—C10—C11178.3 (6)
C3—C4—C5—C61.6 (8)C8—C9—C10—C15179.0 (6)
C3—C4—C5—C7179.3 (6)C14—C9—C10—C150.1 (9)
C2—C1—C6—C50.9 (9)C9—C10—C11—C120.2 (9)
Br1—C1—C6—C5180.0 (4)C15—C10—C11—C12178.2 (6)
C4—C5—C6—C11.8 (9)C9—C10—C11—C16177.5 (6)
C7—C5—C6—C1179.1 (6)C15—C10—C11—C160.9 (9)
C4—C5—C7—C1289.5 (7)C10—C11—C12—C70.8 (9)
C6—C5—C7—C1291.4 (7)C16—C11—C12—C7178.0 (6)
C4—C5—C7—C894.0 (7)C10—C11—C12—C17176.4 (6)
C6—C5—C7—C885.0 (7)C16—C11—C12—C170.8 (9)
C12—C7—C8—C90.5 (9)C8—C7—C12—C110.4 (9)
C5—C7—C8—C9177.0 (5)C5—C7—C12—C11176.1 (5)
C12—C7—C8—C13179.5 (5)C8—C7—C12—C17176.8 (5)
C5—C7—C8—C134.0 (8)C5—C7—C12—C176.7 (8)

Experimental details

Crystal data
Chemical formulaC17H18Br2
Mr382.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)9.011 (5), 14.065 (8), 12.387 (7)
β (°) 94.613 (9)
V3)1564.8 (15)
Z4
Radiation typeMo Kα
µ (mm1)5.17
Crystal size (mm)0.35 × 0.32 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.265, 0.316
No. of measured, independent and
observed [I > 2σ(I)] reflections
10702, 2760, 1588
Rint0.127
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 0.94
No. of reflections2760
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.53

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

C–Br···π interactions (Å, °) top
Cg2 is the centroid of the C7–C12 benzene ring.
YX···CgYXX···CgY···CgYX···Cg
C1—Br1···Cg2i1.883 (6)3.464 (3)5.283 (8)161.4 (2)
Symmetry code: (i) 1+x, y, z.
 

Acknowledgements

This work was supported by the National University Research Council (CNCSIS) of Romania (project RP 2/January 2008). SR thanks Babeş-Bolyai University for a research fellowship (21/2009). We thank Dr Richard A. Varga for the crystallographic measurements and data refinement.

References

First citationBerthiol, F., Kondolff, I., Doucet, H. & Santelli, M. (2004). J. Organomet. Chem. 689, 2786–2798.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocchi, M., Virgili, D., Fattori, V., Rochester, D. L. & Williams, J. A. G. (2007). Adv. Funct. Mater. 17, 285–289.  Web of Science CrossRef CAS Google Scholar
First citationCollins, S. K., Yap, G. P. A. & Fallis, A. G. (2002). Org. Lett. 4, 11–14.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, C.-J. F., Hart, H. & Ng, K.-K. D. (1986). J. Org. Chem. 51, 3162–3165.  CrossRef CAS Web of Science Google Scholar
First citationFröhlich, R. & Musso, H. (1985). Chem. Ber. 118, 4649–4651.  Google Scholar
First citationHafelinger, G. & Strähle, J. (1976). Z. Naturforsch. Teil B, 31, 1155–1156.  Google Scholar
First citationHartmann, N. & Niemeyer, M. (2001). Synth. Commun. 31, 3839–3845.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J.-K., Hong, M.-K., Ahn, J.-H. & Lee, M. (2005). Angew. Chem. Int. Ed. 44, 328–332.  Web of Science CrossRef CAS Google Scholar
First citationKonishi, K., Yamaguchi, H. & Harada, A. (2006). Chem. Lett. 35, 720–721.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, K., Hatano, K., Umezawa, N. & Higuchi, T. (2004). Synthesis, pp. 2181–2185.  Google Scholar
First citationNiemeyer, M. (2006). Private communication (refcode: LESYOY). CCDC, Cambridge, England.  Google Scholar
First citationPickett, L. W. (1936). J. Am. Chem. Soc. 58, 2299–2303.  CSD CrossRef CAS Google Scholar
First citationPower, P. P. (2004). J. Organomet. Chem. 689, 3904–3919.  Web of Science CrossRef CAS Google Scholar
First citationRathore, R., Lindeman, S. V. & Kochi, J. K. (1997). J. Am. Chem. Soc. 119, 9393–9404.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds