organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8a-Methyl-5,6,8,8a,9,10-hexa­hydro-10,12a-ep­oxy­isoindolo[1,2-a]isoquinolinium iodide

aDepartment of Chemistry, University of Douala, Faculty of Sciences, PO Box 24157, Douala, Republic of Cameroon, bDepartment of Organic Chemistry, Russian People's Friendship University, 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation, cDepartment of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya St, Lviv 79005, Ukraine, and dX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 13 May 2010; accepted 14 May 2010; online 19 May 2010)

The title compound, C17H18NO+·I, is an adduct resulting from an intra­molecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation comprises a fused penta­cyclic system containing three five-membered rings (dihydro­pyrrole, dihydro­furan and tetra­hydro­furan) and two six-membered rings (tetra­hydro­pyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered tetra­hydro­pyridine ring adopts the unsymmetrical half-boat conformation. In the crystal, cations and iodide anions are bound by weak inter­molecular hydrogen-bonding inter­actions into a three-dimensional framework.

Related literature

For general background to the method proposed by our group for obtaining hydrogenated isoindolo[2,1-a]isoquinolines using commercially available furfurals and phenethyl­amines as starting materials, see: Zubkov et al. (2004[Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). Russ. Chem. Bull. Int. Ed. 53, 860-872.]); Boltukhina et al. (2006[Boltukhina, E. V., Zubkov, F. I. & Varlamov, A. V. (2006). Chem. Heterocycl. Comp. Int. Ed. 470, 1123-1157.]). For related structures, see: Tagmazyan et al. (1976[Tagmazyan, K. Ts., Torosyan, G. O., Mkrtchan, R. S. & Babayan, A. T. (1976). Armenian Chem. J. 29, 352-355.], 1977[Tagmazyan, K. Ts., Torosyan, G. O., Mkrtchan, R. S. & Babayan, A. T. (1977). Chem. Abstr. 86, 42746.]); Ahmad et al. (1987[Ahmad, V. U., Atta-ur-Rahman, Rasheed, T. & Habib-ur-Rehman (1987). Heterocycles, 26, 1251-1255.]); Rasheed et al. (1991[Rasheed, T., Khan, M. N., Zhadi, S. S. & Durrani, S. (1991). J. Nat. Prod. 54, 582-584.]); Zubkov et al. (2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18NO+·I

  • Mr = 379.22

  • Monoclinic, C 2/c

  • a = 15.5047 (6) Å

  • b = 8.0757 (3) Å

  • c = 25.1874 (12) Å

  • β = 104.204 (1)°

  • V = 3057.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.573, Tmax = 0.745

  • 18881 measured reflections

  • 4450 independent reflections

  • 4123 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.054

  • S = 1.00

  • 4450 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯I1i 0.95 3.23 3.999 (2) 139
C6—H6A⋯I1ii 0.99 3.10 4.028 (2) 157
C8—H8A⋯I1iii 0.99 3.04 3.942 (2) 153
C8—H8B⋯I1ii 0.99 3.17 4.072 (2) 153
C9—H9B⋯I1 0.99 3.10 3.862 (2) 135
C12—H12⋯I1iv 0.95 3.20 3.862 (2) 128
C13—H13B⋯I1iv 0.98 3.21 3.970 (2) 136
Symmetry codes: (i) [-x+1, y+1, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently our group has proposed an efficient approach (Zubkov et al., 2009) to potentially bioactive substances - hydrogenated isoindolo[2,1-a]isoquinolines using commercially available furfurals and phenethylamines as starting materials (Boltukhina et al., 2006). The intramolecular furan Diels–Alder reaction (IMDAF) (Zubkov et al., 2004) between unsaturated acid derivatives and the furan core of the amines was the key step of the transformations mentioned above.

Trying to apply our chemistry to target natural products, we were attracted to isoindoloisoquinoline alkaloids. Today, there are three known natural alkaloids containing the isoindolo[2,1-a]isoquinoline skeleton - Nuevamine, Jamtine (and its N-oxide) and Hirsutine (Rasheed et al., 1991).

This work realizes aforementioned approach and describes the structure of an alkaloid-like IMDAF product I containing the nodal iminium nitrogen atom (Tagmazyan et al., 1976; Ahmad et al., 1987).

Compound I, [C17H18NO+][I-], is the adduct of intramolecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation of I comprises a fused pentacyclic system containing three five-membered rings (dihydropyrrole, dihydrofuran and tetrahydrofuran) and two six-membered rings (tetrahydropyridine and benzene) (Fig. 1). The five-membered rings have usual envelope conformations, and the central six-membered tetrahydropyridine ring adopts the unsymmetrical half-boat conformation. The nitrogen N7 atom has a trigonal-planar geometry (sum of the bond angles is 359.5°). The dihedral angle between the planes of the dihydropyrrole (N7/C8/C12A/C12B) and benzene rings is 20.1 (1)°.

The cation of I possesses three asymmetric centers at the C8A, C10 and C12A carbon atoms and can have potentially eight diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-8 AR*,10R*,12 AR*.

The crystal packing of the cations of I is stacking along the b axis (Fig. 2). In the crystal, the cations and iodide anions are bound by the weak intermolecular hydrogen bonding interactions into 3-dimensional framework (Fig. 2, Table 1).

Related literature top

For general background to the method proposed by our group for obtaining hydrogenated isoindolo[2,1-a]isoquinolines using commercially available furfurals and phenethylamines as starting materials, see: Zubkov et al. (2004); Boltukhina et al. (2006). For related structures, see: Tagmazyan et al. (1976, 1977); Ahmad et al. (1987); Rasheed et al. (1991); Zubkov et al. (2009).

Experimental top

Potassium iodide (3.1 g, 11 mmol) and methallylchloride (0.8 ml, 8.25 mmol) were added to a solution of 1-furyl-3,4-dihydroisoquinoline (1.08 g, 5.5 mmol) in dioxane (50 ml). The reaction mixture was refluxed for 5 h (monitoring by TLC until disappearance of the starting compound sport). At the end of the reaction, solvent was removed under reduced pressure and the residue was crystallized from ethyl acetate–ethanol mixture to give 0.35 g of isoquinolinium iodide as brown prisms (Fig. 3). Yield is 17%. The single crystals of product I were obtained by slow crystallization from acetonitrile (yield 73%). M.p. = 451–453 K. Rf = 0.3 (ethyl acetate–ethanol, 4:1). IR (KBr), ν/cm-1: 1632, 2361, 2947, 3399. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.33 (s, 3H, Me), 1.38 (d. 1H, H9 (endo), J9A,9B = 11.8), 2.50 (dd, 1H, H9 (exo), J9(exo),10 = 4.4, J9A,9B = 11.8), 3.33 (ddd, 1H, H5B, J5B,6A = 2.5, J5B,6B = 5.6, J5A,5B = 16.8), 4.01 (m, 1H, H5A), 4.15 (m, 1H, H6A), 4.32 (d, 1H, H8B, J8A,8B = 14.0), 4.84 (d, 1H, H8A, J8A,8B = 14.0), 5.04 (ddd, 1H, H6B, J6B,5A = 3.1, J6B,5B = 7.5, J6A,6B = 15.0), 5.36 (dd, 2H, H10, J10,11 = 1.2, J9(exo),10 = 4.4), 6.79 (d, 1H, H11, J10,11 = 1.2, J11,12 = 5.6), 6.83 (d, 1H, H12, J11,12 = 5.6), 7.50 (br, 1H, H2, J1,2 = J2,3 = 7.5), 7.54 (d, 1H, H4, J3,4 = 7.5), 7.82 (t, 1H, H3, J2,3 = J3,4 = 7.5), 7.85 (d, 1H, H1, J1,2 = 7.5). Anal. Calcd for C17H18INO: C, 53.84; H, 4.78; N, 3.69. Found: C, 53.67; H, 4.65; N, 3.62.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters - Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(C) for the other groups.

Structure description top

Recently our group has proposed an efficient approach (Zubkov et al., 2009) to potentially bioactive substances - hydrogenated isoindolo[2,1-a]isoquinolines using commercially available furfurals and phenethylamines as starting materials (Boltukhina et al., 2006). The intramolecular furan Diels–Alder reaction (IMDAF) (Zubkov et al., 2004) between unsaturated acid derivatives and the furan core of the amines was the key step of the transformations mentioned above.

Trying to apply our chemistry to target natural products, we were attracted to isoindoloisoquinoline alkaloids. Today, there are three known natural alkaloids containing the isoindolo[2,1-a]isoquinoline skeleton - Nuevamine, Jamtine (and its N-oxide) and Hirsutine (Rasheed et al., 1991).

This work realizes aforementioned approach and describes the structure of an alkaloid-like IMDAF product I containing the nodal iminium nitrogen atom (Tagmazyan et al., 1976; Ahmad et al., 1987).

Compound I, [C17H18NO+][I-], is the adduct of intramolecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation of I comprises a fused pentacyclic system containing three five-membered rings (dihydropyrrole, dihydrofuran and tetrahydrofuran) and two six-membered rings (tetrahydropyridine and benzene) (Fig. 1). The five-membered rings have usual envelope conformations, and the central six-membered tetrahydropyridine ring adopts the unsymmetrical half-boat conformation. The nitrogen N7 atom has a trigonal-planar geometry (sum of the bond angles is 359.5°). The dihedral angle between the planes of the dihydropyrrole (N7/C8/C12A/C12B) and benzene rings is 20.1 (1)°.

The cation of I possesses three asymmetric centers at the C8A, C10 and C12A carbon atoms and can have potentially eight diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-8 AR*,10R*,12 AR*.

The crystal packing of the cations of I is stacking along the b axis (Fig. 2). In the crystal, the cations and iodide anions are bound by the weak intermolecular hydrogen bonding interactions into 3-dimensional framework (Fig. 2, Table 1).

For general background to the method proposed by our group for obtaining hydrogenated isoindolo[2,1-a]isoquinolines using commercially available furfurals and phenethylamines as starting materials, see: Zubkov et al. (2004); Boltukhina et al. (2006). For related structures, see: Tagmazyan et al. (1976, 1977); Ahmad et al. (1987); Rasheed et al. (1991); Zubkov et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of I along the b axis. Dashed lines indicate the weak intermolecular C—H···I hydrogen bonding interactions.
[Figure 3] Fig. 3. Tandem alkylation/[4+2] cycloaddition reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline.
8a-Methyl-5,6,8,8a,9,10-hexahydro-10,12a- epoxyisoindolo[1,2-a]isoquinolinium iodide top
Crystal data top
C17H18NO+·IF(000) = 1504
Mr = 379.22Dx = 1.648 Mg m3
Monoclinic, C2/cMelting point: 452 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.5047 (6) ÅCell parameters from 7921 reflections
b = 8.0757 (3) Åθ = 2.7–32.5°
c = 25.1874 (12) ŵ = 2.09 mm1
β = 104.204 (1)°T = 100 K
V = 3057.3 (2) Å3Prism, orange
Z = 80.30 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4450 independent reflections
Radiation source: fine-focus sealed tube4123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2121
Tmin = 0.573, Tmax = 0.745k = 1111
18881 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0195P)2 + 6.6P]
where P = (Fo2 + 2Fc2)/3
4450 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C17H18NO+·IV = 3057.3 (2) Å3
Mr = 379.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.5047 (6) ŵ = 2.09 mm1
b = 8.0757 (3) ÅT = 100 K
c = 25.1874 (12) Å0.30 × 0.20 × 0.15 mm
β = 104.204 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4450 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4123 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.745Rint = 0.031
18881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
4450 reflectionsΔρmin = 0.94 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.325921 (8)0.080703 (16)0.405918 (5)0.02178 (4)
O10.45929 (8)0.66340 (17)0.33020 (5)0.0191 (3)
C10.61820 (12)0.8559 (2)0.27922 (7)0.0184 (3)
H10.58710.75670.26630.022*
C1A0.63271 (12)0.9011 (2)0.33406 (7)0.0165 (3)
C20.64969 (13)0.9574 (2)0.24349 (8)0.0206 (4)
H20.63920.92920.20580.025*
C30.69669 (13)1.1005 (2)0.26325 (8)0.0226 (4)
H30.71781.17000.23870.027*
C40.71330 (13)1.1433 (2)0.31838 (8)0.0206 (4)
H40.74721.23950.33140.025*
C4A0.68027 (12)1.0454 (2)0.35434 (8)0.0183 (3)
C50.69532 (13)1.0806 (2)0.41463 (8)0.0214 (4)
H5A0.71061.19890.42170.026*
H5B0.74581.01340.43530.026*
C60.61228 (13)1.0400 (2)0.43404 (8)0.0205 (4)
H6A0.62551.04750.47450.025*
H6B0.56461.12040.41840.025*
N70.58279 (10)0.8714 (2)0.41628 (6)0.0174 (3)
C80.52789 (12)0.7704 (2)0.44453 (7)0.0192 (3)
H8A0.46590.81140.43650.023*
H8B0.55300.77050.48470.023*
C8A0.53246 (12)0.5980 (2)0.42045 (7)0.0175 (3)
C90.44431 (13)0.4996 (3)0.40199 (8)0.0228 (4)
H9A0.39450.55750.41230.027*
H9B0.45010.38660.41770.027*
C100.43173 (13)0.4959 (3)0.33880 (8)0.0223 (4)
H100.37040.46610.31740.027*
C110.50568 (14)0.3957 (2)0.32470 (8)0.0221 (4)
H110.50080.28760.30940.027*
C120.57905 (12)0.4890 (2)0.33795 (7)0.0187 (3)
H120.63650.46470.33290.022*
C12A0.54908 (11)0.6422 (2)0.36281 (7)0.0158 (3)
C12B0.59353 (12)0.8077 (2)0.37104 (7)0.0162 (3)
C130.60762 (13)0.4998 (3)0.45782 (8)0.0225 (4)
H13A0.59330.48030.49310.034*
H13B0.66320.56280.46370.034*
H13C0.61460.39340.44060.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02024 (6)0.02454 (7)0.01967 (6)0.00275 (5)0.00320 (4)0.00284 (5)
O10.0163 (6)0.0212 (6)0.0176 (6)0.0003 (5)0.0001 (5)0.0018 (5)
C10.0191 (8)0.0182 (8)0.0174 (8)0.0002 (7)0.0039 (6)0.0004 (7)
C1A0.0178 (8)0.0158 (8)0.0161 (8)0.0015 (6)0.0044 (6)0.0012 (6)
C20.0208 (8)0.0240 (9)0.0180 (8)0.0010 (7)0.0067 (7)0.0004 (7)
C30.0219 (9)0.0225 (9)0.0249 (9)0.0008 (7)0.0087 (7)0.0048 (7)
C40.0193 (8)0.0174 (8)0.0256 (9)0.0007 (7)0.0064 (7)0.0006 (7)
C4A0.0163 (8)0.0177 (8)0.0199 (8)0.0007 (6)0.0028 (6)0.0009 (6)
C50.0230 (9)0.0215 (9)0.0193 (8)0.0031 (7)0.0043 (7)0.0033 (7)
C60.0268 (9)0.0176 (8)0.0183 (8)0.0021 (7)0.0079 (7)0.0035 (7)
N70.0200 (7)0.0164 (7)0.0162 (7)0.0001 (6)0.0051 (6)0.0003 (6)
C80.0213 (8)0.0213 (9)0.0161 (8)0.0003 (7)0.0066 (6)0.0006 (7)
C8A0.0178 (8)0.0191 (8)0.0157 (8)0.0016 (6)0.0045 (6)0.0011 (6)
C90.0215 (9)0.0265 (10)0.0209 (9)0.0070 (7)0.0058 (7)0.0003 (8)
C100.0199 (8)0.0245 (10)0.0217 (9)0.0063 (7)0.0032 (7)0.0005 (7)
C110.0273 (9)0.0190 (9)0.0191 (8)0.0031 (7)0.0038 (7)0.0008 (7)
C120.0206 (8)0.0184 (8)0.0172 (8)0.0014 (7)0.0046 (7)0.0002 (7)
C12A0.0152 (7)0.0171 (8)0.0151 (7)0.0011 (6)0.0034 (6)0.0010 (6)
C12B0.0167 (8)0.0164 (8)0.0147 (7)0.0013 (6)0.0021 (6)0.0006 (6)
C130.0246 (9)0.0242 (10)0.0178 (8)0.0029 (7)0.0036 (7)0.0047 (7)
Geometric parameters (Å, º) top
O1—C12A1.443 (2)N7—C81.481 (2)
O1—C101.451 (2)C8—C8A1.527 (3)
C1—C21.391 (3)C8—H8A0.9900
C1—C1A1.393 (2)C8—H8B0.9900
C1—H10.9500C8A—C131.528 (3)
C1A—C4A1.406 (3)C8A—C91.550 (3)
C1A—C12B1.443 (2)C8A—C12A1.576 (2)
C2—C31.391 (3)C9—C101.555 (3)
C2—H20.9500C9—H9A0.9900
C3—C41.392 (3)C9—H9B0.9900
C3—H30.9500C10—C111.515 (3)
C4—C4A1.392 (3)C10—H101.0000
C4—H40.9500C11—C121.337 (3)
C4A—C51.506 (3)C11—H110.9500
C5—C61.521 (3)C12—C12A1.510 (3)
C5—H5A0.9900C12—H120.9500
C5—H5B0.9900C12A—C12B1.495 (3)
C6—N71.470 (2)C13—H13A0.9800
C6—H6A0.9900C13—H13B0.9800
C6—H6B0.9900C13—H13C0.9800
N7—C12B1.298 (2)
C12A—O1—C1094.73 (13)C8—C8A—C13109.33 (15)
C2—C1—C1A119.36 (18)C8—C8A—C9117.58 (16)
C2—C1—H1120.3C13—C8A—C9113.69 (16)
C1A—C1—H1120.3C8—C8A—C12A101.17 (14)
C1—C1A—C4A121.36 (17)C13—C8A—C12A114.35 (15)
C1—C1A—C12B120.78 (17)C9—C8A—C12A99.85 (14)
C4A—C1A—C12B117.70 (16)C8A—C9—C10101.35 (14)
C1—C2—C3119.60 (18)C8A—C9—H9A111.5
C1—C2—H2120.2C10—C9—H9A111.5
C3—C2—H2120.2C8A—C9—H9B111.5
C2—C3—C4121.04 (18)C10—C9—H9B111.5
C2—C3—H3119.5H9A—C9—H9B109.3
C4—C3—H3119.5O1—C10—C11101.25 (15)
C4A—C4—C3120.02 (18)O1—C10—C999.63 (15)
C4A—C4—H4120.0C11—C10—C9109.76 (16)
C3—C4—H4120.0O1—C10—H10114.8
C4—C4A—C1A118.58 (18)C11—C10—H10114.8
C4—C4A—C5123.94 (17)C9—C10—H10114.8
C1A—C4A—C5117.44 (17)C12—C11—C10106.70 (17)
C4A—C5—C6110.45 (16)C12—C11—H11126.7
C4A—C5—H5A109.6C10—C11—H11126.7
C6—C5—H5A109.6C11—C12—C12A103.62 (16)
C4A—C5—H5B109.6C11—C12—H12128.2
C6—C5—H5B109.6C12A—C12—H12128.2
H5A—C5—H5B108.1O1—C12A—C12B108.67 (14)
N7—C6—C5109.06 (15)O1—C12A—C12102.32 (14)
N7—C6—H6A109.9C12B—C12A—C12127.70 (16)
C5—C6—H6A109.9O1—C12A—C8A101.44 (13)
N7—C6—H6B109.9C12B—C12A—C8A104.40 (14)
C5—C6—H6B109.9C12—C12A—C8A109.46 (15)
H6A—C6—H6B108.3N7—C12B—C1A121.63 (17)
C12B—N7—C6122.46 (16)N7—C12B—C12A108.79 (15)
C12B—N7—C8114.58 (16)C1A—C12B—C12A129.10 (16)
C6—N7—C8122.45 (15)C8A—C13—H13A109.5
N7—C8—C8A102.91 (14)C8A—C13—H13B109.5
N7—C8—H8A111.2H13A—C13—H13B109.5
C8A—C8—H8A111.2C8A—C13—H13C109.5
N7—C8—H8B111.2H13A—C13—H13C109.5
C8A—C8—H8B111.2H13B—C13—H13C109.5
H8A—C8—H8B109.1
C2—C1—C1A—C4A1.4 (3)C10—C11—C12—C12A2.8 (2)
C2—C1—C1A—C12B173.85 (17)C10—O1—C12A—C12B169.84 (14)
C1A—C1—C2—C31.3 (3)C10—O1—C12A—C1252.90 (15)
C1—C2—C3—C40.4 (3)C10—O1—C12A—C8A60.19 (15)
C2—C3—C4—C4A2.1 (3)C11—C12—C12A—O135.95 (18)
C3—C4—C4A—C1A2.0 (3)C11—C12—C12A—C12B161.61 (17)
C3—C4—C4A—C5179.45 (18)C11—C12—C12A—C8A71.05 (18)
C1—C1A—C4A—C40.2 (3)C8—C8A—C12A—O186.84 (15)
C12B—C1A—C4A—C4175.63 (16)C13—C8A—C12A—O1155.78 (15)
C1—C1A—C4A—C5177.87 (17)C9—C8A—C12A—O134.03 (17)
C12B—C1A—C4A—C56.7 (2)C8—C8A—C12A—C12B26.06 (17)
C4—C4A—C5—C6142.02 (19)C13—C8A—C12A—C12B91.31 (18)
C1A—C4A—C5—C640.5 (2)C9—C8A—C12A—C12B146.94 (15)
C4A—C5—C6—N751.2 (2)C8—C8A—C12A—C12165.56 (14)
C5—C6—N7—C12B32.4 (2)C13—C8A—C12A—C1248.2 (2)
C5—C6—N7—C8156.17 (16)C9—C8A—C12A—C1273.57 (17)
C12B—N7—C8—C8A20.2 (2)C6—N7—C12B—C1A2.2 (3)
C6—N7—C8—C8A167.72 (16)C8—N7—C12B—C1A169.88 (16)
N7—C8—C8A—C1394.15 (16)C6—N7—C12B—C12A174.87 (16)
N7—C8—C8A—C9134.27 (16)C8—N7—C12B—C12A2.8 (2)
N7—C8—C8A—C12A26.83 (17)C1—C1A—C12B—N7158.84 (18)
C8—C8A—C9—C10112.08 (18)C4A—C1A—C12B—N716.6 (3)
C13—C8A—C9—C10118.35 (17)C1—C1A—C12B—C12A12.3 (3)
C12A—C8A—C9—C103.87 (18)C4A—C1A—C12B—C12A172.30 (17)
C12A—O1—C10—C1150.15 (15)O1—C12A—C12B—N792.29 (17)
C12A—O1—C10—C962.39 (15)C12—C12A—C12B—N7144.62 (18)
C8A—C9—C10—O140.39 (17)C8A—C12A—C12B—N715.34 (19)
C8A—C9—C10—C1165.35 (19)O1—C12A—C12B—C1A79.7 (2)
O1—C10—C11—C1230.66 (19)C12—C12A—C12B—C1A43.4 (3)
C9—C10—C11—C1274.0 (2)C8A—C12A—C12B—C1A172.67 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I1i0.953.233.999 (2)139
C6—H6A···I1ii0.993.104.028 (2)157
C8—H8A···I1iii0.993.043.942 (2)153
C8—H8B···I1ii0.993.174.072 (2)153
C9—H9B···I10.993.103.862 (2)135
C12—H12···I1iv0.953.203.862 (2)128
C13—H13B···I1iv0.983.213.970 (2)136
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H18NO+·I
Mr379.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.5047 (6), 8.0757 (3), 25.1874 (12)
β (°) 104.204 (1)
V3)3057.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.573, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
18881, 4450, 4123
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.00
No. of reflections4450
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.94

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I1i0.953.233.999 (2)139
C6—H6A···I1ii0.993.104.028 (2)157
C8—H8A···I1iii0.993.043.942 (2)153
C8—H8B···I1ii0.993.174.072 (2)153
C9—H9B···I10.993.103.862 (2)135
C12—H12···I1iv0.953.203.862 (2)128
C13—H13B···I1iv0.983.213.970 (2)136
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z.
 

References

First citationAhmad, V. U., Atta-ur-Rahman, Rasheed, T. & Habib-ur-Rehman (1987). Heterocycles, 26, 1251–1255.  Google Scholar
First citationBoltukhina, E. V., Zubkov, F. I. & Varlamov, A. V. (2006). Chem. Heterocycl. Comp. Int. Ed. 470, 1123–1157.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRasheed, T., Khan, M. N., Zhadi, S. S. & Durrani, S. (1991). J. Nat. Prod. 54, 582–584.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTagmazyan, K. Ts., Torosyan, G. O., Mkrtchan, R. S. & Babayan, A. T. (1976). Armenian Chem. J. 29, 352–355.  CAS Google Scholar
First citationTagmazyan, K. Ts., Torosyan, G. O., Mkrtchan, R. S. & Babayan, A. T. (1977). Chem. Abstr. 86, 42746.  Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Turchin, K. F., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). Russ. Chem. Bull. Int. Ed. 53, 860–872.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds