organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{3-[(2-chloro-1,3-thia­zol-5-yl)meth­yl]-4-nitro­imino-1,3,5-triazinan-1-yl}acetate

aCollege of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
*Correspondence e-mail: willin112@163.com

(Received 11 April 2010; accepted 20 May 2010; online 26 May 2010)

In the title compound, C11H15ClN6O4S, which belongs to the neonicotinoid class of insecticidally active heterocyclic compounds, the six-membered triazine ring adopts an opened envolope conformation. The planar nitro imine group [dihedral angle between nitro and imine groups = 1.07 (7)°] and the thia­zole ring are oriented at a dihedral angle of 69.62 (8)°. A classical intra­molecular N—H⋯O hydrogen bond is found in the mol­ecular structure. Moreover, one classical inter­molecular N—H⋯N and four non-classical C—H⋯O and C—H⋯N hydrogen bonds are also present in the crystal structure. Besides inter­molecular hydrogen bonds, the Cl atom forms an inter­molecular short contact [3.020 (2) Å] with one of the nitro O atoms.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Kagabu (1996[Kagabu, S. (1996). J. Pestic. Sci. 21, 237-239.]); Kagabu et al. (2005[Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409-413.]); Tian et al. (2007[Tian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 143-147.]); Tomizawa et al. (2000[Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016-6024.]); Tomizawa & Yamamoto (1993[Tomizawa, M. & Yamamoto, I. (1993). J. Pestic. Sci. 18, 91-98.]); Zhang et al. (2004[Zhang, N. J., Tomizawa, M. & Casida, J. E. (2004). J. Org. Chem. 69, 876-881.]). For halogen bonding, see: Riley & Merz (2007[Riley, K. E. & Merz, K. M. Jr (2007). J. Phys. Chem. A, 111, 1688-1694.]). For the synthesis of the title compound, see: Maienfisch et al. (2001[Maienfisch, P., Angst, M. & Brandl, F. (2001). Pest. Management Sci. 57, 906-913.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClN6O4S

  • Mr = 362.81

  • Triclinic, [P \overline 1]

  • a = 8.5066 (6) Å

  • b = 9.1114 (7) Å

  • c = 10.9071 (8) Å

  • α = 100.488 (2)°

  • β = 98.416 (3)°

  • γ = 101.281 (3)°

  • V = 800.55 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.40 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.925

  • 5350 measured reflections

  • 3259 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.05

  • 3259 reflections

  • 212 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N6i 0.79 (2) 2.55 (2) 3.133 (2) 132 (2)
N3—H3A⋯O3 0.79 (2) 1.98 (2) 2.570 (2) 131 (2)
C3—H3C⋯O3ii 0.97 2.57 3.191 (3) 122
C5—H5A⋯N1iii 0.97 2.61 3.449 (3) 144
C6—H6B⋯O4iv 0.97 2.56 3.478 (3) 159
C10—H10⋯O1v 0.93 2.45 3.278 (3) 149
Symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Neonicotinoid compounds (Tomizawa & Yamamoto, 1993; Kagabu, 1996; Tomizawa et al., 2000) have received much attention on their applications as insecticide (Zhang et al., 2004; Kagabu et al., 2005; Tian et al., 2007). We report here the molecular and crystal structures of the title compound.

The molecular structure of title compound, C11H15ClN6O4S, is depicted on Fig.1. The triazine moiety exhibits an opened envolope conformation with N1 out of the envolope plan defined by C5, N3, C7, N2 and C6. The dihedral angle between the thiazole ring and triazine envolope plan is 75.63 (7)°. The planar nitroimine–group and the thiazole ring are oriented the dihedral angle of 69.62 (8)°. The large discrepancy between (O4—N5···N4 115.65 (17)°) and (O3—N5···N4 123.84 (16)°) bond angles attributes to the hydrogen bond effect on O4 and O3 - look the Table 1. Another interesting structure feature that should be mentioned is that the bond lengths (C7—N2 1.340 (2)Å) and (C7—N3 1.329 (2)Å) are between the standard (C—N 1.47Å) single bond and (CN 1.26Å) double bond, clearly showing the conjugated effect of the nirtoimine. The C7—N4 bond length is as long as to 1.357 (2)Å, due to being linked with a strong electron–attracting nitro–group. Moreover, except intermolecular hydrogen bonding, the crystal structure is further stabilized by the so–called halogen bonding (Riley & Merz, 2007), due to short intermolecular contact of Cl1—O4i with a distance of 3.020 (2)Å and an angle close to 180° (C11—Cl1···O4i 178.1 (1)°). Symmetry code: (i) 1-x,1-y,-z).

Related literature top

For general background to neonicotinoid compounds and their application as insecticides, see: Kagabu (1996); Kagabu et al. (2005); Tian et al. (2007); Tomizawa et al. (2000); Tomizawa & Yamamoto (1993); Zhang et al. (2004). For halogen bonding, see: Riley & Merz (2007). For the synthesis of the title compound, see: Maienfisch et al. (2001).

Experimental top

The title compound was prepared by the literature method (Maienfisch et al., (2001). It was purified by silica gel chromatography using ethyl acetate and petroleum ether in the ratio of 1:1, as the flush to afford. This compound was obtained as white crystals, yield 46.7%, 1H NMR(CDCl3, 400 Hz): 9.51 (1H, s, NH), 7.44 (1H, s, thiazole—H), 4.61 (2H,s,CH2—thiazole), 4.48–4.49(4H, d, J = 5.2 Hz, triazine—4H), 4.21–4.15 (2H, m, OCH2), 3.32 (2H, s, CHCO) 1.29–1.26 (3H, t, J = 7.2 Hz, CH3); IR(potassium bromide, cm-1) 3288(N—H), 3000 (thiazole), 1730 (CO) 1587 (CN), 1398 (NO2), 1224 (C—O—C), 1105 (C—N), Anal. calcd for C11H15ClN6O4S: C 36.42, H 4.17, N 23.16; found C 36.40, H 4.23, N 23.19. ESI–MS m/z: 363.8.

Refinement top

H atoms bonded to C atoms were positioned geometrically [C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl)] and refined in riding modes with Uiso(H) = 1.2Ueq(C) for aromatic and methylene; Uiso(H) = 1.5U~eq~(C) for methyl. H atom bonded to N atom was found from Fourier difference maps and refined with the constraint Uiso(H) = 1.2Ueq(N), but coordinates refined freely.

Structure description top

Neonicotinoid compounds (Tomizawa & Yamamoto, 1993; Kagabu, 1996; Tomizawa et al., 2000) have received much attention on their applications as insecticide (Zhang et al., 2004; Kagabu et al., 2005; Tian et al., 2007). We report here the molecular and crystal structures of the title compound.

The molecular structure of title compound, C11H15ClN6O4S, is depicted on Fig.1. The triazine moiety exhibits an opened envolope conformation with N1 out of the envolope plan defined by C5, N3, C7, N2 and C6. The dihedral angle between the thiazole ring and triazine envolope plan is 75.63 (7)°. The planar nitroimine–group and the thiazole ring are oriented the dihedral angle of 69.62 (8)°. The large discrepancy between (O4—N5···N4 115.65 (17)°) and (O3—N5···N4 123.84 (16)°) bond angles attributes to the hydrogen bond effect on O4 and O3 - look the Table 1. Another interesting structure feature that should be mentioned is that the bond lengths (C7—N2 1.340 (2)Å) and (C7—N3 1.329 (2)Å) are between the standard (C—N 1.47Å) single bond and (CN 1.26Å) double bond, clearly showing the conjugated effect of the nirtoimine. The C7—N4 bond length is as long as to 1.357 (2)Å, due to being linked with a strong electron–attracting nitro–group. Moreover, except intermolecular hydrogen bonding, the crystal structure is further stabilized by the so–called halogen bonding (Riley & Merz, 2007), due to short intermolecular contact of Cl1—O4i with a distance of 3.020 (2)Å and an angle close to 180° (C11—Cl1···O4i 178.1 (1)°). Symmetry code: (i) 1-x,1-y,-z).

For general background to neonicotinoid compounds and their application as insecticides, see: Kagabu (1996); Kagabu et al. (2005); Tian et al. (2007); Tomizawa et al. (2000); Tomizawa & Yamamoto (1993); Zhang et al. (2004). For halogen bonding, see: Riley & Merz (2007). For the synthesis of the title compound, see: Maienfisch et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bond is marked by dashed line.
Ethyl 2-{3-[(2-chloro-1,3-thiazol-5-yl)methyl]- 4-nitroimino-1,3,5-triazinan-1-yl}acetate top
Crystal data top
C11H15ClN6O4SZ = 2
Mr = 362.81F(000) = 376
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Melting point: 449 K
a = 8.5066 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1114 (7) ÅCell parameters from 2512 reflections
c = 10.9071 (8) Åθ = 2.3–28.2°
α = 100.488 (2)°µ = 0.40 mm1
β = 98.416 (3)°T = 298 K
γ = 101.281 (3)°Block, colourless
V = 800.55 (10) Å30.40 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3259 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 1.57 × 0.49 mm pixels mm-1θmax = 26.5°, θmin = 1.9°
0.3° wide ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1011
Tmin = 0.857, Tmax = 0.925l = 1312
5350 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.0779P]
where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.31 e Å3
9 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H15ClN6O4Sγ = 101.281 (3)°
Mr = 362.81V = 800.55 (10) Å3
Triclinic, P1Z = 2
a = 8.5066 (6) ÅMo Kα radiation
b = 9.1114 (7) ŵ = 0.40 mm1
c = 10.9071 (8) ÅT = 298 K
α = 100.488 (2)°0.40 × 0.23 × 0.20 mm
β = 98.416 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2670 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.925Rint = 0.075
5350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0479 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
3259 reflectionsΔρmin = 0.26 e Å3
212 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0095 (3)0.7149 (2)0.26414 (19)0.0444 (5)
H1A0.08800.70300.23090.053*
H1B0.07510.75740.20540.053*
C20.1049 (2)0.5590 (2)0.2702 (2)0.0454 (5)
C30.2096 (4)0.3054 (3)0.1509 (3)0.0701 (7)
H3C0.31890.30310.16740.084*
H3B0.15260.26050.21280.084*
C40.2173 (5)0.2185 (3)0.0216 (3)0.0943 (11)
H4A0.26470.26920.03910.141*
H4B0.28310.11690.01050.141*
H4C0.10910.21260.00920.141*
C50.1108 (3)0.9754 (2)0.3748 (2)0.0485 (5)
H5A0.12251.04690.45490.058*
H5B0.03971.00590.31080.058*
C60.1510 (2)0.7783 (2)0.47718 (18)0.0405 (4)
H6A0.10790.67340.48250.049*
H6B0.16190.84350.56030.049*
C70.3648 (2)0.88803 (19)0.36999 (17)0.0337 (4)
C80.4008 (2)0.6726 (2)0.46817 (19)0.0408 (4)
H8A0.37750.64400.54620.049*
H8B0.51740.71460.48050.049*
C90.3537 (2)0.5325 (2)0.36264 (18)0.0399 (4)
C100.2576 (3)0.3953 (2)0.3607 (2)0.0468 (5)
H100.21130.37680.43020.056*
C110.3072 (3)0.3403 (2)0.1709 (2)0.0527 (6)
Cl10.30601 (10)0.23735 (8)0.02224 (6)0.0779 (3)
N10.03775 (19)0.82249 (18)0.38653 (16)0.0408 (4)
N20.31341 (19)0.79068 (17)0.44198 (15)0.0367 (4)
N30.2716 (2)0.98200 (18)0.33909 (17)0.0393 (4)
H3A0.306 (3)1.039 (3)0.297 (2)0.047*
N40.50886 (19)0.87424 (18)0.33519 (16)0.0402 (4)
N50.5757 (2)0.97002 (19)0.26754 (16)0.0430 (4)
N60.2308 (2)0.28347 (19)0.25118 (19)0.0544 (5)
O10.1559 (2)0.52487 (19)0.36034 (15)0.0659 (5)
O20.1227 (2)0.46316 (17)0.16030 (15)0.0614 (4)
O30.5158 (2)1.0752 (2)0.23700 (19)0.0671 (5)
O40.70673 (19)0.95104 (19)0.23875 (17)0.0607 (4)
S10.41711 (8)0.52681 (6)0.21876 (5)0.0532 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (11)0.0457 (11)0.0389 (10)0.0019 (9)0.0037 (9)0.0122 (9)
C20.0434 (11)0.0495 (12)0.0386 (11)0.0005 (9)0.0066 (9)0.0095 (9)
C30.0903 (19)0.0483 (12)0.0592 (14)0.0107 (12)0.0183 (13)0.0055 (11)
C40.144 (3)0.0561 (15)0.0660 (17)0.0045 (17)0.0236 (19)0.0031 (12)
C50.0451 (11)0.0377 (10)0.0671 (14)0.0144 (8)0.0191 (10)0.0106 (10)
C60.0430 (10)0.0429 (10)0.0331 (10)0.0067 (8)0.0087 (8)0.0037 (8)
C70.0379 (9)0.0256 (8)0.0336 (9)0.0057 (7)0.0040 (7)0.0001 (7)
C80.0473 (11)0.0370 (10)0.0389 (10)0.0130 (8)0.0030 (8)0.0106 (8)
C90.0479 (11)0.0363 (10)0.0398 (10)0.0176 (8)0.0065 (8)0.0118 (8)
C100.0590 (13)0.0391 (11)0.0460 (12)0.0163 (9)0.0105 (10)0.0122 (9)
C110.0731 (15)0.0436 (11)0.0427 (11)0.0274 (10)0.0013 (11)0.0048 (10)
Cl10.1162 (6)0.0694 (4)0.0455 (3)0.0420 (4)0.0031 (3)0.0065 (3)
N10.0398 (9)0.0382 (8)0.0447 (9)0.0101 (7)0.0090 (7)0.0074 (7)
N20.0405 (8)0.0318 (8)0.0385 (8)0.0098 (6)0.0071 (7)0.0080 (7)
N30.0416 (9)0.0306 (8)0.0499 (10)0.0112 (6)0.0133 (7)0.0124 (7)
N40.0375 (8)0.0364 (8)0.0468 (9)0.0082 (6)0.0106 (7)0.0075 (7)
N50.0401 (9)0.0421 (9)0.0407 (9)0.0023 (7)0.0079 (7)0.0009 (7)
N60.0704 (12)0.0356 (9)0.0545 (11)0.0156 (8)0.0039 (10)0.0053 (8)
O10.0766 (11)0.0650 (10)0.0453 (9)0.0146 (8)0.0207 (8)0.0100 (8)
O20.0806 (11)0.0484 (9)0.0455 (9)0.0096 (8)0.0202 (8)0.0055 (7)
O30.0612 (10)0.0647 (11)0.0929 (14)0.0183 (8)0.0302 (9)0.0448 (10)
O40.0468 (9)0.0706 (11)0.0654 (10)0.0116 (7)0.0249 (8)0.0070 (8)
S10.0731 (4)0.0452 (3)0.0456 (3)0.0181 (3)0.0187 (3)0.0098 (2)
Geometric parameters (Å, º) top
C1—N11.455 (3)C6—H6B0.9700
C1—C21.510 (3)C7—N31.329 (2)
C1—H1A0.9700C7—N21.340 (2)
C1—H1B0.9700C7—N41.357 (2)
C2—O11.198 (2)C8—N21.468 (2)
C2—O21.318 (3)C8—C91.498 (3)
C3—O21.460 (3)C8—H8A0.9700
C3—C41.472 (4)C8—H8B0.9700
C3—H3C0.9700C9—C101.348 (3)
C3—H3B0.9700C9—S11.728 (2)
C4—H4A0.9600C10—N61.380 (3)
C4—H4B0.9600C10—H100.9300
C4—H4C0.9600C11—N61.287 (3)
C5—N11.447 (2)C11—S11.717 (2)
C5—N31.469 (3)C11—Cl11.717 (2)
C5—H5A0.9700N3—H3A0.79 (2)
C5—H5B0.9700N4—N51.339 (2)
C6—N11.444 (3)N5—O41.237 (2)
C6—N21.476 (2)N5—O31.243 (2)
C6—H6A0.9700
N1—C1—C2113.48 (16)N3—C7—N4127.89 (17)
N1—C1—H1A108.9N2—C7—N4113.62 (16)
C2—C1—H1A108.9N2—C8—C9112.19 (16)
N1—C1—H1B108.9N2—C8—H8A109.2
C2—C1—H1B108.9C9—C8—H8A109.2
H1A—C1—H1B107.7N2—C8—H8B109.2
O1—C2—O2124.32 (19)C9—C8—H8B109.2
O1—C2—C1126.2 (2)H8A—C8—H8B107.9
O2—C2—C1109.47 (17)C10—C9—C8127.86 (19)
O2—C3—C4108.0 (2)C10—C9—S1109.13 (15)
O2—C3—H3C110.1C8—C9—S1123.00 (14)
C4—C3—H3C110.1C9—C10—N6117.05 (19)
O2—C3—H3B110.1C9—C10—H10121.5
C4—C3—H3B110.1N6—C10—H10121.5
H3C—C3—H3B108.4N6—C11—S1117.24 (17)
C3—C4—H4A109.5N6—C11—Cl1123.01 (18)
C3—C4—H4B109.5S1—C11—Cl1119.74 (15)
H4A—C4—H4B109.5C6—N1—C5107.68 (16)
C3—C4—H4C109.5C6—N1—C1113.41 (16)
H4A—C4—H4C109.5C5—N1—C1111.93 (16)
H4B—C4—H4C109.5C7—N2—C8121.33 (16)
N1—C5—N3111.07 (15)C7—N2—C6120.93 (15)
N1—C5—H5A109.4C8—N2—C6116.72 (15)
N3—C5—H5A109.4C7—N3—C5122.00 (17)
N1—C5—H5B109.4C7—N3—H3A115.8 (16)
N3—C5—H5B109.4C5—N3—H3A122.2 (16)
H5A—C5—H5B108.0N5—N4—C7118.95 (16)
N1—C6—N2112.02 (15)O4—N5—O3120.48 (17)
N1—C6—H6A109.2O4—N5—N4115.65 (17)
N2—C6—H6A109.2O3—N5—N4123.84 (16)
N1—C6—H6B109.2C11—N6—C10108.32 (18)
N2—C6—H6B109.2C2—O2—C3116.56 (17)
H6A—C6—H6B107.9C11—S1—C988.24 (10)
N3—C7—N2118.48 (17)
N1—C1—C2—O17.9 (3)N1—C6—N2—C8143.03 (17)
N1—C1—C2—O2171.21 (18)N2—C7—N3—C53.8 (3)
N2—C8—C9—C10105.2 (2)N4—C7—N3—C5174.62 (18)
N2—C8—C9—S173.8 (2)N1—C5—N3—C728.0 (3)
C8—C9—C10—N6179.47 (18)N3—C7—N4—N54.3 (3)
S1—C9—C10—N60.3 (2)N2—C7—N4—N5177.22 (16)
N2—C6—N1—C555.1 (2)C7—N4—N5—O4179.85 (17)
N2—C6—N1—C169.28 (19)C7—N4—N5—O32.1 (3)
N3—C5—N1—C656.0 (2)S1—C11—N6—C100.8 (2)
N3—C5—N1—C169.3 (2)Cl1—C11—N6—C10179.62 (16)
C2—C1—N1—C665.1 (2)C9—C10—N6—C110.7 (3)
C2—C1—N1—C5172.82 (16)O1—C2—O2—C30.5 (4)
N3—C7—N2—C8173.29 (16)C1—C2—O2—C3178.7 (2)
N4—C7—N2—C85.4 (2)C4—C3—O2—C2179.5 (2)
N3—C7—N2—C65.2 (3)N6—C11—S1—C90.57 (19)
N4—C7—N2—C6173.49 (16)Cl1—C11—S1—C9179.41 (14)
C9—C8—N2—C782.8 (2)C10—C9—S1—C110.11 (16)
C9—C8—N2—C685.8 (2)C8—C9—S1—C11179.09 (17)
N1—C6—N2—C725.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N6i0.79 (2)2.55 (2)3.133 (2)132 (2)
N3—H3A···O30.79 (2)1.98 (2)2.570 (2)131 (2)
C3—H3C···O3ii0.972.573.191 (3)122
C5—H5A···N1iii0.972.613.449 (3)144
C6—H6B···O4iv0.972.563.478 (3)159
C10—H10···O1v0.932.453.278 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H15ClN6O4S
Mr362.81
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5066 (6), 9.1114 (7), 10.9071 (8)
α, β, γ (°)100.488 (2), 98.416 (3), 101.281 (3)
V3)800.55 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.857, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
5350, 3259, 2670
Rint0.075
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.05
No. of reflections3259
No. of parameters212
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N6i0.79 (2)2.55 (2)3.133 (2)132 (2)
N3—H3A···O30.79 (2)1.98 (2)2.570 (2)131 (2)
C3—H3C···O3ii0.972.573.191 (3)121.9
C5—H5A···N1iii0.972.613.449 (3)144.2
C6—H6B···O4iv0.972.563.478 (3)159.0
C10—H10···O1v0.932.453.278 (3)149.0
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Innovation Program of Shanghai Municipal Education Commission (Ssd08013 and 09YZ157) and the Leading Academic Discipline Project of Shanghai Normal University (DZL808). We are also grateful for the support from the Key Scientific and Technological Project of Shanghai Science and Technology Commission (0939191200).

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKagabu, S. (1996). J. Pestic. Sci. 21, 237–239.  CrossRef Google Scholar
First citationKagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409–413.  Web of Science CrossRef CAS Google Scholar
First citationMaienfisch, P., Angst, M. & Brandl, F. (2001). Pest. Management Sci. 57, 906–913.  Web of Science CrossRef CAS Google Scholar
First citationRiley, K. E. & Merz, K. M. Jr (2007). J. Phys. Chem. A, 111, 1688–1694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 143–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016–6024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomizawa, M. & Yamamoto, I. (1993). J. Pestic. Sci. 18, 91–98.  CrossRef Google Scholar
First citationZhang, N. J., Tomizawa, M. & Casida, J. E. (2004). J. Org. Chem. 69, 876–881.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds