organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-{[2-(4-Pyridylcarbon­yl)hydrazinyl­­idene]meth­yl}phen­­oxy)acetic acid

aCollege of Electronic Engineering (Guilin University of Electronic Technology), Guilin 541004, People's Republic of China, and bCollege of Chemical and Biological Engineering (Guilin University of Technology), Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 23 March 2010; accepted 10 May 2010; online 15 May 2010)

In the title compound, C15H13N3O4, the pyridine and benzene rings are nearly perpendicular [dihedral angle = 84.24 (5)°]. In the crystal structure, classical O—H⋯N hydrogen bonding between the OH group of the carboxyl unit and a neighbouring pyridine ring N atom and N—H⋯O hydrogen bonding between the imine NH group and a neighbouring O atom of an acyl unit, together with complementary non-classical C—H⋯O hydrogen bonds between carboxyl O atoms and neighbouring CH groups, link the mol­ecules into a three-dimensional system.

Related literature

For hydrazones as corrosion inhibitors for metals and alloys, see: Fouda et al. (2000[Fouda, A. S., Gouda, M. M. & Abd El-Rahman, S. I. (2000). Bull. Korean Chem. Soc. 21, 1085-1089.]; 2007[Fouda, A. S., Mostafa, S. E., Ghazy, S. E. & El-Farah, S. A. (2007). J. Electrochem. Sci. 2, 182-193.]). For related structures, see: Chen et al. (2006[Chen, S.-S., Zhang, S.-P., Huang, C.-B. & Shao, S.-C. (2006). Acta Cryst. E62, o31-o32.]); Hu et al. (2006[Hu, R.-H., Fang, X.-N., Sui, Y., Luo, Q.-Y. & Zou, M.-Q. (2006). Acta Cryst. E62, o3558-o3560.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Orthorhombic, P c a 21

  • a = 12.8099 (12) Å

  • b = 4.9435 (5) Å

  • c = 21.921 (2) Å

  • V = 1388.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.49 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.981

  • 11436 measured reflections

  • 3189 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.071

  • S = 1.02

  • 3189 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.01 2.8599 (18) 168
O4—H4A⋯N1ii 0.82 1.86 2.6337 (19) 156
C1—H1⋯O3iii 0.93 2.51 3.199 (2) 131
C4—H4⋯O3iv 0.93 2.58 3.315 (2) 136
C11—H11⋯O4v 0.93 2.43 3.347 (2) 171
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-1, z-{\script{1\over 2}}]; (iv) [-x, -y+1, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The hydrazone compounds have a strong ability of coordination, which have been investigated as corrosion inhibitors for metals and their alloys (Fouda et al., 2000; 2007). The title compound (Fig.1) is closely related to the previously reported (E)-2-[2-(2,3-Dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4- yliminomethyl) phenoxy]acetic acid monohydrate (Hu et al., 2006) and 1-(4-Aminophenyl)ethanone isonicotinoylhydrazone (Chen et al., 2006). The molecular structure of title compound reveals the nearly perpendicular system, in which dihedral angle between the pyridine and benzene rings is 84.24 (5)°. Adjacent molecules are connected by intermolecular classical O–H···N, N–H···O and non-classical C–H···O hydrogen bonds (Fig.2).

Related literature top

For hydrazones as corrosion inhibitors for metals and alloys, see: Fouda et al. (2000; 2007). For related structures, see: Chen et al. (2006); Hu et al. (2006).

Experimental top

The methanol (10 ml) was added to an acetone solution (10 ml) of the 2-(2-{[2-(4-pyridylcarbonyl)hydrazono]methyl}phen-oxy)acetic acid (0.5 mmol). After stirring at 308 K for 2 h, crystals of the title compound were obtained by slow evaporation of the solution at room temperature.

Refinement top

The H atoms were placed in calculated positions (C–H = 0.93Å and 0.97Å, O–H = 0.82Å, N–H = 0.86Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

The 1548 Friedel pairs were merged in structure refinement procedure.

Structure description top

The hydrazone compounds have a strong ability of coordination, which have been investigated as corrosion inhibitors for metals and their alloys (Fouda et al., 2000; 2007). The title compound (Fig.1) is closely related to the previously reported (E)-2-[2-(2,3-Dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4- yliminomethyl) phenoxy]acetic acid monohydrate (Hu et al., 2006) and 1-(4-Aminophenyl)ethanone isonicotinoylhydrazone (Chen et al., 2006). The molecular structure of title compound reveals the nearly perpendicular system, in which dihedral angle between the pyridine and benzene rings is 84.24 (5)°. Adjacent molecules are connected by intermolecular classical O–H···N, N–H···O and non-classical C–H···O hydrogen bonds (Fig.2).

For hydrazones as corrosion inhibitors for metals and alloys, see: Fouda et al. (2000; 2007). For related structures, see: Chen et al. (2006); Hu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the 3-dimensional system of hydrogen bonds.
2-(2-{[2-(4-Pyridylcarbonyl)hydrazinylidene]methyl}phenoxy)acetic acid top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.432 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4508 reflections
a = 12.8099 (12) Åθ = 3.2–27.8°
b = 4.9435 (5) ŵ = 0.11 mm1
c = 21.921 (2) ÅT = 296 K
V = 1388.2 (2) Å3Block, yellow
Z = 40.49 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1516
Tmin = 0.950, Tmax = 0.981k = 66
11436 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.024P)2 + 0.395P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H13N3O4V = 1388.2 (2) Å3
Mr = 299.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.8099 (12) ŵ = 0.11 mm1
b = 4.9435 (5) ÅT = 296 K
c = 21.921 (2) Å0.49 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2891 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.981Rint = 0.023
11436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.071H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3189 reflectionsΔρmin = 0.16 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40315 (13)0.2335 (4)0.17829 (9)0.0418 (4)
H10.46710.32160.18150.050*
C20.32247 (13)0.3168 (4)0.21532 (8)0.0367 (4)
H20.33200.45930.24240.044*
C30.22713 (13)0.1862 (3)0.21176 (7)0.0296 (3)
C40.21671 (14)0.0228 (3)0.16999 (7)0.0362 (4)
H40.15390.11540.16610.043*
C50.30128 (15)0.0903 (4)0.13447 (8)0.0435 (4)
H50.29350.22950.10630.052*
C60.13817 (12)0.2813 (3)0.25116 (7)0.0301 (3)
C70.04427 (13)0.0500 (3)0.33975 (7)0.0315 (3)
H70.01250.21880.33710.038*
C80.13670 (12)0.0137 (3)0.37849 (7)0.0298 (3)
C90.21215 (14)0.1804 (4)0.36554 (8)0.0389 (4)
H90.20330.29250.33190.047*
C100.29905 (14)0.2103 (4)0.40121 (9)0.0424 (4)
H100.34850.34150.39170.051*
C110.31293 (13)0.0451 (4)0.45126 (9)0.0452 (5)
H110.37250.06360.47520.054*
C120.23880 (15)0.1482 (4)0.46622 (8)0.0405 (4)
H120.24830.25770.50030.049*
C130.15039 (13)0.1779 (3)0.43020 (7)0.0309 (3)
C140.08010 (16)0.5251 (4)0.49371 (8)0.0418 (4)
H14A0.14990.60130.49460.050*
H14B0.03120.67390.48970.050*
C150.06001 (13)0.3840 (3)0.55373 (8)0.0356 (4)
N10.39396 (12)0.0327 (3)0.13816 (7)0.0420 (3)
N20.07678 (10)0.0839 (3)0.27315 (6)0.0330 (3)
H2A0.08980.08240.26450.040*
N30.00745 (11)0.1488 (3)0.30979 (6)0.0340 (3)
O10.12591 (11)0.5216 (2)0.26232 (7)0.0448 (3)
O20.07106 (9)0.3570 (2)0.44137 (5)0.0368 (3)
O30.08545 (13)0.4859 (3)0.60119 (6)0.0572 (4)
O40.01015 (11)0.1540 (3)0.54842 (6)0.0478 (3)
H4A0.01100.10590.58200.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (9)0.0503 (10)0.0421 (10)0.0020 (8)0.0033 (8)0.0005 (9)
C20.0386 (9)0.0369 (9)0.0346 (8)0.0012 (7)0.0031 (7)0.0057 (7)
C30.0344 (8)0.0269 (7)0.0275 (7)0.0027 (6)0.0038 (6)0.0025 (6)
C40.0378 (9)0.0334 (8)0.0373 (9)0.0048 (7)0.0067 (7)0.0048 (7)
C50.0541 (11)0.0383 (9)0.0381 (9)0.0008 (8)0.0103 (9)0.0073 (8)
C60.0323 (8)0.0278 (8)0.0301 (8)0.0019 (7)0.0026 (7)0.0007 (6)
C70.0332 (9)0.0333 (8)0.0280 (8)0.0021 (7)0.0003 (7)0.0008 (7)
C80.0277 (8)0.0350 (8)0.0268 (7)0.0037 (6)0.0011 (6)0.0026 (7)
C90.0353 (9)0.0464 (10)0.0351 (9)0.0022 (8)0.0037 (7)0.0041 (8)
C100.0281 (8)0.0508 (11)0.0481 (10)0.0051 (8)0.0035 (8)0.0056 (9)
C110.0283 (8)0.0622 (12)0.0451 (10)0.0024 (8)0.0101 (8)0.0113 (9)
C120.0399 (10)0.0475 (10)0.0340 (8)0.0093 (8)0.0064 (8)0.0011 (8)
C130.0325 (8)0.0323 (8)0.0279 (8)0.0052 (7)0.0015 (6)0.0040 (7)
C140.0523 (11)0.0339 (9)0.0393 (9)0.0047 (8)0.0032 (8)0.0066 (8)
C150.0337 (8)0.0383 (8)0.0348 (8)0.0010 (7)0.0024 (7)0.0064 (8)
N10.0413 (8)0.0468 (9)0.0380 (8)0.0091 (7)0.0111 (7)0.0012 (8)
N20.0370 (7)0.0245 (6)0.0374 (7)0.0034 (6)0.0110 (6)0.0001 (6)
N30.0345 (7)0.0330 (7)0.0344 (7)0.0016 (6)0.0085 (6)0.0017 (6)
O10.0527 (7)0.0247 (6)0.0571 (7)0.0024 (5)0.0169 (6)0.0047 (6)
O20.0426 (7)0.0373 (6)0.0304 (6)0.0024 (5)0.0009 (5)0.0027 (5)
O30.0763 (10)0.0575 (9)0.0378 (7)0.0115 (8)0.0043 (7)0.0142 (7)
O40.0540 (8)0.0562 (8)0.0331 (6)0.0224 (6)0.0052 (6)0.0021 (6)
Geometric parameters (Å, º) top
C1—N11.332 (2)C9—C101.368 (2)
C1—C21.377 (2)C9—H90.9300
C1—H10.9300C10—C111.379 (3)
C2—C31.384 (2)C10—H100.9300
C2—H20.9300C11—C121.387 (3)
C3—C41.387 (2)C11—H110.9300
C3—C61.505 (2)C12—C131.388 (2)
C4—C51.375 (3)C12—H120.9300
C4—H40.9300C13—O21.3699 (19)
C5—N11.336 (2)C14—O21.421 (2)
C5—H50.9300C14—C151.511 (3)
C6—O11.2226 (19)C14—H14A0.9700
C6—N21.343 (2)C14—H14B0.9700
C7—N31.273 (2)C15—O31.201 (2)
C7—C81.468 (2)C15—O41.309 (2)
C7—H70.9300N2—N31.3828 (18)
C8—C91.391 (2)N2—H2A0.8600
C8—C131.405 (2)O4—H4A0.8200
N1—C1—C2123.09 (16)C9—C10—H10120.1
N1—C1—H1118.5C11—C10—H10120.1
C2—C1—H1118.5C10—C11—C12120.53 (16)
C1—C2—C3119.32 (16)C10—C11—H11119.7
C1—C2—H2120.3C12—C11—H11119.7
C3—C2—H2120.3C13—C12—C11119.79 (16)
C2—C3—C4118.02 (15)C13—C12—H12120.1
C2—C3—C6119.35 (14)C11—C12—H12120.1
C4—C3—C6122.59 (15)O2—C13—C12124.86 (15)
C5—C4—C3118.59 (17)O2—C13—C8115.15 (13)
C5—C4—H4120.7C12—C13—C8119.98 (15)
C3—C4—H4120.7O2—C14—C15114.78 (14)
N1—C5—C4123.72 (17)O2—C14—H14A108.6
N1—C5—H5118.1C15—C14—H14A108.6
C4—C5—H5118.1O2—C14—H14B108.6
O1—C6—N2123.98 (15)C15—C14—H14B108.6
O1—C6—C3121.04 (14)H14A—C14—H14B107.5
N2—C6—C3114.97 (13)O3—C15—O4125.00 (18)
N3—C7—C8120.21 (14)O3—C15—C14120.95 (16)
N3—C7—H7119.9O4—C15—C14113.99 (15)
C8—C7—H7119.9C1—N1—C5117.24 (15)
C9—C8—C13118.44 (15)C6—N2—N3119.78 (13)
C9—C8—C7121.77 (15)C6—N2—H2A120.1
C13—C8—C7119.79 (14)N3—N2—H2A120.1
C10—C9—C8121.54 (17)C7—N3—N2114.18 (13)
C10—C9—H9119.2C13—O2—C14117.50 (14)
C8—C9—H9119.2C15—O4—H4A109.5
C9—C10—C11119.70 (17)
N1—C1—C2—C30.7 (3)C11—C12—C13—O2178.35 (16)
C1—C2—C3—C40.8 (2)C11—C12—C13—C80.5 (2)
C1—C2—C3—C6178.57 (15)C9—C8—C13—O2177.56 (14)
C2—C3—C4—C50.2 (2)C7—C8—C13—O22.4 (2)
C6—C3—C4—C5177.86 (16)C9—C8—C13—C121.4 (2)
C3—C4—C5—N10.6 (3)C7—C8—C13—C12178.62 (15)
C2—C3—C6—O136.1 (2)O2—C14—C15—O3164.70 (17)
C4—C3—C6—O1141.58 (18)O2—C14—C15—O417.9 (2)
C2—C3—C6—N2142.74 (15)C2—C1—N1—C50.1 (3)
C4—C3—C6—N239.6 (2)C4—C5—N1—C10.8 (3)
N3—C7—C8—C928.5 (2)O1—C6—N2—N31.4 (3)
N3—C7—C8—C13151.42 (15)C3—C6—N2—N3179.86 (13)
C13—C8—C9—C101.2 (3)C8—C7—N3—N2177.30 (14)
C7—C8—C9—C10178.87 (17)C6—N2—N3—C7163.73 (15)
C8—C9—C10—C110.0 (3)C12—C13—O2—C140.1 (2)
C9—C10—C11—C121.0 (3)C8—C13—O2—C14178.99 (14)
C10—C11—C12—C130.7 (3)C15—C14—O2—C1374.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.012.8599 (18)168
O4—H4A···N1ii0.821.862.6337 (19)156
C1—H1···O3iii0.932.513.199 (2)131
C4—H4···O3iv0.932.583.315 (2)136
C11—H11···O4v0.932.433.347 (2)171
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1, z1/2; (iv) x, y+1, z1/2; (v) x1/2, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.8099 (12), 4.9435 (5), 21.921 (2)
V3)1388.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.950, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11436, 3189, 2891
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.02
No. of reflections3189
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86002.01002.8599 (18)168.00
O4—H4A···N1ii0.82001.86002.6337 (19)156.4
C1—H1···O3iii0.93002.51003.199 (2)131.00
C4—H4···O3iv0.93002.58003.315 (2)136.00
C11—H11···O4v0.93002.43003.347 (2)171.00
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1, z1/2; (iv) x, y+1, z1/2; (v) x1/2, y, z.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-Ferrous Metals and Materials Processing Technology, Ministry of Education, China.

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-S., Zhang, S.-P., Huang, C.-B. & Shao, S.-C. (2006). Acta Cryst. E62, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFouda, A. S., Gouda, M. M. & Abd El-Rahman, S. I. (2000). Bull. Korean Chem. Soc. 21, 1085–1089.  CAS Google Scholar
First citationFouda, A. S., Mostafa, S. E., Ghazy, S. E. & El-Farah, S. A. (2007). J. Electrochem. Sci. 2, 182–193.  CAS Google Scholar
First citationHu, R.-H., Fang, X.-N., Sui, Y., Luo, Q.-Y. & Zou, M.-Q. (2006). Acta Cryst. E62, o3558–o3560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds