organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Butyl-2-phenyl-1,3-thia­zolidine-1,4-dione

aDepartment of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo 454000, People's Republic of China, and bDepartment of Medicine, Hebi College of Vocation and Technology, He Bi 458030, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 1 May 2010; accepted 15 May 2010; online 22 May 2010)

In the title compound, C13H17NO2S, the thia­zolidine-1,4-dione ring adopts an envelope conformation with the S atom lying 0.631 (4) Å out of the plane formed by the other four ring atoms; the phenyl ring is almost perpendicular [88.74 (8)°] with respect to the ring C—C—N—C atoms and the butyl chain is in a fully extended conformation. In the crystal, a supra­molecular two-dimensional arrangement arises from weak inter­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Wang et al. (2009[Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.]); Xu et al. (2009[Xu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799.]). For synthetic procedures, see: Johnson et al. (1983[Johnson, M. R., Dong, M., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494-499.]); Srivastava et al. (2002[Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619-7624.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO2S

  • Mr = 251.34

  • Monoclinic, P 21 /c

  • a = 13.8335 (5) Å

  • b = 8.7461 (3) Å

  • c = 12.3853 (4) Å

  • β = 114.773 (2)°

  • V = 1360.59 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 297 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.956

  • 15990 measured reflections

  • 3118 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.159

  • S = 1.14

  • 3118 reflections

  • 155 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.43 3.246 (3) 142
C3—H3⋯O2ii 0.98 2.34 3.311 (3) 172
C11—H11B⋯O2ii 0.97 2.59 3.548 (4) 169
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our programme studying the new applications of cyclic sulfoxide derivatives in medicne (Wang, et al., 2009; Xu, et al., 2009), we report herein the crystal structure of the title compounds.

The molecular structure of the title compound is shown in Fig. 1. The thiazolidin-4-one ring adopts an envelope conformation with S lying 0.631 (4) Å out of the plane formed by the rest of the ring atoms; the phenyl ring is oriented at right angles (88.74 (8)°) with respect to the ring (C2/C3/N1/C1) atoms. The butyl chain is in a fully extended conformation. The crystal packing (Fig. 2) consists of a two-dimensional network in the a-c-plane generated by intermolecular interactions of the weak C—H···O hydrogen bonds.

Related literature top

For related structures, see: Wang et al. (2009); Xu et al. (2009). For synthetic procedures, see: Johnson et al. (1983); Srivastava et al. (2002);

Experimental top

All reagents were of analytical grade. The title compound was prepared according to literature methods (Srivastava et al., 2002; Johnson et al., 1983). It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of its chloroform solution at room temperature.

Refinement top

All H atoms bonded to C atoms were calculated in idealized position with C—H = 0.93-0.98 Å and refined in riding mode on their parent atoms with Uiso(H) values of 1.2Ueq(C).

Structure description top

As a part of our programme studying the new applications of cyclic sulfoxide derivatives in medicne (Wang, et al., 2009; Xu, et al., 2009), we report herein the crystal structure of the title compounds.

The molecular structure of the title compound is shown in Fig. 1. The thiazolidin-4-one ring adopts an envelope conformation with S lying 0.631 (4) Å out of the plane formed by the rest of the ring atoms; the phenyl ring is oriented at right angles (88.74 (8)°) with respect to the ring (C2/C3/N1/C1) atoms. The butyl chain is in a fully extended conformation. The crystal packing (Fig. 2) consists of a two-dimensional network in the a-c-plane generated by intermolecular interactions of the weak C—H···O hydrogen bonds.

For related structures, see: Wang et al. (2009); Xu et al. (2009). For synthetic procedures, see: Johnson et al. (1983); Srivastava et al. (2002);

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the unit cell packing of the title compound down the a-axis showing hydrogen bonds as dashed lines.
3-Butyl-2-phenyl-1,3-thiazolidine-1,4-dione top
Crystal data top
C13H17NO2SF(000) = 536
Mr = 251.34Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5947 reflections
a = 13.8335 (5) Åθ = 2.8–25.9°
b = 8.7461 (3) ŵ = 0.23 mm1
c = 12.3853 (4) ÅT = 297 K
β = 114.773 (2)°Block, yellow
V = 1360.59 (8) Å30.28 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3118 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1712
Tmin = 0.939, Tmax = 0.956k = 1111
15990 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.1042P]
where P = (Fo2 + 2Fc2)/3
3118 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H17NO2SV = 1360.59 (8) Å3
Mr = 251.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8335 (5) ŵ = 0.23 mm1
b = 8.7461 (3) ÅT = 297 K
c = 12.3853 (4) Å0.28 × 0.26 × 0.20 mm
β = 114.773 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3118 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2169 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.956Rint = 0.030
15990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.14Δρmax = 0.34 e Å3
3118 reflectionsΔρmin = 0.29 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25227 (13)0.66161 (18)0.36775 (14)0.0437 (4)
O10.04410 (14)0.84045 (17)0.19284 (19)0.0788 (6)
O20.24851 (16)0.7278 (2)0.54296 (16)0.0820 (6)
S10.04960 (4)0.67497 (6)0.22013 (5)0.0522 (2)
C10.20313 (18)0.6887 (2)0.4393 (2)0.0514 (5)
C20.08545 (18)0.6614 (2)0.3755 (2)0.0553 (6)
H2A0.04690.73710.39930.066*
H2B0.06780.56080.39490.066*
C30.18626 (14)0.6127 (2)0.24789 (16)0.0410 (5)
H30.20850.66790.19330.049*
C40.18891 (14)0.4445 (2)0.22558 (16)0.0393 (4)
C50.15706 (17)0.3929 (2)0.10953 (19)0.0525 (5)
H50.13600.46310.04740.063*
C60.1564 (2)0.2395 (3)0.0856 (2)0.0650 (7)
H60.13460.20670.00750.078*
C70.1875 (2)0.1350 (3)0.1756 (3)0.0692 (7)
H70.18750.03130.15890.083*
C80.2186 (2)0.1831 (3)0.2906 (3)0.0677 (7)
H80.23870.11180.35180.081*
C90.22036 (17)0.3375 (2)0.3161 (2)0.0531 (6)
H90.24280.36940.39450.064*
C100.36729 (17)0.6710 (3)0.4092 (2)0.0577 (6)
H10A0.39320.57610.39060.069*
H10B0.39960.68300.49490.069*
C110.4012 (2)0.8007 (3)0.3546 (3)0.0734 (7)
H11A0.37440.89540.37260.088*
H11B0.36890.78820.26890.088*
C120.5200 (2)0.8135 (4)0.3968 (3)0.1025 (11)
H12A0.55210.83110.48200.123*
H12B0.54730.71730.38210.123*
C130.5527 (3)0.9381 (6)0.3380 (4)0.1532 (17)
H13A0.53280.91220.25610.184*
H13B0.62840.95160.37730.184*
H13C0.51791.03140.34250.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0431 (9)0.0507 (10)0.0389 (9)0.0063 (7)0.0189 (7)0.0076 (7)
O10.0751 (12)0.0415 (10)0.1114 (15)0.0132 (7)0.0307 (11)0.0173 (9)
O20.0877 (14)0.1101 (16)0.0556 (11)0.0193 (11)0.0372 (10)0.0332 (10)
S10.0453 (3)0.0400 (3)0.0641 (4)0.0035 (2)0.0156 (3)0.0018 (2)
C10.0614 (14)0.0500 (12)0.0506 (14)0.0080 (10)0.0312 (11)0.0118 (10)
C20.0566 (13)0.0484 (12)0.0733 (16)0.0076 (9)0.0395 (12)0.0104 (10)
C30.0437 (10)0.0447 (10)0.0367 (11)0.0019 (8)0.0190 (9)0.0008 (8)
C40.0381 (10)0.0426 (10)0.0403 (11)0.0019 (8)0.0195 (8)0.0010 (8)
C50.0572 (13)0.0567 (13)0.0464 (13)0.0022 (10)0.0243 (10)0.0042 (10)
C60.0661 (16)0.0669 (16)0.0636 (16)0.0004 (12)0.0288 (13)0.0227 (13)
C70.0654 (15)0.0489 (13)0.094 (2)0.0026 (11)0.0339 (15)0.0165 (14)
C80.0723 (17)0.0492 (14)0.083 (2)0.0130 (11)0.0336 (14)0.0151 (12)
C90.0617 (14)0.0517 (12)0.0472 (13)0.0068 (10)0.0241 (11)0.0037 (9)
C100.0464 (12)0.0706 (15)0.0527 (14)0.0020 (10)0.0174 (10)0.0063 (11)
C110.0514 (15)0.0891 (18)0.0734 (18)0.0103 (13)0.0200 (13)0.0048 (14)
C120.0567 (17)0.137 (3)0.113 (3)0.0209 (17)0.0347 (18)0.005 (2)
C130.127 (2)0.179 (3)0.168 (3)0.041 (2)0.076 (2)0.009 (2)
Geometric parameters (Å, º) top
N1—C11.345 (2)C7—C81.370 (4)
N1—C31.444 (2)C7—H70.9300
N1—C101.455 (3)C8—C91.385 (3)
O1—S11.4809 (16)C8—H80.9300
O2—C11.218 (3)C9—H90.9300
S1—C21.779 (2)C10—C111.493 (3)
S1—C31.8559 (18)C10—H10A0.9700
C1—C21.501 (3)C10—H10B0.9700
C2—H2A0.9700C11—C121.507 (4)
C2—H2B0.9700C11—H11A0.9700
C3—C41.500 (3)C11—H11B0.9700
C3—H30.9800C12—C131.482 (5)
C4—C91.383 (3)C12—H12A0.9700
C4—C51.390 (3)C12—H12B0.9700
C5—C61.374 (3)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—C71.364 (4)C13—H13C0.9600
C6—H60.9300
C1—N1—C3116.95 (17)C8—C7—H7120.1
C1—N1—C10122.52 (18)C7—C8—C9120.3 (2)
C3—N1—C10120.42 (15)C7—C8—H8119.8
O1—S1—C2106.05 (11)C9—C8—H8119.8
O1—S1—C3106.27 (10)C8—C9—C4120.3 (2)
C2—S1—C388.82 (9)C8—C9—H9119.8
O2—C1—N1124.4 (2)C4—C9—H9119.8
O2—C1—C2124.46 (19)N1—C10—C11112.81 (18)
N1—C1—C2111.17 (19)N1—C10—H10A109.0
C1—C2—S1107.95 (14)C11—C10—H10A109.0
C1—C2—H2A110.1N1—C10—H10B109.0
S1—C2—H2A110.1C11—C10—H10B109.0
C1—C2—H2B110.1H10A—C10—H10B107.8
S1—C2—H2B110.1C10—C11—C12113.8 (2)
H2A—C2—H2B108.4C10—C11—H11A108.8
N1—C3—C4115.24 (16)C12—C11—H11A108.8
N1—C3—S1105.05 (12)C10—C11—H11B108.8
C4—C3—S1110.82 (12)C12—C11—H11B108.8
N1—C3—H3108.5H11A—C11—H11B107.7
C4—C3—H3108.5C13—C12—C11113.4 (3)
S1—C3—H3108.5C13—C12—H12A108.9
C9—C4—C5118.34 (19)C11—C12—H12A108.9
C9—C4—C3122.52 (18)C13—C12—H12B108.9
C5—C4—C3119.13 (17)C11—C12—H12B108.9
C6—C5—C4120.7 (2)H12A—C12—H12B107.7
C6—C5—H5119.6C12—C13—H13A109.5
C4—C5—H5119.6C12—C13—H13B109.5
C7—C6—C5120.5 (2)H13A—C13—H13B109.5
C7—C6—H6119.8C12—C13—H13C109.5
C5—C6—H6119.8H13A—C13—H13C109.5
C6—C7—C8119.8 (2)H13B—C13—H13C109.5
C6—C7—H7120.1
C3—N1—C1—O2178.6 (2)N1—C3—C4—C921.3 (3)
C10—N1—C1—O22.4 (3)S1—C3—C4—C997.9 (2)
C3—N1—C1—C20.3 (2)N1—C3—C4—C5159.80 (16)
C10—N1—C1—C2176.47 (18)S1—C3—C4—C581.10 (18)
O2—C1—C2—S1159.4 (2)C9—C4—C5—C60.3 (3)
N1—C1—C2—S121.8 (2)C3—C4—C5—C6178.67 (18)
O1—S1—C2—C178.65 (16)C4—C5—C6—C70.2 (3)
C3—S1—C2—C127.94 (15)C5—C6—C7—C80.6 (4)
C1—N1—C3—C4101.4 (2)C6—C7—C8—C91.0 (4)
C10—N1—C3—C474.9 (2)C7—C8—C9—C41.1 (3)
C1—N1—C3—S120.9 (2)C5—C4—C9—C80.7 (3)
C10—N1—C3—S1162.82 (15)C3—C4—C9—C8178.21 (18)
O1—S1—C3—N178.93 (14)C1—N1—C10—C11112.5 (2)
C2—S1—C3—N127.45 (13)C3—N1—C10—C1171.4 (2)
O1—S1—C3—C4155.99 (14)N1—C10—C11—C12179.6 (2)
C2—S1—C3—C497.63 (14)C10—C11—C12—C13177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.433.246 (3)142
C3—H3···O2ii0.982.343.311 (3)172
C9—H9···N10.932.592.899 (2)100
C10—H10B···O20.972.432.824 (3)104
C11—H11B···O2ii0.972.593.548 (4)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO2S
Mr251.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)13.8335 (5), 8.7461 (3), 12.3853 (4)
β (°) 114.773 (2)
V3)1360.59 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.939, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
15990, 3118, 2169
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.159, 1.14
No. of reflections3118
No. of parameters155
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.29

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.433.246 (3)142
C3—H3···O2ii0.982.343.311 (3)172
C11—H11B···O2ii0.972.593.548 (4)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Foundation of Henan Polytechnic University for Doctor Teachers (B2010-65), and the authors thank Dr L. Yang, Dr D. Zhao and Dr Z. Z. Zhang for their support of the data collection and analysis.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, M. R., Dong, M., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494–499.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.  Web of Science CrossRef CAS Google Scholar
First citationWang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds