metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,1′-Bis(di­phenyl­phosphino)ferrocene]bis­­{[(Z)-O-ethyl N-phenyl­thio­carbamato-κS]gold(I)} di­chloro­methane solvate

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 April 2010; accepted 27 April 2010; online 8 May 2010)

The binuclear title compound, [Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2, which has the Fe atom located on a crystallographic centre of inversion, crystallizes as a 1:1 dichloro­methane solvate, which is disordered about a centre of inversion. There is a small deviation from linearity defined by the SP donor set [S1—Au—P1 angle is 175.35 (5) °] which is due to an intra­molecular Au⋯O contact [3.080 (5) Å]. The primary inter­molecular contacts between binuclear mol­ecules are of the type C—H⋯π, and are arranged so as to form columns in the a-axis direction in which the disordered solvent mol­ecules reside.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). For related structures, see: Ho & Tiekink (2009[Ho, S. Y. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1466-m1467.]); Tadbuppa & Tiekink (2009[Tadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1597.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2

  • Mr = 1393.69

  • Triclinic, [P \overline 1]

  • a = 8.442 (3) Å

  • b = 12.957 (5) Å

  • c = 13.440 (5) Å

  • α = 108.045 (8)°

  • β = 103.177 (8)°

  • γ = 106.853 (8)°

  • V = 1253.5 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.42 mm−1

  • T = 223 K

  • 0.49 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]) Tmin = 0.577, Tmax = 1

  • 8618 measured reflections

  • 5688 independent reflections

  • 5025 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.02

  • 5688 reflections

  • 307 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 2.84 e Å−3

  • Δρmin = −1.47 e Å−3

Table 1
Selected bond lengths (Å)

Au—P1 2.2562 (15)
Au—S1 2.3029 (16)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9a⋯Cg1i 0.97 2.75 3.623 (9) 150
C11—H11⋯Cg2ii 0.94 2.78 3.619 (7) 150
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The dppf (where dppf is the bidentate phosphine, [Ph2P(C5H4)]2Fe) derivatives of phosphinegold(I) thiocarbamides, of interest owing to crystal engineering and luminescence studies (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), are comparatively rare. Thus, only three examples of dppf{Au[SC(OR)NR']}2 have been described, i.e. R = Me & R' = PhNO2-4 (Ho et al., 2006), R = iPr & R' = PhNO2-4 (Ho & Tiekink, 2009), and R = iPr & R' = PhMe-4 (Tadbuppa & Tiekink, 2009). In the present report, the crystal structure of the R = Et & R' = H derivative, (I), is described.

The dinuclear molecule has crystallographic symmetry with the Fe atom lying on an inversion centre, Fig. 1. The dinuclear molecule crystallises with a solvent dichloromethane molecule which is disordered about a centre of inversion, Fig. 1. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity [S1–Au–P1 is 175.35 (5) °] is ascribed to the close approach of the O1 atom, Au···O = 3.080 (5) Å. The anion, with a Z configuration about the C1N1 bond, shows the expected characteristics. The magnitudes of the C1—S1 and C1N1 bond distances of 1.755 (6) and 1.277 (8) Å, respectively, confirm that the anion is coordinating as a thiolate ligand. The overall conformation of the molecule is "open" in that the thiocarbamate ligands are lying on either side of the molecule, as found in the structure of the R = iPr & R' = PhMe-4 derivative (Tadbuppa & Tiekink, 2009) but contrasts the situation in each of dppf{Au[SC(OR) NC6H4NO2-p]}2, for R = Me (Ho et al., 2006) and i-Pr (Ho & Tiekink, 2009), whereby the molecule has a U-shaped conformation allowing for the formation of intramolecular Au···Au interactions.

In the crystal structure of (I), the primary interactions between the dinuclear molecules are of the type C–H···π, Table 1. These are arranged so as to define columns along the a direction in which reside the solvent dichloromethane molecules.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993). For related structures, see Ho & Tiekink (2009); Tadbuppa & Tiekink (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of dppf(AuCl)2 and EtOC(S)N(H)Ph in the presence of base (Hall et al., 1993). Crystals were obtained from the slow evaporation of a dichloromethane solution.

Refinement top

The H atoms were geometrically placed (C—H = 0.94-0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.84 and 1.47 e Å-3, respectively, were located within the C21–C26 ring (0.95 Å from the C21 atom) and 0.58 Å from the Cl1 atom, respectively. The binuclear molecule co-crystallised with a disordered dichloromethane solvent molecule. This was modelled over a centre of inversion with a full weight chloride and half-weight methylene group. The C and Cl atoms were treated with the ISOR command in SHELXL-97 to impose isotropic character to the anisotropic displacement parameters (Sheldrick, 2008). The following reflections (0,1,0), (0,-1,1) and (0,0,1) were omitted in the final refinement as they were obscured by the beamstop.

Structure description top

The dppf (where dppf is the bidentate phosphine, [Ph2P(C5H4)]2Fe) derivatives of phosphinegold(I) thiocarbamides, of interest owing to crystal engineering and luminescence studies (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), are comparatively rare. Thus, only three examples of dppf{Au[SC(OR)NR']}2 have been described, i.e. R = Me & R' = PhNO2-4 (Ho et al., 2006), R = iPr & R' = PhNO2-4 (Ho & Tiekink, 2009), and R = iPr & R' = PhMe-4 (Tadbuppa & Tiekink, 2009). In the present report, the crystal structure of the R = Et & R' = H derivative, (I), is described.

The dinuclear molecule has crystallographic symmetry with the Fe atom lying on an inversion centre, Fig. 1. The dinuclear molecule crystallises with a solvent dichloromethane molecule which is disordered about a centre of inversion, Fig. 1. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity [S1–Au–P1 is 175.35 (5) °] is ascribed to the close approach of the O1 atom, Au···O = 3.080 (5) Å. The anion, with a Z configuration about the C1N1 bond, shows the expected characteristics. The magnitudes of the C1—S1 and C1N1 bond distances of 1.755 (6) and 1.277 (8) Å, respectively, confirm that the anion is coordinating as a thiolate ligand. The overall conformation of the molecule is "open" in that the thiocarbamate ligands are lying on either side of the molecule, as found in the structure of the R = iPr & R' = PhMe-4 derivative (Tadbuppa & Tiekink, 2009) but contrasts the situation in each of dppf{Au[SC(OR) NC6H4NO2-p]}2, for R = Me (Ho et al., 2006) and i-Pr (Ho & Tiekink, 2009), whereby the molecule has a U-shaped conformation allowing for the formation of intramolecular Au···Au interactions.

In the crystal structure of (I), the primary interactions between the dinuclear molecules are of the type C–H···π, Table 1. These are arranged so as to define columns along the a direction in which reside the solvent dichloromethane molecules.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993). For related structures, see Ho & Tiekink (2009); Tadbuppa & Tiekink (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the dinuclear complex (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The dinuclear molecule is located about a centre of inversion and unlabelled atoms are related by the symmetry operation -x, -y, -z. Also shown is the solvent dichloromethane molecule which is disordered about a centre of inversion. Unlabelled atoms are related by -x, 1-y, 1-z for this molecule.
[Figure 2] Fig. 2. A view in projection down the a axis of the crystal packing in (I) highlighting the interactions between binuclear molecules mediated by C–H···π contacts (purple dashed lines). The binuclear molecules define columns in which reside the disordered dichloromethane molecules, shown in space filling mode. Colour code: Au, orange; Fe, olive green; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[µ-1,1'-Bis(diphenylphosphino)ferrocene]bis{[(Z)-O-ethyl N-phenylthiocarbamato-κS]gold(I)} dichloromethane solvate top
Crystal data top
[Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2Z = 1
Mr = 1393.69F(000) = 678
Triclinic, P1Dx = 1.846 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.442 (3) ÅCell parameters from 4599 reflections
b = 12.957 (5) Åθ = 2.6–30.1°
c = 13.440 (5) ŵ = 6.42 mm1
α = 108.045 (8)°T = 223 K
β = 103.177 (8)°Needle, orange
γ = 106.853 (8)°0.49 × 0.04 × 0.04 mm
V = 1253.5 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube5025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.577, Tmax = 1k = 1611
8618 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0684P)2]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 2.84 e Å3
13 restraintsΔρmin = 1.47 e Å3
Crystal data top
[Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2γ = 106.853 (8)°
Mr = 1393.69V = 1253.5 (9) Å3
Triclinic, P1Z = 1
a = 8.442 (3) ÅMo Kα radiation
b = 12.957 (5) ŵ = 6.42 mm1
c = 13.440 (5) ÅT = 223 K
α = 108.045 (8)°0.49 × 0.04 × 0.04 mm
β = 103.177 (8)°
Data collection top
Bruker SMART CCD
diffractometer
5688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5025 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 1Rint = 0.030
8618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03813 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 2.84 e Å3
5688 reflectionsΔρmin = 1.47 e Å3
307 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.54576 (2)0.149128 (17)0.224945 (16)0.02842 (9)
Fe0.00000.00000.00000.0234 (2)
S10.6884 (2)0.11576 (15)0.37230 (12)0.0387 (3)
P10.42701 (17)0.19357 (11)0.08358 (11)0.0240 (3)
O10.4392 (5)0.1685 (4)0.4324 (3)0.0397 (10)
N10.6859 (6)0.2200 (5)0.5809 (4)0.0368 (11)
C10.6054 (8)0.1739 (5)0.4754 (5)0.0317 (11)
C20.8589 (8)0.2308 (5)0.6274 (5)0.0344 (12)
C30.8983 (9)0.1323 (6)0.6232 (6)0.0422 (14)
H30.80920.05610.58400.051*
C41.0693 (9)0.1475 (6)0.6769 (6)0.0439 (14)
H41.09520.08100.67390.053*
C51.2007 (9)0.2566 (6)0.7341 (5)0.0434 (15)
H51.31630.26490.76900.052*
C61.1636 (8)0.3563 (6)0.7409 (6)0.0440 (15)
H61.25290.43230.78080.053*
C70.9909 (8)0.3404 (6)0.6873 (5)0.0394 (13)
H70.96420.40700.69240.047*
C80.3614 (8)0.2141 (7)0.5128 (6)0.0466 (16)
H8A0.44120.29440.56580.056*
H8B0.34080.16460.55460.056*
C90.1920 (10)0.2139 (8)0.4508 (6)0.0551 (19)
H9A0.13700.24360.50310.083*
H9B0.11420.13420.39830.083*
H9C0.21390.26400.41060.083*
C100.2261 (7)0.0814 (4)0.0219 (4)0.0255 (10)
C110.1892 (7)0.0416 (5)0.0552 (5)0.0312 (11)
H110.26150.07530.02470.037*
C120.0209 (8)0.1038 (5)0.1443 (5)0.0377 (14)
H120.03630.18600.18330.045*
C130.0434 (8)0.0202 (5)0.1629 (5)0.0372 (13)
H130.15200.03770.21610.045*
C140.0802 (7)0.0937 (5)0.0894 (5)0.0304 (11)
H140.06930.16500.08530.036*
C150.5783 (7)0.2270 (4)0.0097 (5)0.0268 (10)
C160.5327 (8)0.1678 (5)0.1046 (5)0.0320 (11)
H160.41850.11010.14790.038*
C170.6581 (9)0.1949 (6)0.1545 (5)0.0395 (13)
H170.62820.15510.23190.047*
C180.8269 (8)0.2804 (6)0.0905 (6)0.0426 (15)
H180.91020.29900.12470.051*
C190.8716 (8)0.3371 (6)0.0215 (6)0.0425 (14)
H190.98610.39450.06430.051*
C200.7489 (7)0.3110 (5)0.0738 (5)0.0335 (12)
H200.78120.34980.15150.040*
C210.3847 (7)0.3269 (5)0.1315 (5)0.0294 (11)
C220.3700 (7)0.3903 (5)0.0660 (5)0.0321 (11)
H220.37740.36300.00560.038*
C230.3444 (8)0.4938 (5)0.1063 (6)0.0372 (13)
H230.33350.53630.06150.045*
C240.3348 (8)0.5355 (5)0.2118 (6)0.0379 (13)
H240.31990.60680.23930.046*
C250.3471 (9)0.4717 (6)0.2762 (6)0.0454 (15)
H250.33790.49880.34730.055*
C260.3728 (8)0.3689 (5)0.2371 (5)0.0353 (12)
H260.38240.32650.28210.042*
Cl10.1902 (6)0.5357 (4)0.5501 (4)0.1365 (14)
C270.0112 (19)0.5715 (19)0.548 (2)0.085 (6)0.50
H27A0.03270.64340.53420.103*0.50
H27B0.00180.59000.62230.103*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02700 (12)0.03400 (13)0.02496 (13)0.01353 (9)0.00771 (8)0.01222 (9)
Fe0.0212 (4)0.0246 (5)0.0227 (5)0.0075 (4)0.0068 (4)0.0093 (4)
S10.0421 (8)0.0566 (9)0.0265 (7)0.0317 (7)0.0117 (6)0.0171 (6)
P10.0230 (6)0.0252 (6)0.0242 (6)0.0100 (5)0.0086 (5)0.0098 (5)
O10.031 (2)0.054 (3)0.028 (2)0.0181 (19)0.0081 (17)0.0088 (19)
N10.031 (2)0.049 (3)0.021 (2)0.010 (2)0.0066 (19)0.009 (2)
C10.032 (3)0.037 (3)0.026 (3)0.015 (2)0.009 (2)0.013 (2)
C20.033 (3)0.049 (3)0.023 (3)0.016 (2)0.011 (2)0.016 (2)
C30.041 (3)0.040 (3)0.040 (3)0.009 (3)0.010 (3)0.019 (3)
C40.051 (4)0.048 (4)0.042 (4)0.025 (3)0.013 (3)0.027 (3)
C50.035 (3)0.064 (4)0.033 (3)0.021 (3)0.009 (3)0.023 (3)
C60.030 (3)0.051 (4)0.038 (3)0.007 (3)0.007 (3)0.015 (3)
C70.031 (3)0.047 (3)0.038 (3)0.015 (3)0.012 (3)0.014 (3)
C80.037 (3)0.061 (4)0.036 (3)0.022 (3)0.014 (3)0.007 (3)
C90.052 (4)0.083 (5)0.037 (4)0.042 (4)0.016 (3)0.018 (4)
C100.026 (2)0.026 (2)0.025 (2)0.0100 (19)0.008 (2)0.0101 (19)
C110.034 (3)0.027 (3)0.034 (3)0.013 (2)0.015 (2)0.011 (2)
C120.033 (3)0.032 (3)0.035 (3)0.003 (2)0.018 (3)0.002 (2)
C130.032 (3)0.046 (3)0.023 (3)0.007 (2)0.006 (2)0.011 (2)
C140.026 (2)0.041 (3)0.027 (3)0.012 (2)0.010 (2)0.019 (2)
C150.024 (2)0.028 (2)0.035 (3)0.012 (2)0.013 (2)0.017 (2)
C160.032 (3)0.033 (3)0.034 (3)0.013 (2)0.012 (2)0.015 (2)
C170.049 (3)0.049 (3)0.037 (3)0.027 (3)0.027 (3)0.022 (3)
C180.038 (3)0.053 (4)0.065 (4)0.028 (3)0.033 (3)0.040 (3)
C190.027 (3)0.040 (3)0.061 (4)0.011 (2)0.016 (3)0.022 (3)
C200.027 (3)0.032 (3)0.038 (3)0.008 (2)0.010 (2)0.013 (2)
C210.020 (2)0.028 (2)0.035 (3)0.0059 (19)0.008 (2)0.010 (2)
C220.030 (3)0.027 (3)0.038 (3)0.011 (2)0.013 (2)0.011 (2)
C230.028 (3)0.035 (3)0.048 (4)0.012 (2)0.011 (3)0.019 (3)
C240.034 (3)0.026 (3)0.044 (3)0.010 (2)0.009 (3)0.005 (2)
C250.048 (4)0.047 (4)0.032 (3)0.019 (3)0.016 (3)0.003 (3)
C260.038 (3)0.032 (3)0.035 (3)0.014 (2)0.015 (3)0.011 (2)
Cl10.1389 (16)0.1335 (16)0.1363 (16)0.0487 (10)0.0470 (10)0.0583 (10)
Cl1'0.1389 (16)0.1335 (16)0.1363 (16)0.0487 (10)0.0470 (10)0.0583 (10)
C270.086 (6)0.085 (6)0.085 (6)0.033 (2)0.030 (2)0.035 (2)
Geometric parameters (Å, º) top
Au—P12.2562 (15)C9—H9C0.9700
Au—S12.3029 (16)C10—C111.429 (7)
Fe—C102.030 (5)C10—C141.435 (7)
Fe—C10i2.030 (5)C11—C121.437 (8)
Fe—C14i2.043 (5)C11—H110.9400
Fe—C142.043 (5)C12—C131.405 (9)
Fe—C11i2.046 (5)C12—H120.9400
Fe—C112.046 (5)C13—C141.406 (8)
Fe—C13i2.054 (6)C13—H130.9400
Fe—C132.054 (6)C14—H140.9400
Fe—C122.068 (5)C15—C161.387 (8)
Fe—C12i2.068 (5)C15—C201.395 (7)
S1—C11.755 (6)C16—C171.396 (8)
P1—C101.788 (5)C16—H160.9400
P1—C211.817 (5)C17—C181.391 (9)
P1—C151.824 (5)C17—H170.9400
O1—C11.362 (7)C18—C191.357 (10)
O1—C81.449 (7)C18—H180.9400
N1—C11.277 (7)C19—C201.399 (8)
N1—C21.398 (7)C19—H190.9400
C2—C71.368 (9)C20—H200.9400
C2—C31.398 (9)C21—C221.387 (8)
C3—C41.384 (9)C21—C261.393 (8)
C3—H30.9400C22—C231.382 (8)
C4—C51.360 (10)C22—H220.9400
C4—H40.9400C23—C241.383 (9)
C5—C61.397 (10)C23—H230.9400
C5—H50.9400C24—C251.376 (10)
C6—C71.393 (9)C24—H240.9400
C6—H60.9400C25—C261.372 (9)
C7—H70.9400C25—H250.9400
C8—C91.480 (9)C26—H260.9400
C8—H8A0.9800Cl1—C271.701 (5)
C8—H8B0.9800Cl1—C27ii1.74 (2)
C9—H9A0.9700C27—H27A0.9800
C9—H9B0.9700C27—H27B0.9800
P1—Au—S1175.35 (5)C9—C8—H8B110.1
C10—Fe—C10i180.0 (3)H8A—C8—H8B108.4
C10—Fe—C14i138.7 (2)C8—C9—H9A109.5
C10i—Fe—C14i41.3 (2)C8—C9—H9B109.5
C10—Fe—C1441.3 (2)H9A—C9—H9B109.5
C10i—Fe—C14138.7 (2)C8—C9—H9C109.5
C14i—Fe—C14180.0 (3)H9A—C9—H9C109.5
C10—Fe—C11i139.0 (2)H9B—C9—H9C109.5
C10i—Fe—C11i41.0 (2)C11—C10—C14108.0 (5)
C14i—Fe—C11i69.0 (2)C11—C10—P1122.9 (4)
C14—Fe—C11i111.0 (2)C14—C10—P1129.0 (4)
C10—Fe—C1141.0 (2)C11—C10—Fe70.1 (3)
C10i—Fe—C11139.0 (2)C14—C10—Fe69.9 (3)
C14i—Fe—C11111.0 (2)P1—C10—Fe127.3 (3)
C14—Fe—C1169.0 (2)C10—C11—C12107.0 (5)
C11i—Fe—C11180.0 (3)C10—C11—Fe68.9 (3)
C10—Fe—C13i111.7 (2)C12—C11—Fe70.4 (3)
C10i—Fe—C13i68.3 (2)C10—C11—H11126.5
C14i—Fe—C13i40.1 (2)C12—C11—H11126.5
C14—Fe—C13i139.9 (2)Fe—C11—H11125.8
C11i—Fe—C13i68.3 (2)C13—C12—C11108.1 (5)
C11—Fe—C13i111.7 (2)C13—C12—Fe69.5 (3)
C10—Fe—C1368.3 (2)C11—C12—Fe68.7 (3)
C10i—Fe—C13111.7 (2)C13—C12—H12126.0
C14i—Fe—C13139.9 (2)C11—C12—H12126.0
C14—Fe—C1340.1 (2)Fe—C12—H12127.4
C11i—Fe—C13111.7 (2)C14—C13—C12109.3 (5)
C11—Fe—C1368.3 (2)C14—C13—Fe69.5 (3)
C13i—Fe—C13180.0 (3)C12—C13—Fe70.6 (4)
C10—Fe—C1268.4 (2)C14—C13—H13125.3
C10i—Fe—C12111.6 (2)C12—C13—H13125.3
C14i—Fe—C12112.2 (2)Fe—C13—H13126.1
C14—Fe—C1267.8 (2)C13—C14—C10107.5 (5)
C11i—Fe—C12139.1 (2)C13—C14—Fe70.3 (3)
C11—Fe—C1240.9 (2)C10—C14—Fe68.9 (3)
C13i—Fe—C12140.1 (3)C13—C14—H14126.2
C13—Fe—C1239.9 (3)C10—C14—H14126.2
C10—Fe—C12i111.6 (2)Fe—C14—H14126.1
C10i—Fe—C12i68.4 (2)C16—C15—C20120.0 (5)
C14i—Fe—C12i67.8 (2)C16—C15—P1122.6 (4)
C14—Fe—C12i112.2 (2)C20—C15—P1117.3 (4)
C11i—Fe—C12i40.9 (2)C15—C16—C17119.3 (5)
C11—Fe—C12i139.1 (2)C15—C16—H16120.3
C13i—Fe—C12i39.9 (3)C17—C16—H16120.3
C13—Fe—C12i140.1 (3)C18—C17—C16120.4 (6)
C12—Fe—C12i180.0 (4)C18—C17—H17119.8
C1—S1—Au102.6 (2)C16—C17—H17119.8
C10—P1—C21106.8 (2)C19—C18—C17120.1 (5)
C10—P1—C15105.4 (2)C19—C18—H18119.9
C21—P1—C15103.4 (2)C17—C18—H18119.9
C10—P1—Au115.79 (18)C18—C19—C20120.7 (6)
C21—P1—Au112.8 (2)C18—C19—H19119.7
C15—P1—Au111.77 (18)C20—C19—H19119.7
C1—O1—C8116.2 (5)C15—C20—C19119.5 (6)
C1—N1—C2121.6 (5)C15—C20—H20120.3
N1—C1—O1120.3 (5)C19—C20—H20120.3
N1—C1—S1126.6 (5)C22—C21—C26119.1 (5)
O1—C1—S1113.1 (4)C22—C21—P1121.0 (4)
C7—C2—N1119.6 (6)C26—C21—P1119.8 (5)
C7—C2—C3118.6 (6)C23—C22—C21119.7 (6)
N1—C2—C3121.5 (6)C23—C22—H22120.1
C4—C3—C2119.6 (6)C21—C22—H22120.1
C4—C3—H3120.2C22—C23—C24120.7 (6)
C2—C3—H3120.2C22—C23—H23119.6
C5—C4—C3121.4 (6)C24—C23—H23119.6
C5—C4—H4119.3C25—C24—C23119.5 (6)
C3—C4—H4119.3C25—C24—H24120.2
C4—C5—C6119.9 (6)C23—C24—H24120.2
C4—C5—H5120.1C26—C25—C24120.3 (6)
C6—C5—H5120.1C26—C25—H25119.8
C7—C6—C5118.4 (6)C24—C25—H25119.8
C7—C6—H6120.8C25—C26—C21120.6 (6)
C5—C6—H6120.8C25—C26—H26119.7
C2—C7—C6122.1 (6)C21—C26—H26119.7
C2—C7—H7119.0Cl1ii—C27—Cl1116.5 (11)
C6—C7—H7119.0Cl1—C27—H27A108.2
O1—C8—C9108.1 (5)Cl1ii—C27—H27A108.2
O1—C8—H8A110.1Cl1—C27—H27B108.2
C9—C8—H8A110.1Cl1ii—C27—H27B108.2
O1—C8—H8B110.1H27A—C27—H27B107.3
P1—Au—S1—C1106.4 (6)C11i—Fe—C12—C1359.9 (5)
S1—Au—P1—C10160.4 (6)C11—Fe—C12—C13120.1 (5)
S1—Au—P1—C2176.2 (6)C13i—Fe—C12—C13180.000 (1)
S1—Au—P1—C1539.7 (6)C12i—Fe—C12—C1349 (34)
C2—N1—C1—O1177.6 (5)C10—Fe—C12—C1138.5 (3)
C2—N1—C1—S11.0 (9)C10i—Fe—C12—C11141.5 (3)
C8—O1—C1—N11.7 (8)C14i—Fe—C12—C1196.8 (3)
C8—O1—C1—S1179.5 (5)C14—Fe—C12—C1183.2 (3)
Au—S1—C1—N1149.8 (5)C11i—Fe—C12—C11180.0
Au—S1—C1—O128.9 (5)C13i—Fe—C12—C1159.9 (5)
C1—N1—C2—C7115.8 (7)C13—Fe—C12—C11120.1 (5)
C1—N1—C2—C370.2 (8)C12i—Fe—C12—C1171 (32)
C7—C2—C3—C41.5 (9)C11—C12—C13—C140.9 (6)
N1—C2—C3—C4175.5 (6)Fe—C12—C13—C1458.9 (4)
C2—C3—C4—C50.0 (10)C11—C12—C13—Fe58.0 (4)
C3—C4—C5—C61.1 (10)C10—Fe—C13—C1438.5 (3)
C4—C5—C6—C70.6 (10)C10i—Fe—C13—C14141.5 (3)
N1—C2—C7—C6176.1 (6)C14i—Fe—C13—C14180.0
C3—C2—C7—C62.0 (9)C11i—Fe—C13—C1497.2 (4)
C5—C6—C7—C21.0 (10)C11—Fe—C13—C1482.8 (4)
C1—O1—C8—C9173.2 (6)C13i—Fe—C13—C1454 (58)
C21—P1—C10—C11160.4 (4)C12—Fe—C13—C14120.4 (5)
C15—P1—C10—C1190.1 (5)C12i—Fe—C13—C1459.6 (5)
Au—P1—C10—C1133.9 (5)C10—Fe—C13—C1281.9 (3)
C21—P1—C10—C1422.0 (6)C10i—Fe—C13—C1298.1 (3)
C15—P1—C10—C1487.4 (5)C14i—Fe—C13—C1259.6 (5)
Au—P1—C10—C14148.5 (4)C14—Fe—C13—C12120.4 (5)
C21—P1—C10—Fe71.4 (4)C11i—Fe—C13—C12142.4 (3)
C15—P1—C10—Fe179.2 (3)C11—Fe—C13—C1237.6 (3)
Au—P1—C10—Fe55.1 (4)C13i—Fe—C13—C12174 (58)
C10i—Fe—C10—C11160 (45)C12i—Fe—C13—C12180.000 (1)
C14i—Fe—C10—C1161.1 (5)C12—C13—C14—C100.5 (6)
C14—Fe—C10—C11118.9 (5)Fe—C13—C14—C1059.1 (4)
C11i—Fe—C10—C11180.0C12—C13—C14—Fe59.6 (4)
C13i—Fe—C10—C1198.6 (4)C11—C10—C14—C130.1 (6)
C13—Fe—C10—C1181.4 (4)P1—C10—C14—C13177.8 (4)
C12—Fe—C10—C1138.4 (4)Fe—C10—C14—C1360.0 (4)
C12i—Fe—C10—C11141.6 (4)C11—C10—C14—Fe59.9 (4)
C10i—Fe—C10—C1441 (45)P1—C10—C14—Fe122.2 (4)
C14i—Fe—C10—C14180.0C10—Fe—C14—C13118.7 (5)
C11i—Fe—C10—C1461.1 (5)C10i—Fe—C14—C1361.3 (5)
C11—Fe—C10—C14118.9 (5)C14i—Fe—C14—C13135 (100)
C13i—Fe—C10—C14142.5 (3)C11i—Fe—C14—C1399.3 (4)
C13—Fe—C10—C1437.5 (3)C11—Fe—C14—C1380.7 (4)
C12—Fe—C10—C1480.5 (4)C13i—Fe—C14—C13180.0
C12i—Fe—C10—C1499.5 (4)C12—Fe—C14—C1336.7 (4)
C10i—Fe—C10—P183 (45)C12i—Fe—C14—C13143.3 (4)
C14i—Fe—C10—P155.7 (5)C10i—Fe—C14—C10180.0
C14—Fe—C10—P1124.3 (5)C14i—Fe—C14—C10106 (100)
C11i—Fe—C10—P163.2 (5)C11i—Fe—C14—C10142.0 (3)
C11—Fe—C10—P1116.8 (5)C11—Fe—C14—C1038.0 (3)
C13i—Fe—C10—P118.3 (4)C13i—Fe—C14—C1061.3 (5)
C13—Fe—C10—P1161.7 (4)C13—Fe—C14—C10118.7 (5)
C12—Fe—C10—P1155.2 (4)C12—Fe—C14—C1082.1 (3)
C12i—Fe—C10—P124.8 (4)C12i—Fe—C14—C1097.9 (3)
C14—C10—C11—C120.6 (6)C10—P1—C15—C162.2 (5)
P1—C10—C11—C12177.4 (4)C21—P1—C15—C16114.1 (5)
Fe—C10—C11—C1260.4 (4)Au—P1—C15—C16124.4 (4)
C14—C10—C11—Fe59.8 (4)C10—P1—C15—C20178.4 (4)
P1—C10—C11—Fe122.2 (4)C21—P1—C15—C2069.7 (5)
C10i—Fe—C11—C10180.0Au—P1—C15—C2051.9 (5)
C14i—Fe—C11—C10141.8 (3)C20—C15—C16—C171.2 (8)
C14—Fe—C11—C1038.2 (3)P1—C15—C16—C17177.3 (4)
C11i—Fe—C11—C108 (100)C15—C16—C17—C180.1 (9)
C13i—Fe—C11—C1098.6 (4)C16—C17—C18—C190.8 (9)
C13—Fe—C11—C1081.4 (4)C17—C18—C19—C200.3 (10)
C12—Fe—C11—C10118.1 (5)C16—C15—C20—C191.7 (8)
C12i—Fe—C11—C1061.9 (5)P1—C15—C20—C19178.1 (4)
C10—Fe—C11—C12118.1 (5)C18—C19—C20—C150.9 (9)
C10i—Fe—C11—C1261.9 (5)C10—P1—C21—C2273.8 (5)
C14i—Fe—C11—C12100.1 (4)C15—P1—C21—C2237.1 (5)
C14—Fe—C11—C1279.9 (4)Au—P1—C21—C22157.9 (4)
C11i—Fe—C11—C12110 (100)C10—P1—C21—C26108.5 (5)
C13i—Fe—C11—C12143.3 (4)C15—P1—C21—C26140.7 (4)
C13—Fe—C11—C1236.7 (4)Au—P1—C21—C2619.8 (5)
C12i—Fe—C11—C12180.0C26—C21—C22—C230.2 (8)
C10—C11—C12—C130.9 (6)P1—C21—C22—C23177.6 (4)
Fe—C11—C12—C1358.5 (4)C21—C22—C23—C240.6 (9)
C10—C11—C12—Fe59.4 (4)C22—C23—C24—C251.4 (9)
C10—Fe—C12—C1381.5 (4)C23—C24—C25—C261.5 (10)
C10i—Fe—C12—C1398.5 (4)C24—C25—C26—C210.7 (10)
C14i—Fe—C12—C13143.1 (3)C22—C21—C26—C250.1 (9)
C14—Fe—C12—C1336.9 (3)P1—C21—C26—C25177.7 (5)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9a···Cg1iii0.972.753.623 (9)150
C11—H11···Cg2iv0.942.783.619 (7)150
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2
Mr1393.69
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.442 (3), 12.957 (5), 13.440 (5)
α, β, γ (°)108.045 (8), 103.177 (8), 106.853 (8)
V3)1253.5 (9)
Z1
Radiation typeMo Kα
µ (mm1)6.42
Crystal size (mm)0.49 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.577, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8618, 5688, 5025
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.02
No. of reflections5688
No. of parameters307
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.84, 1.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Au—P12.2562 (15)Au—S12.3029 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9a···Cg1i0.972.753.623 (9)150
C11—H11···Cg2ii0.942.783.619 (7)150
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1466–m1467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds