organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-(2-quinolylmeth­yl)malonate

aCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: chlsx@263.net.

(Received 29 March 2010; accepted 15 April 2010; online 19 May 2010)

In the title compound, C15H15NO4, the quinoline ring system and one of the malonate side chains are essentially coplanar (r.m.s. deviation = 0.0297 Å). The two malonate C—C(=O)—O—CH3 side chains are oriented at right angles [89.68 (8)°] with respect to each other. The crystal packing is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into dimers about inversion centers.

Related literature

For general background to the synthesis of halomalonates, see: Okimoto & Takahashi (2002[Okimoto, M. & Takahashi, Y. (2002). Synthesis, 15, 2215-2219]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4

  • Mr = 273.28

  • Monoclinic, P 21 /c

  • a = 10.626 (2) Å

  • b = 16.198 (3) Å

  • c = 8.1859 (16) Å

  • β = 107.92 (3)°

  • V = 1340.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.981, Tmax = 0.988

  • 8841 measured reflections

  • 2355 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.07

  • 2355 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.98 2.49 3.410 (2) 157
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted malonate is a very important organic intermediate. It is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates (Okimoto & Takahashi, 2002). We have synthesized the title compound, (I), in our laboratory and report in this article its synthesis and crystal structure.

The molecular structure of (I) is presented in Fig. 1. In (I), the quinoline ring and the side chain atoms C10/C11/C14 are essentially planar [r.m.s. deviation, 0.0297 Å]. The two malonate side chains comprising C/C/O/C atoms (C11/C12/O1/C13 and C11/C14/O3/C15) are oriented at right angles (89.68 (8)°) with respect to each other. The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into dimers about inversion centers.

Related literature top

For general background to the synthesis of halomalonates, see: Okimoto & Takahashi (2002).

Experimental top

An anhydrous methanol solution (130 ml) of 2-brommethyl quinoline was added to an anhydrous methanol solution (180 ml) of sodium methoxide (5.4 g, 0.1 mol) and dimethyl malonate (26.4 g, 0.2 mol). The mixture was refluxed for 4 h and the product was isolated with silica gel column. The solvent was removed and a little petroleum ether was added to the resultant to give pale-yellow precipitates which were isolated, recrystallized from n-hexane, and dried under vacuum to give the title compound (60% yield). Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an n-hexane solution.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Substituted malonate is a very important organic intermediate. It is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates (Okimoto & Takahashi, 2002). We have synthesized the title compound, (I), in our laboratory and report in this article its synthesis and crystal structure.

The molecular structure of (I) is presented in Fig. 1. In (I), the quinoline ring and the side chain atoms C10/C11/C14 are essentially planar [r.m.s. deviation, 0.0297 Å]. The two malonate side chains comprising C/C/O/C atoms (C11/C12/O1/C13 and C11/C14/O3/C15) are oriented at right angles (89.68 (8)°) with respect to each other. The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into dimers about inversion centers.

For general background to the synthesis of halomalonates, see: Okimoto & Takahashi (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005; data reduction: CrystalClear (Rigaku/MSC, 2005; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
Dimethyl 2-(2-quinolylmethyl)malonate top
Crystal data top
C15H15NO4F(000) = 576
Mr = 273.28Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4229 reflections
a = 10.626 (2) Åθ = 2.0–27.9°
b = 16.198 (3) ŵ = 0.10 mm1
c = 8.1859 (16) ÅT = 113 K
β = 107.92 (3)°Prism, colourless
V = 1340.6 (5) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2355 independent reflections
Radiation source: rotating anode2094 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and φ scansh = 127
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1918
Tmin = 0.981, Tmax = 0.988l = 99
8841 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2353P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
2355 reflectionsΔρmax = 0.23 e Å3
184 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.133 (8)
Crystal data top
C15H15NO4V = 1340.6 (5) Å3
Mr = 273.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.626 (2) ŵ = 0.10 mm1
b = 16.198 (3) ÅT = 113 K
c = 8.1859 (16) Å0.20 × 0.18 × 0.12 mm
β = 107.92 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2355 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2094 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.988Rint = 0.033
8841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
2355 reflectionsΔρmin = 0.17 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42646 (9)0.11002 (5)0.37324 (10)0.0208 (2)
O20.28197 (9)0.17212 (5)0.48439 (11)0.0238 (3)
O30.57807 (9)0.20028 (5)0.71040 (11)0.0259 (3)
O40.58734 (10)0.12269 (6)0.94065 (12)0.0315 (3)
N10.24000 (10)0.02029 (6)0.47394 (13)0.0193 (3)
C10.14301 (12)0.06967 (7)0.37093 (16)0.0186 (3)
C20.13159 (14)0.07574 (8)0.19515 (17)0.0249 (3)
H20.18980.04660.15190.030*
C30.03559 (14)0.12414 (8)0.08742 (17)0.0275 (3)
H30.02870.12710.02850.033*
C40.05277 (13)0.16937 (8)0.15063 (17)0.0240 (3)
H40.11640.20290.07710.029*
C50.04480 (13)0.16388 (8)0.32021 (17)0.0217 (3)
H50.10360.19370.36120.026*
C60.05144 (13)0.11361 (7)0.43356 (16)0.0186 (3)
C70.06142 (13)0.10242 (8)0.60895 (16)0.0220 (3)
H70.00300.12930.65540.026*
C80.15648 (13)0.05239 (8)0.70838 (16)0.0224 (3)
H80.16310.04440.82320.027*
C90.24603 (12)0.01216 (7)0.63656 (15)0.0189 (3)
C100.35008 (13)0.04359 (8)0.74929 (15)0.0210 (3)
H10A0.40040.01270.84960.025*
H10B0.30650.08860.78860.025*
C110.44620 (12)0.07996 (7)0.66261 (15)0.0183 (3)
H110.49540.03440.63240.022*
C120.37365 (12)0.12590 (7)0.49881 (15)0.0182 (3)
C130.35706 (15)0.14582 (9)0.20836 (16)0.0306 (3)
H13A0.27090.12130.16510.046*
H13B0.40600.13570.12950.046*
H13C0.34810.20420.22110.046*
C140.54437 (12)0.13576 (8)0.78861 (16)0.0203 (3)
C150.67016 (15)0.25858 (9)0.81881 (19)0.0318 (4)
H15A0.63370.28010.90380.048*
H15B0.68550.30300.74980.048*
H15C0.75220.23120.87470.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (5)0.0238 (5)0.0158 (5)0.0004 (4)0.0055 (4)0.0020 (3)
O20.0218 (5)0.0216 (5)0.0273 (5)0.0050 (4)0.0067 (4)0.0024 (4)
O30.0279 (5)0.0222 (5)0.0243 (5)0.0075 (4)0.0032 (4)0.0002 (4)
O40.0320 (6)0.0367 (6)0.0204 (5)0.0099 (4)0.0004 (4)0.0007 (4)
N10.0180 (6)0.0198 (6)0.0194 (5)0.0002 (4)0.0048 (4)0.0000 (4)
C10.0166 (7)0.0180 (6)0.0205 (6)0.0025 (5)0.0046 (5)0.0006 (5)
C20.0233 (7)0.0314 (7)0.0216 (7)0.0043 (6)0.0095 (6)0.0014 (5)
C30.0283 (8)0.0353 (8)0.0188 (7)0.0035 (6)0.0070 (6)0.0043 (6)
C40.0198 (7)0.0245 (7)0.0247 (7)0.0015 (5)0.0021 (6)0.0039 (5)
C50.0190 (7)0.0194 (6)0.0262 (7)0.0003 (5)0.0062 (6)0.0026 (5)
C60.0179 (7)0.0156 (6)0.0218 (6)0.0039 (5)0.0054 (5)0.0032 (5)
C70.0240 (7)0.0212 (7)0.0224 (7)0.0013 (5)0.0094 (6)0.0043 (5)
C80.0272 (7)0.0225 (6)0.0176 (6)0.0000 (5)0.0072 (6)0.0024 (5)
C90.0207 (7)0.0166 (6)0.0184 (6)0.0035 (5)0.0045 (5)0.0022 (5)
C100.0243 (7)0.0212 (6)0.0171 (6)0.0012 (5)0.0059 (5)0.0012 (5)
C110.0193 (7)0.0174 (6)0.0173 (6)0.0010 (5)0.0044 (5)0.0003 (5)
C120.0189 (7)0.0155 (6)0.0197 (6)0.0034 (5)0.0052 (5)0.0015 (5)
C130.0328 (8)0.0384 (8)0.0182 (7)0.0002 (6)0.0044 (6)0.0070 (6)
C140.0180 (7)0.0215 (7)0.0212 (7)0.0028 (5)0.0059 (5)0.0002 (5)
C150.0280 (8)0.0252 (7)0.0368 (8)0.0083 (6)0.0019 (7)0.0041 (6)
Geometric parameters (Å, º) top
O1—C121.3389 (15)C6—C71.4184 (18)
O1—C131.4454 (16)C7—C81.3542 (19)
O2—C121.2054 (15)C7—H70.9300
O3—C141.3309 (15)C8—C91.4212 (18)
O3—C151.4500 (16)C8—H80.9300
O4—C141.2052 (16)C9—C101.5039 (18)
N1—C91.3195 (16)C10—C111.5296 (17)
N1—C11.3705 (17)C10—H10A0.9700
C1—C21.4098 (18)C10—H10B0.9700
C1—C61.4222 (18)C11—C141.5189 (18)
C2—C31.3710 (19)C11—C121.5197 (17)
C2—H20.9300C11—H110.9800
C3—C41.4089 (19)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.3673 (18)C13—H13C0.9600
C4—H40.9300C15—H15A0.9600
C5—C61.4093 (19)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C12—O1—C13115.21 (10)C9—C10—C11114.61 (10)
C14—O3—C15116.60 (10)C9—C10—H10A108.6
C9—N1—C1118.22 (11)C11—C10—H10A108.6
N1—C1—C2118.74 (11)C9—C10—H10B108.6
N1—C1—C6122.59 (11)C11—C10—H10B108.6
C2—C1—C6118.65 (12)H10A—C10—H10B107.6
C3—C2—C1120.65 (12)C14—C11—C12111.33 (10)
C3—C2—H2119.7C14—C11—C10109.35 (10)
C1—C2—H2119.7C12—C11—C10111.59 (10)
C2—C3—C4120.61 (12)C14—C11—H11108.1
C2—C3—H3119.7C12—C11—H11108.1
C4—C3—H3119.7C10—C11—H11108.1
C5—C4—C3119.93 (12)O2—C12—O1124.13 (11)
C5—C4—H4120.0O2—C12—C11124.46 (11)
C3—C4—H4120.0O1—C12—C11111.39 (10)
C4—C5—C6120.78 (12)O1—C13—H13A109.5
C4—C5—H5119.6O1—C13—H13B109.5
C6—C5—H5119.6H13A—C13—H13B109.5
C5—C6—C7123.60 (12)O1—C13—H13C109.5
C5—C6—C1119.35 (11)H13A—C13—H13C109.5
C7—C6—C1117.04 (12)H13B—C13—H13C109.5
C8—C7—C6119.63 (11)O4—C14—O3124.21 (12)
C8—C7—H7120.2O4—C14—C11124.03 (12)
C6—C7—H7120.2O3—C14—C11111.76 (10)
C7—C8—C9119.76 (11)O3—C15—H15A109.5
C7—C8—H8120.1O3—C15—H15B109.5
C9—C8—H8120.1H15A—C15—H15B109.5
N1—C9—C8122.73 (12)O3—C15—H15C109.5
N1—C9—C10118.51 (11)H15A—C15—H15C109.5
C8—C9—C10118.74 (11)H15B—C15—H15C109.5
C9—N1—C1—C2177.02 (11)C7—C8—C9—N11.02 (19)
C9—N1—C1—C61.52 (17)C7—C8—C9—C10179.55 (11)
N1—C1—C2—C3179.71 (12)N1—C9—C10—C114.71 (16)
C6—C1—C2—C31.11 (19)C8—C9—C10—C11176.70 (11)
C1—C2—C3—C40.6 (2)C9—C10—C11—C14179.17 (10)
C2—C3—C4—C51.3 (2)C9—C10—C11—C1255.55 (14)
C3—C4—C5—C60.27 (19)C13—O1—C12—O26.25 (17)
C4—C5—C6—C7177.20 (12)C13—O1—C12—C11175.19 (10)
C4—C5—C6—C11.43 (18)C14—C11—C12—O279.24 (15)
N1—C1—C6—C5179.36 (11)C10—C11—C12—O243.25 (16)
C2—C1—C6—C52.10 (17)C14—C11—C12—O199.32 (11)
N1—C1—C6—C71.92 (17)C10—C11—C12—O1138.19 (11)
C2—C1—C6—C7176.62 (11)C15—O3—C14—O41.50 (18)
C5—C6—C7—C8179.49 (12)C15—O3—C14—C11179.13 (10)
C1—C6—C7—C80.82 (18)C12—C11—C14—O4159.19 (13)
C6—C7—C8—C90.55 (19)C10—C11—C14—O435.42 (17)
C1—N1—C9—C80.03 (17)C12—C11—C14—O321.44 (14)
C1—N1—C9—C10178.51 (10)C10—C11—C14—O3145.21 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.982.493.410 (2)157
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15NO4
Mr273.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.626 (2), 16.198 (3), 8.1859 (16)
β (°) 107.92 (3)
V3)1340.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.981, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8841, 2355, 2094
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.07
No. of reflections2355
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear (Rigaku/MSC, 2005, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.982.493.410 (2)157.0
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the NSFC (grant No. 30873139).

References

First citationOkimoto, M. & Takahashi, Y. (2002). Synthesis, 15, 2215–2219  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds