metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{(E)-2,4,6-tri­methyl-N-[phen­yl(2-pyridyl)methyl­­idene]aniline-κ2N,N′}palladium(II)

aNano-Powder & Thin Film Technology Center, ITRI South, Tainan 709, Taiwan, Republic of China, and bDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
*Correspondence e-mail: mmhsueh@itri.org.tw

(Received 14 April 2010; accepted 5 May 2010; online 8 May 2010)

The title complex, [PdCl2(C21H20N2)], contains a PdII atom in a slightly distorted square-planar coordination environment defined by two N atoms from one 2,4,6-trimethyl-N-[phen­yl(2-pyrid­yl)methyl­idene]aniline ligand and two Cl atoms, forming a five-membered ring (N—Pd—N—C—C).

Related literature

For the synthesis of pyridyl-imine ligands, see: Meneghetti et al. (1999[Meneghetti, S. P., Lutz, P. J. & Kress, J. (1999). Organometallics, 18, 2734-2737.]). For the design and synthesis of metal-organic frameworks, see: Lai et al. (2005[Lai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron, 61, 9484-9489.]); Pelagattia et al. (2005[Pelagattia, P., Carcellia, M., Costab, M., Ianellia, S., Pelizzia, C. & Rogolinoa, D. (2005). J. Mol. Catal. A Chem. 226, 107-110.]); Zhang et al. (2008[Zhang, W., Tang, X., Ma, H., Sun, W. H. & Janiak, C. (2008). Eur. J. Inorg. Chem. 18, 2830-2836.]). For related structures, see: Hsueh et al. (2006[Hsueh, M.-L., Su, S.-Y. & Lin, C.-C. (2006). Acta Cryst. E62, m1784-m1786.]); Zhang et al. (2008[Zhang, W., Tang, X., Ma, H., Sun, W. H. & Janiak, C. (2008). Eur. J. Inorg. Chem. 18, 2830-2836.]). For the application of the title compound in Suzuki–Miyaura reactions, see: Li (2003[Li, C. J. (2003). Angew. Chem. Int. Ed. 42, 4856-4858.]); Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]); Na et al. (2004[Na, Y., Park, S., Han, S. B., Han, H., Ko, S. & Chang, S. (2004). J. Am. Chem. Soc. 126, 250-258.]); Nicolaou et al. (2005[Nicolaou, K. C., Bulger, P. G. & Sarlah, D. (2005). Angew. Chem. Int. Ed. 44, 2-49.]); Rajagopal et al. (2002[Rajagopal, R., Jarikote, D. V. & Srinivasan, K. V. (2002). Chem. Commun. pp. 616-617.]); Tomioka et al. (2004[Tomioka, H., Itoh, T. & Hirai, K. (2004). J. Am. Chem. Soc. 126, 1130-1140.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H20N2)]

  • Mr = 477.69

  • Orthorhombic, P 21 21 21

  • a = 7.4807 (6) Å

  • b = 15.1483 (13) Å

  • c = 17.7147 (15) Å

  • V = 2007.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 298 K

  • 0.35 × 0.33 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.738, Tmax = 1.000

  • 11233 measured reflections

  • 3956 independent reflections

  • 3871 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.01

  • 3956 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1670 Friedel pairs

  • Flack parameter: 0.02 (2)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, palladium-catalyzed Suzuki-Miyaura reactions involving cross-coupling of aryl halides with aryl boronic acids have emerged as the most important synthetic methods for the preparation of biaryl compounds (Miyaura et al., 1995; Na et al., 2004; Rajagopal et al., 2002; Li 2003; Tomioka et al., 2004; Nicolaou et al., 2005). Thus, because of its utility as an important synthetic methodology, a significant amount of research focus had been devoted to designing improved catalysts for the Suzuki-Miyaura cross-coupling reaction. It is noteworthy that there has been a continuing interest in the further development of more efficient and selective catalytic systems for the synthesis of biaryls. However, only a few examples of N,N' pyridyl-imine palladium complexes have been reported as catalysts in coupling reaction (Lai et al., 2005; Pelagattia et al., 2005). Herein, we report the synthesis and crystal structure of the title palladium (II) complex that is certainly a potential catalyst in cross-coupling reactions.

The structure of the title compound is a mononuclear configuration with the metal center bound to two N atoms (one from the imine group and one from the pyridine ring) and two Cl atoms (Fig. 1). The coordination geometry around PdII atom is slightly distorted square planar, and the distances of Pd(1)—N(1) and Pd(1)—N(2) are 2.025 (2) and 2.033 (2) Å, respectively. It is noticed that the trans angles (N2—Pd—Cl1 and N1—Pd—Cl2) in the PdN2Cl2 core do not deviate more than 8° from the ideal value of 180°. Moreover, the planes of the pyridine (N1—C1—C2—C3—C4—C5) and phenyl rings (C8—C9—C10—C11—C12 and C13—C14—C15—C16—C17—C18) are close to perpendicular, and the dihedral angles between them are 80.9 (3) and 82.8 (3)°, respectively. All bond distances and bond angles lie within normal ranges, which are essentially similar to the pyridyl-imine palladium (II) complex (Hsueh et al., 2006; Zhang et al., 2008).

Related literature top

For the synthesis of pyridyl-imine ligands, see: Meneghetti et al. (1999). For the design and synthesis of metal-organic frameworks, see: Lai et al. (2005); Pelagattia et al. (2005); Zhang et al. (2008). For related structures, see: Hsueh et al. (2006); Zhang et al. (2008). For the application of the title compound in Suzuki–Miyaura reactions, see: Li (2003); Miyaura & Suzuki (1995); Na et al. (2004); Nicolaou et al. (2005); Rajagopal et al. (2002); Tomioka et al. (2004).

Experimental top

The title compound was prepared by the reaction of palladium(II) dichloride (17.733 mg, 0.1 mmol) with (E)-2,4,6-trimethyl-N-(phenyl(pyridin-2-yl)methylene)aniline (30.016 mg, 0.1 mmol) in EtOH (20 ml). The mixture was stirred at room temperature for 24 h. The mixture turned yellow immediately. After removal of solvents, dichloromethane (20 ml) was added and the solution was filtered through Celite. The filtrate was slowly evaporated at room temperature to yield yellow crystals suitable for X-ray analysis. Yield: 41.084 mg (86%). Analysis calculated for C21H20Cl2N2Pd: C 52.80, H 4.22, N 5.86%; found: C 52.65, H 4.17, N 5.93%.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, palladium-catalyzed Suzuki-Miyaura reactions involving cross-coupling of aryl halides with aryl boronic acids have emerged as the most important synthetic methods for the preparation of biaryl compounds (Miyaura et al., 1995; Na et al., 2004; Rajagopal et al., 2002; Li 2003; Tomioka et al., 2004; Nicolaou et al., 2005). Thus, because of its utility as an important synthetic methodology, a significant amount of research focus had been devoted to designing improved catalysts for the Suzuki-Miyaura cross-coupling reaction. It is noteworthy that there has been a continuing interest in the further development of more efficient and selective catalytic systems for the synthesis of biaryls. However, only a few examples of N,N' pyridyl-imine palladium complexes have been reported as catalysts in coupling reaction (Lai et al., 2005; Pelagattia et al., 2005). Herein, we report the synthesis and crystal structure of the title palladium (II) complex that is certainly a potential catalyst in cross-coupling reactions.

The structure of the title compound is a mononuclear configuration with the metal center bound to two N atoms (one from the imine group and one from the pyridine ring) and two Cl atoms (Fig. 1). The coordination geometry around PdII atom is slightly distorted square planar, and the distances of Pd(1)—N(1) and Pd(1)—N(2) are 2.025 (2) and 2.033 (2) Å, respectively. It is noticed that the trans angles (N2—Pd—Cl1 and N1—Pd—Cl2) in the PdN2Cl2 core do not deviate more than 8° from the ideal value of 180°. Moreover, the planes of the pyridine (N1—C1—C2—C3—C4—C5) and phenyl rings (C8—C9—C10—C11—C12 and C13—C14—C15—C16—C17—C18) are close to perpendicular, and the dihedral angles between them are 80.9 (3) and 82.8 (3)°, respectively. All bond distances and bond angles lie within normal ranges, which are essentially similar to the pyridyl-imine palladium (II) complex (Hsueh et al., 2006; Zhang et al., 2008).

For the synthesis of pyridyl-imine ligands, see: Meneghetti et al. (1999). For the design and synthesis of metal-organic frameworks, see: Lai et al. (2005); Pelagattia et al. (2005); Zhang et al. (2008). For related structures, see: Hsueh et al. (2006); Zhang et al. (2008). For the application of the title compound in Suzuki–Miyaura reactions, see: Li (2003); Miyaura & Suzuki (1995); Na et al. (2004); Nicolaou et al. (2005); Rajagopal et al. (2002); Tomioka et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level.
Dichlorido{(E)-2,4,6-trimethyl-N-[phenyl(2- pyridyl)methylidene]aniline-κ2N,N'}palladium(II) top
Crystal data top
[PdCl2(C21H20N2)]F(000) = 960
Mr = 477.69Dx = 1.581 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4812 reflections
a = 7.4807 (6) Åθ = 2.9–2.6°
b = 15.1483 (13) ŵ = 1.20 mm1
c = 17.7147 (15) ÅT = 298 K
V = 2007.4 (3) Å3Parallelpiped, yellow
Z = 40.35 × 0.33 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3956 independent reflections
Radiation source: fine-focus sealed tube3871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.738, Tmax = 1.000k = 1618
11233 measured reflectionsl = 2115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3956 reflectionsΔρmax = 0.20 e Å3
238 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 1670 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[PdCl2(C21H20N2)]V = 2007.4 (3) Å3
Mr = 477.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4807 (6) ŵ = 1.20 mm1
b = 15.1483 (13) ÅT = 298 K
c = 17.7147 (15) Å0.35 × 0.33 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3956 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3871 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.024
11233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.20 e Å3
S = 1.01Δρmin = 0.52 e Å3
3956 reflectionsAbsolute structure: Flack (1983), 1670 Friedel pairs
238 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.262038 (18)0.612368 (9)0.476057 (8)0.02890 (6)
Cl10.41648 (8)0.68412 (4)0.56891 (3)0.04639 (14)
Cl20.19993 (9)0.49999 (4)0.55734 (3)0.04722 (15)
N10.3065 (2)0.70552 (11)0.39625 (10)0.0321 (4)
N20.1064 (2)0.56451 (11)0.39132 (10)0.0308 (3)
C10.4227 (3)0.77241 (15)0.39906 (14)0.0424 (5)
H1A0.49740.77760.44080.051*
C20.4354 (4)0.83417 (17)0.34181 (16)0.0527 (6)
H2A0.51910.87940.34460.063*
C30.3231 (4)0.82774 (16)0.28102 (14)0.0498 (6)
H3A0.32740.86960.24260.060*
C40.2022 (3)0.75775 (15)0.27725 (13)0.0418 (5)
H4A0.12580.75180.23620.050*
C50.1982 (3)0.69758 (13)0.33577 (11)0.0314 (4)
C60.0837 (3)0.61804 (13)0.33544 (11)0.0302 (4)
C70.0452 (3)0.60379 (14)0.27275 (12)0.0344 (4)
C80.2010 (4)0.65290 (18)0.27039 (14)0.0493 (6)
H8A0.22340.69500.30740.059*
C90.3241 (4)0.6395 (2)0.21285 (17)0.0622 (8)
H9A0.43060.67120.21230.075*
C100.2883 (4)0.5791 (2)0.15659 (15)0.0594 (7)
H10A0.37040.57010.11790.071*
C110.1303 (5)0.5321 (2)0.15769 (16)0.0674 (8)
H11A0.10520.49240.11910.081*
C120.0104 (4)0.54350 (19)0.21532 (15)0.0526 (7)
H12A0.09480.51080.21610.063*
C130.0126 (3)0.48204 (13)0.39711 (12)0.0316 (4)
C140.1580 (3)0.48020 (14)0.42893 (12)0.0364 (5)
C150.2372 (3)0.39752 (15)0.43887 (13)0.0451 (5)
H15A0.35130.39460.45960.054*
C160.1526 (4)0.32013 (15)0.41912 (13)0.0513 (7)
C170.0171 (4)0.32429 (15)0.38896 (14)0.0469 (6)
H17A0.07570.27230.37610.056*
C180.1027 (3)0.40533 (14)0.37726 (13)0.0392 (5)
C190.2509 (4)0.56211 (18)0.45550 (16)0.0563 (6)
H19A0.34510.54640.48970.084*
H19B0.30040.59280.41290.084*
H19C0.16670.59970.48080.084*
C200.2428 (7)0.23101 (19)0.43118 (19)0.0839 (11)
H20A0.36720.23990.44210.126*
H20B0.18710.20110.47270.126*
H20C0.23100.19590.38630.126*
C210.2913 (4)0.40809 (18)0.34700 (18)0.0607 (7)
H21A0.35150.45920.36640.091*
H21B0.28820.41090.29290.091*
H21C0.35410.35590.36250.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02800 (8)0.02850 (8)0.03020 (9)0.00077 (6)0.00266 (6)0.00482 (5)
Cl10.0497 (3)0.0470 (3)0.0424 (3)0.0033 (2)0.0130 (3)0.0131 (2)
Cl20.0583 (4)0.0409 (3)0.0424 (3)0.0035 (2)0.0076 (3)0.0079 (2)
N10.0311 (9)0.0286 (8)0.0366 (9)0.0025 (7)0.0017 (7)0.0065 (7)
N20.0283 (8)0.0309 (8)0.0331 (9)0.0014 (7)0.0009 (7)0.0058 (7)
C10.0406 (12)0.0392 (12)0.0472 (13)0.0095 (10)0.0008 (11)0.0067 (10)
C20.0574 (16)0.0424 (13)0.0583 (15)0.0211 (12)0.0032 (13)0.0013 (12)
C30.0617 (16)0.0399 (13)0.0478 (13)0.0088 (12)0.0065 (12)0.0057 (11)
C40.0473 (14)0.0419 (12)0.0360 (11)0.0059 (10)0.0007 (10)0.0045 (9)
C50.0307 (10)0.0310 (10)0.0325 (10)0.0008 (8)0.0022 (8)0.0056 (8)
C60.0313 (10)0.0280 (9)0.0313 (10)0.0004 (9)0.0013 (8)0.0044 (8)
C70.0379 (11)0.0348 (10)0.0306 (10)0.0073 (9)0.0021 (8)0.0017 (8)
C80.0466 (15)0.0562 (14)0.0450 (13)0.0096 (12)0.0083 (11)0.0094 (11)
C90.0431 (14)0.079 (2)0.0646 (18)0.0041 (13)0.0127 (13)0.0015 (15)
C100.0598 (18)0.0728 (18)0.0457 (14)0.0164 (14)0.0216 (13)0.0035 (13)
C110.076 (2)0.082 (2)0.0443 (15)0.0021 (17)0.0119 (15)0.0287 (15)
C120.0534 (15)0.0607 (16)0.0439 (14)0.0069 (12)0.0049 (11)0.0176 (12)
C130.0360 (11)0.0277 (10)0.0309 (10)0.0030 (8)0.0043 (8)0.0030 (8)
C140.0372 (11)0.0379 (11)0.0342 (11)0.0042 (9)0.0007 (9)0.0016 (9)
C150.0440 (12)0.0521 (13)0.0392 (11)0.0149 (12)0.0013 (10)0.0018 (9)
C160.081 (2)0.0354 (12)0.0378 (12)0.0186 (12)0.0085 (12)0.0033 (10)
C170.0682 (17)0.0292 (11)0.0433 (13)0.0007 (11)0.0094 (12)0.0043 (10)
C180.0442 (12)0.0351 (11)0.0383 (12)0.0021 (9)0.0060 (9)0.0054 (9)
C190.0447 (13)0.0544 (14)0.0696 (15)0.0053 (12)0.0157 (13)0.0040 (12)
C200.130 (3)0.0479 (15)0.0738 (19)0.040 (2)0.011 (3)0.0052 (14)
C210.0497 (15)0.0511 (15)0.0814 (19)0.0127 (12)0.0105 (14)0.0107 (14)
Geometric parameters (Å, º) top
Pd1—N12.0250 (18)C10—H10A0.9300
Pd1—N22.0334 (17)C11—C121.370 (4)
Pd1—Cl22.2776 (6)C11—H11A0.9300
Pd1—Cl12.2851 (5)C12—H12A0.9300
N1—C11.336 (3)C13—C181.389 (3)
N1—C51.348 (3)C13—C141.396 (3)
N2—C61.291 (3)C14—C151.397 (3)
N2—C131.436 (3)C14—C191.498 (3)
C1—C21.383 (4)C15—C161.377 (4)
C1—H1A0.9300C15—H15A0.9300
C2—C31.369 (4)C16—C171.378 (4)
C2—H2A0.9300C16—C201.525 (3)
C3—C41.395 (3)C17—C181.400 (3)
C3—H3A0.9300C17—H17A0.9300
C4—C51.381 (3)C18—C211.509 (4)
C4—H4A0.9300C19—H19A0.9600
C5—C61.479 (3)C19—H19B0.9600
C6—C71.486 (3)C19—H19C0.9600
C7—C81.384 (3)C20—H20A0.9600
C7—C121.392 (3)C20—H20B0.9600
C8—C91.389 (4)C20—H20C0.9600
C8—H8A0.9300C21—H21A0.9600
C9—C101.379 (4)C21—H21B0.9600
C9—H9A0.9300C21—H21C0.9600
C10—C111.380 (5)
N1—Pd1—N280.04 (7)C10—C11—C12120.4 (3)
N1—Pd1—Cl2174.72 (5)C10—C11—H11A119.8
N2—Pd1—Cl294.79 (5)C12—C11—H11A119.8
N1—Pd1—Cl195.05 (5)C11—C12—C7120.3 (3)
N2—Pd1—Cl1172.09 (5)C11—C12—H12A119.8
Cl2—Pd1—Cl190.21 (2)C7—C12—H12A119.8
C1—N1—C5119.2 (2)C18—C13—C14122.0 (2)
C1—N1—Pd1127.55 (16)C18—C13—N2118.19 (19)
C5—N1—Pd1113.20 (13)C14—C13—N2119.53 (18)
C6—N2—C13122.46 (17)C15—C14—C13117.2 (2)
C6—N2—Pd1114.68 (13)C15—C14—C19120.4 (2)
C13—N2—Pd1122.48 (13)C13—C14—C19122.3 (2)
N1—C1—C2122.0 (2)C16—C15—C14122.4 (2)
N1—C1—H1A119.0C16—C15—H15A118.8
C2—C1—H1A119.0C14—C15—H15A118.8
C3—C2—C1119.1 (2)C15—C16—C17118.9 (2)
C3—C2—H2A120.5C15—C16—C20121.0 (3)
C1—C2—H2A120.5C17—C16—C20120.2 (3)
C2—C3—C4119.3 (2)C18—C17—C16121.3 (2)
C2—C3—H3A120.3C18—C17—H17A119.4
C4—C3—H3A120.3C16—C17—H17A119.4
C5—C4—C3118.7 (2)C13—C18—C17118.3 (2)
C5—C4—H4A120.7C13—C18—C21121.4 (2)
C3—C4—H4A120.7C17—C18—C21120.3 (2)
N1—C5—C4121.65 (19)C14—C19—H19A109.5
N1—C5—C6115.08 (18)C14—C19—H19B109.5
C4—C5—C6123.19 (19)H19A—C19—H19B109.5
N2—C6—C5115.63 (17)C14—C19—H19C109.5
N2—C6—C7124.55 (18)H19A—C19—H19C109.5
C5—C6—C7119.82 (17)H19B—C19—H19C109.5
C8—C7—C12119.2 (2)C16—C20—H20A109.5
C8—C7—C6119.40 (19)C16—C20—H20B109.5
C12—C7—C6121.3 (2)H20A—C20—H20B109.5
C7—C8—C9120.1 (2)C16—C20—H20C109.5
C7—C8—H8A119.9H20A—C20—H20C109.5
C9—C8—H8A119.9H20B—C20—H20C109.5
C8—C9—C10119.9 (3)C18—C21—H21A109.5
C8—C9—H9A120.0C18—C21—H21B109.5
C10—C9—H9A120.0H21A—C21—H21B109.5
C11—C10—C9119.9 (2)C18—C21—H21C109.5
C11—C10—H10A120.0H21A—C21—H21C109.5
C9—C10—H10A120.0H21B—C21—H21C109.5

Experimental details

Crystal data
Chemical formula[PdCl2(C21H20N2)]
Mr477.69
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4807 (6), 15.1483 (13), 17.7147 (15)
V3)2007.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.35 × 0.33 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11233, 3956, 3871
Rint0.024
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.01
No. of reflections3956
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.52
Absolute structureFlack (1983), 1670 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the Ministry of Economic Affairs, Taiwan, is appreciated.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHsueh, M.-L., Su, S.-Y. & Lin, C.-C. (2006). Acta Cryst. E62, m1784–m1786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron, 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C. J. (2003). Angew. Chem. Int. Ed. 42, 4856–4858.  Web of Science CrossRef CAS Google Scholar
First citationMeneghetti, S. P., Lutz, P. J. & Kress, J. (1999). Organometallics, 18, 2734–2737.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationNa, Y., Park, S., Han, S. B., Han, H., Ko, S. & Chang, S. (2004). J. Am. Chem. Soc. 126, 250–258.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolaou, K. C., Bulger, P. G. & Sarlah, D. (2005). Angew. Chem. Int. Ed. 44, 2–49.  Google Scholar
First citationPelagattia, P., Carcellia, M., Costab, M., Ianellia, S., Pelizzia, C. & Rogolinoa, D. (2005). J. Mol. Catal. A Chem. 226, 107–110.  Google Scholar
First citationRajagopal, R., Jarikote, D. V. & Srinivasan, K. V. (2002). Chem. Commun. pp. 616–617.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomioka, H., Itoh, T. & Hirai, K. (2004). J. Am. Chem. Soc. 126, 1130–1140.  Web of Science PubMed Google Scholar
First citationZhang, W., Tang, X., Ma, H., Sun, W. H. & Janiak, C. (2008). Eur. J. Inorg. Chem. 18, 2830–2836.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds