organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-(2,4,6-tri­meth­oxy­benz­yl)malonate

aCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: chlsx@263.net

(Received 28 April 2010; accepted 30 April 2010; online 19 May 2010)

In the title compound, C15H20O7, the benzene ring makes dihedral angles of 69.17 (5) and 80.81 (4)° with the two side chains of malonate. The two malonate side chains comprising C/C/O/C atoms are oriented at right angles [86.26 (6)°] with respect to each other. In the crystal structure, the crystal packing is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into an infinite network.

Related literature

Substituted malonate, an important organic inter­mediate, is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates, see: Okimoto & Takahashi (2002[Okimoto, M. & Takahashi, Y. (2002). Synthesis, 15, 2215-2219.]). For a related structure, see: Liu et al. (2010[Liu, S.-X., Zhang, Z.-H., Yang, Y.-F., Zhen, X.-L. & Han, J.-R. (2010). Acta Cryst. E66, o1383.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O7

  • Mr = 312.31

  • Monoclinic, P 21 /n

  • a = 11.6173 (15) Å

  • b = 8.1192 (10) Å

  • c = 17.236 (2) Å

  • β = 103.968 (2)°

  • V = 1577.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.904, Tmax = 0.935

  • 9686 measured reflections

  • 3851 independent reflections

  • 2969 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.05

  • 3851 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5b⋯O2i 0.96 2.54 3.353 (2) 142
C5—H5a⋯O5ii 0.96 2.57 3.503 (2) 164
C3—H3⋯O6iii 0.98 2.54 3.499 (2) 168
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted malnoate is a very important organic intermediate. It is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates (Okimoto & Takahashi, 2002). We have synthesized dimethyl 2-(quinolin-methyene)malonate, and reported its structure (Liu et al., 2010). We now report the synthesis and structure of the title compound, (I).

In the title compound ( Fig. 1), the benzene ring makes dihedral angles of 69.17 (5) and 80.81 (4)° with two side chains of malonate. In the crystal structure, the two malonate side chains comprising C/C/O/O atoms (C2/C3/O1/O2 and C113/C4/O3/C4) are oriented at right angles (86.26 (6)°) with respect to each other. In the crystal structure, the crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into an infinite network; details have been provided in Table 1 and Fig. 2.

Related literature top

Substituted malnoate, an important organic intermediate, is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates, see: Okimoto & Takahashi (2002). For a related structure, see: Liu et al. (2010).

Experimental top

An anhydrous methanol solution (130 ml) of 1-brommethyl-3,4,5-trimethoxy (26.0 g, 0.1 mol) was added to an anhydrous methanol solution (180 ml) of sodium methoxide (5.4 g, 0.1 mol) and dimethyl malonate (26.4 g, 0.2 mol). The mixture was refluxed for 6 hours. The product was isolated with silica gel column, then the solvent was removed and added petroleum ether (5 ml) to the white precipitate. The precipitate was then isolated, recrystallized from n-hexane, and dried in a vacuum to give the title compound in 75% yield. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an n-hexane solution.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Substituted malnoate is a very important organic intermediate. It is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates (Okimoto & Takahashi, 2002). We have synthesized dimethyl 2-(quinolin-methyene)malonate, and reported its structure (Liu et al., 2010). We now report the synthesis and structure of the title compound, (I).

In the title compound ( Fig. 1), the benzene ring makes dihedral angles of 69.17 (5) and 80.81 (4)° with two side chains of malonate. In the crystal structure, the two malonate side chains comprising C/C/O/O atoms (C2/C3/O1/O2 and C113/C4/O3/C4) are oriented at right angles (86.26 (6)°) with respect to each other. In the crystal structure, the crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into an infinite network; details have been provided in Table 1 and Fig. 2.

Substituted malnoate, an important organic intermediate, is electrooxidized in methanol in the presence of halogen ions to afford the corresponding halomalonates, see: Okimoto & Takahashi (2002). For a related structure, see: Liu et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title structure plotted with displacement ellipsoids at 50% probability level.
[Figure 2] Fig. 2. A unit cell showing intermolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
Dimethyl 2-(2,4,6-trimethoxybenzyl)malonate top
Crystal data top
C15H20O7F(000) = 664
Mr = 312.31Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3043 reflections
a = 11.6173 (15) Åθ = 2.4–24.5°
b = 8.1192 (10) ŵ = 0.11 mm1
c = 17.236 (2) ÅT = 296 K
β = 103.968 (2)°Prism, colourless
V = 1577.7 (3) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3851 independent reflections
Radiation source: fine-focus sealed tube2969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 7.31 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω and φ scansh = 1412
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 810
Tmin = 0.904, Tmax = 0.935l = 1922
9686 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.3127P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3851 reflectionsΔρmax = 0.21 e Å3
205 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0172 (18)
Crystal data top
C15H20O7V = 1577.7 (3) Å3
Mr = 312.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6173 (15) ŵ = 0.11 mm1
b = 8.1192 (10) ÅT = 296 K
c = 17.236 (2) Å0.28 × 0.24 × 0.20 mm
β = 103.968 (2)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3851 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2969 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.935Rint = 0.019
9686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3851 reflectionsΔρmin = 0.15 e Å3
205 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13204 (15)0.9367 (2)0.43372 (11)0.0635 (4)
H1A0.20350.93720.39180.095*
H1B0.10421.04760.44470.095*
H1C0.14790.88930.48110.095*
C20.07201 (11)0.68523 (16)0.39019 (7)0.0404 (3)
C30.02668 (11)0.59332 (15)0.36509 (7)0.0395 (3)
H30.03290.63620.31310.047*
C40.01013 (11)0.41471 (17)0.35462 (8)0.0421 (3)
C50.10242 (17)0.2143 (2)0.26180 (11)0.0722 (5)
H5A0.03710.13900.27620.108*
H5B0.13900.20360.20580.108*
H5C0.15950.18980.29220.108*
C60.14750 (11)0.61262 (17)0.42412 (8)0.0424 (3)
H6A0.16920.72820.42790.051*
H6B0.14130.57650.47660.051*
C70.24446 (11)0.51492 (15)0.39988 (8)0.0389 (3)
C80.26120 (11)0.52716 (16)0.32288 (8)0.0403 (3)
H80.21420.59800.28610.048*
C90.34815 (11)0.43345 (15)0.30108 (8)0.0390 (3)
C100.41922 (11)0.32810 (16)0.35617 (8)0.0411 (3)
C110.40304 (11)0.31759 (16)0.43313 (8)0.0429 (3)
C120.31541 (11)0.41072 (16)0.45482 (8)0.0426 (3)
H120.30440.40300.50640.051*
C130.30064 (15)0.5376 (2)0.16826 (9)0.0598 (4)
H13A0.21880.50600.15890.090*
H13B0.32600.52840.11940.090*
H13C0.30970.64940.18680.090*
C140.61684 (16)0.2734 (3)0.35421 (15)0.0899 (7)
H14A0.62550.37960.33180.135*
H14B0.66480.19460.33480.135*
H14C0.64190.27920.41140.135*
C150.47068 (17)0.2007 (2)0.56275 (10)0.0675 (5)
H15A0.49580.30470.58760.101*
H15B0.52270.11530.58930.101*
H15C0.39110.17780.56650.101*
O10.04280 (9)0.84060 (12)0.40905 (6)0.0532 (3)
O20.16628 (8)0.62656 (13)0.39094 (6)0.0558 (3)
O30.06001 (10)0.38021 (14)0.27852 (6)0.0579 (3)
O40.00316 (11)0.31615 (13)0.40747 (6)0.0613 (3)
O50.37059 (9)0.43260 (12)0.22680 (6)0.0505 (3)
O60.49714 (9)0.22459 (13)0.33151 (6)0.0539 (3)
O70.47421 (10)0.20690 (14)0.48168 (6)0.0623 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0574 (9)0.0518 (9)0.0869 (12)0.0155 (7)0.0283 (8)0.0038 (8)
C20.0369 (6)0.0443 (7)0.0404 (6)0.0060 (5)0.0103 (5)0.0068 (5)
C30.0389 (6)0.0423 (7)0.0400 (6)0.0047 (5)0.0150 (5)0.0049 (5)
C40.0364 (6)0.0462 (7)0.0450 (7)0.0040 (5)0.0122 (5)0.0005 (6)
C50.0692 (11)0.0745 (12)0.0693 (11)0.0141 (9)0.0099 (9)0.0216 (9)
C60.0380 (6)0.0429 (7)0.0484 (7)0.0028 (5)0.0147 (5)0.0035 (6)
C70.0342 (6)0.0365 (6)0.0473 (7)0.0008 (5)0.0125 (5)0.0037 (5)
C80.0371 (6)0.0375 (6)0.0481 (7)0.0036 (5)0.0136 (5)0.0034 (5)
C90.0380 (6)0.0365 (6)0.0451 (7)0.0021 (5)0.0150 (5)0.0022 (5)
C100.0377 (6)0.0360 (6)0.0505 (7)0.0036 (5)0.0124 (5)0.0061 (5)
C110.0420 (7)0.0383 (7)0.0467 (7)0.0038 (5)0.0078 (5)0.0010 (5)
C120.0432 (7)0.0438 (7)0.0422 (7)0.0014 (5)0.0129 (5)0.0018 (5)
C130.0678 (10)0.0642 (10)0.0507 (8)0.0134 (8)0.0206 (7)0.0094 (7)
C140.0486 (10)0.1037 (16)0.1212 (18)0.0205 (10)0.0282 (10)0.0129 (13)
C150.0708 (11)0.0756 (12)0.0525 (9)0.0189 (9)0.0081 (8)0.0119 (8)
O10.0482 (5)0.0417 (5)0.0760 (7)0.0066 (4)0.0271 (5)0.0019 (5)
O20.0393 (5)0.0585 (6)0.0730 (7)0.0012 (4)0.0202 (5)0.0026 (5)
O30.0628 (6)0.0628 (7)0.0462 (6)0.0067 (5)0.0098 (5)0.0055 (5)
O40.0764 (8)0.0473 (6)0.0553 (6)0.0060 (5)0.0061 (5)0.0080 (5)
O50.0555 (6)0.0529 (6)0.0487 (5)0.0127 (4)0.0238 (4)0.0057 (4)
O60.0521 (6)0.0520 (6)0.0598 (6)0.0174 (4)0.0176 (5)0.0061 (5)
O70.0716 (7)0.0625 (7)0.0521 (6)0.0302 (6)0.0134 (5)0.0090 (5)
Geometric parameters (Å, º) top
C1—O11.4411 (17)C8—C91.3869 (17)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—O51.3668 (15)
C1—H1C0.9600C9—C101.3915 (18)
C2—O21.1973 (16)C10—O61.3756 (15)
C2—O11.3262 (17)C10—C111.3864 (19)
C2—C31.5159 (17)C11—O71.3630 (16)
C3—C41.5104 (19)C11—C121.3898 (18)
C3—C61.5298 (18)C12—H120.9300
C3—H30.9800C13—O51.4175 (18)
C4—O41.1941 (16)C13—H13A0.9600
C4—O31.3296 (16)C13—H13B0.9600
C5—O31.439 (2)C13—H13C0.9600
C5—H5A0.9600C14—O61.408 (2)
C5—H5B0.9600C14—H14A0.9600
C5—H5C0.9600C14—H14B0.9600
C6—C71.5165 (17)C14—H14C0.9600
C6—H6A0.9700C15—O71.4086 (19)
C6—H6B0.9700C15—H15A0.9600
C7—C121.3839 (18)C15—H15B0.9600
C7—C81.3907 (18)C15—H15C0.9600
O1—C1—H1A109.5O5—C9—C8124.92 (12)
O1—C1—H1B109.5O5—C9—C10114.85 (11)
H1A—C1—H1B109.5C8—C9—C10120.22 (12)
O1—C1—H1C109.5O6—C10—C11120.62 (12)
H1A—C1—H1C109.5O6—C10—C9119.40 (12)
H1B—C1—H1C109.5C11—C10—C9119.70 (11)
O2—C2—O1123.81 (12)O7—C11—C10115.20 (11)
O2—C2—C3124.33 (12)O7—C11—C12124.66 (12)
O1—C2—C3111.83 (11)C10—C11—C12120.08 (12)
C4—C3—C2107.15 (10)C7—C12—C11120.16 (12)
C4—C3—C6111.45 (10)C7—C12—H12119.9
C2—C3—C6113.29 (10)C11—C12—H12119.9
C4—C3—H3108.3O5—C13—H13A109.5
C2—C3—H3108.3O5—C13—H13B109.5
C6—C3—H3108.3H13A—C13—H13B109.5
O4—C4—O3123.82 (13)O5—C13—H13C109.5
O4—C4—C3124.86 (12)H13A—C13—H13C109.5
O3—C4—C3111.32 (11)H13B—C13—H13C109.5
O3—C5—H5A109.5O6—C14—H14A109.5
O3—C5—H5B109.5O6—C14—H14B109.5
H5A—C5—H5B109.5H14A—C14—H14B109.5
O3—C5—H5C109.5O6—C14—H14C109.5
H5A—C5—H5C109.5H14A—C14—H14C109.5
H5B—C5—H5C109.5H14B—C14—H14C109.5
C7—C6—C3112.73 (10)O7—C15—H15A109.5
C7—C6—H6A109.0O7—C15—H15B109.5
C3—C6—H6A109.0H15A—C15—H15B109.5
C7—C6—H6B109.0O7—C15—H15C109.5
C3—C6—H6B109.0H15A—C15—H15C109.5
H6A—C6—H6B107.8H15B—C15—H15C109.5
C12—C7—C8119.96 (11)C2—O1—C1115.31 (11)
C12—C7—C6119.38 (11)C4—O3—C5116.19 (13)
C8—C7—C6120.66 (11)C9—O5—C13117.23 (11)
C9—C8—C7119.87 (12)C10—O6—C14114.95 (12)
C9—C8—H8120.1C11—O7—C15118.30 (12)
C7—C8—H8120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5b···O2i0.962.543.353 (2)142
C5—H5a···O5ii0.962.573.503 (2)164
C3—H3···O6iii0.982.543.499 (2)168
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H20O7
Mr312.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.6173 (15), 8.1192 (10), 17.236 (2)
β (°) 103.968 (2)
V3)1577.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.904, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
9686, 3851, 2969
Rint0.019
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections3851
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5b···O2i0.962.543.353 (2)142
C5—H5a···O5ii0.962.573.503 (2)164
C3—H3···O6iii0.982.543.499 (2)168
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the NSFC (grant No.30873139).

References

First citationLiu, S.-X., Zhang, Z.-H., Yang, Y.-F., Zhen, X.-L. & Han, J.-R. (2010). Acta Cryst. E66, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkimoto, M. & Takahashi, Y. (2002). Synthesis, 15, 2215–2219.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds