organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(1,3-Benzodioxol-5-yl)-3-(2-bromo­phen­yl)prop-2-en-1-one

aKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bBioinformatics Infrastructure Facility, School of Life Science, University of Hyderabad, Hyderabad 500 046, India, cDepartment of Physics, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 27 March 2010; accepted 27 April 2010; online 8 May 2010)

The mol­ecule of the title compound, C16H11BrO3, is essentially planar with a maximum deviation of 0.178 (4) Å and the configuration of the keto group with respect to the olefinic double bond is typically s-cis. In the crystal structure, inter­molecular Br⋯O inter­actions [3.187 (3)Å] give rise to chains parallel to the b axis. Adjacent chains are further linked along the a axis by C—H⋯π inter­actions. The crystal studied was a racemic twin with a 0.595 (13):0.405 (13) ratio.

Related literature

For chalcones, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]); Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J.-Y., Yang, M. S., Hong, S.-G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]). For halogen-bonding inter­actions, see: Thallapally et al. (2002[Thallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgognec, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052-1053.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Riley et al. (2009[Riley, K. E., Murray, J. S., Politzer, P., Concha, M. C. & Hobza, P. (2009). J. Chem. Theory Comput. 5, 155-163.]). For related structures, see: Harrison et al. (2006[Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293-o5295.]); Rathore et al. (2006[Rathore, R. S., Subramanya, K., Narasimhamurthy, T., Vijay, T., Anilkumar, H. G., Yathirajan, H. S. & Basavaraju, Y. B. (2006). Anal. Sci. X-ray Online, 22, x111-x112.]); Li et al. (2008[Li, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o383.]). For racemic twinning, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Gömez et al. (2010[Gómez, S. L., Palma, A., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o233-o240.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrO3

  • Mr = 331.16

  • Orthorhombic, P 21 21 21

  • a = 5.0434 (2) Å

  • b = 12.9354 (4) Å

  • c = 20.8916 (7) Å

  • V = 1362.93 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 296 K

  • 0.53 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.576, Tmax = 0.653

  • 17031 measured reflections

  • 2674 independent reflections

  • 2437 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.06

  • 2674 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1086 Bijvoet pairs

  • Flack parameter: 0.595 (13)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg3i 0.97 2.76 3.563 (4) 141
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones possess many interesting biological and pharmacological properties. They are highly reactive substances of varied nature. Recently, it is shown that few of the derivatives are able to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones have been also implicated in organic nonlinear optical materials for their SHG conversion efficiency (Sarojini et al., 2006). The radical quenching property of the phenolic groups present in many chalcones or chalcone-rich plant extracts has led to their use as drugs or food preservatives (Di Carlo et al., 1999). We earlier reported structures of chalcone derivatives (Harrison et al., 2006; Rathore et al., 2006; Jasinski et al., 2010; Li et al., 2008). In continuation of the study, we have synthesized a new chalcone analog, C16H11BrO3, (I), and discuss its crytal structure herein.

The crystal of (I) studied was racemically twinned in a 0.595 (13):0.405 (13) ratio. Similar racemic twinning in Br-containing compounds was observed by Gömez et al. (2010). The skeleton of (I) is essentially planar possessing two intramolecular short contacts. The bifurcated C1—H7···(Br1, O1) promote planarity of the molecular skeleton (Table 1). The configuration of the keto group with respect to the olefinic double bond is typically s-cis, with the C7—C8—C9—O1 torsion angle of -1.6 (7)° (Rathore et al., 2006).

Crystal packing is characterized by halogen···oxygen interactions between molecules related by 2-fold screw axis, with the Br1 ···O2i distance of 3.187 (3)Å [symmetry code (i): 0.5+x, 0.5-y, -z] and the C1—Br1···O2 angle of 170.6 (1)°. The Br···O interaction leads to a one-dimensional chain along b axis. Crystal packing is shown in Fig 2. Br···O interactions have previously been employed for crystal engineering purposes (Thallapally et al., 2002). Halogen bonding between halogen atoms (Lewis acid) and neutral or anionic Lewis base, has been subject of great interest in recent years, primarily due to their unique noncovalent bonding characteristics (Metrangolo et al., 2005; Riley et al., 2009). The crystal structure additionally contains a C—H···π short contact, giving rise to an alternate linear pattern along the a axis (Table 1).

Related literature top

For chalcones, see: Di Carlo et al. (1999); Sarojini et al. (2006); Yarishkin et al. (2008). For halogen-bonding interactions, see: Thallapally et al. (2002); Metrangolo et al. (2005); Riley et al. (2009). For related structures, see: Harrison et al. (2006); Rathore et al. (2006); Li et al. (2008); Jasinski et al. (2010). For racemic twinning, see: Flack (1983); Flack & Bernardinelli (2000); Gömez et al. (2010).

Experimental top

The title compound was prepared as follows: to a mixture of 1-(1,3-benzodioxol-5-yl)ethanone (1.64 g, 0.01 mol) and 2-bromobenzaldehyde (1.85 g, 0.01 mol) in 30 ml ethanol, 10 ml of 10 % sodium hydroxide solution was added and stirred at 5-10° C for 3 hours. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Final yield 79%; m.p. 390-392° K. Crystals suitable for X-ray analysis were grown from (1:1 v/v) mixture of toluene and acetone by slow evaporation method. Anal.: calc. for C16H11BrO3 : C 58.03 , H 3.35; found: C 57.93, H 3.31.

Refinement top

All H atoms were stereochemically fixed and refined using a riding option with C(Sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, and Uiso(H) = 1.2 Ueq(C). The residual electron density observed in the vicinity of Br is due to the result of rotation of the bromophenyl moiety about the C6—C7 bond. The disorder could not be reliably refined presumably due to very low occupancy of other conformers. The crystal studied was treated as an inversion twin leading to twin fractions of 0.595 (13):0.405 (13).

Structure description top

Chalcones possess many interesting biological and pharmacological properties. They are highly reactive substances of varied nature. Recently, it is shown that few of the derivatives are able to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones have been also implicated in organic nonlinear optical materials for their SHG conversion efficiency (Sarojini et al., 2006). The radical quenching property of the phenolic groups present in many chalcones or chalcone-rich plant extracts has led to their use as drugs or food preservatives (Di Carlo et al., 1999). We earlier reported structures of chalcone derivatives (Harrison et al., 2006; Rathore et al., 2006; Jasinski et al., 2010; Li et al., 2008). In continuation of the study, we have synthesized a new chalcone analog, C16H11BrO3, (I), and discuss its crytal structure herein.

The crystal of (I) studied was racemically twinned in a 0.595 (13):0.405 (13) ratio. Similar racemic twinning in Br-containing compounds was observed by Gömez et al. (2010). The skeleton of (I) is essentially planar possessing two intramolecular short contacts. The bifurcated C1—H7···(Br1, O1) promote planarity of the molecular skeleton (Table 1). The configuration of the keto group with respect to the olefinic double bond is typically s-cis, with the C7—C8—C9—O1 torsion angle of -1.6 (7)° (Rathore et al., 2006).

Crystal packing is characterized by halogen···oxygen interactions between molecules related by 2-fold screw axis, with the Br1 ···O2i distance of 3.187 (3)Å [symmetry code (i): 0.5+x, 0.5-y, -z] and the C1—Br1···O2 angle of 170.6 (1)°. The Br···O interaction leads to a one-dimensional chain along b axis. Crystal packing is shown in Fig 2. Br···O interactions have previously been employed for crystal engineering purposes (Thallapally et al., 2002). Halogen bonding between halogen atoms (Lewis acid) and neutral or anionic Lewis base, has been subject of great interest in recent years, primarily due to their unique noncovalent bonding characteristics (Metrangolo et al., 2005; Riley et al., 2009). The crystal structure additionally contains a C—H···π short contact, giving rise to an alternate linear pattern along the a axis (Table 1).

For chalcones, see: Di Carlo et al. (1999); Sarojini et al. (2006); Yarishkin et al. (2008). For halogen-bonding interactions, see: Thallapally et al. (2002); Metrangolo et al. (2005); Riley et al. (2009). For related structures, see: Harrison et al. (2006); Rathore et al. (2006); Li et al. (2008); Jasinski et al. (2010). For racemic twinning, see: Flack (1983); Flack & Bernardinelli (2000); Gömez et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level. Dotted lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing of the title compound showing the halogen···oxygen interactions (dashed lines) forming one-dimensional chains along the b axis.
(2E)-1-(1,3-Benzodioxol-5-yl)-3-(2-bromophenyl)prop-2-en-1-one top
Crystal data top
C16H11BrO3Dx = 1.614 Mg m3
Mr = 331.16Melting point = 390–392 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7488 reflections
a = 5.0434 (2) Åθ = 2.5–25.7°
b = 12.9354 (4) ŵ = 3.02 mm1
c = 20.8916 (7) ÅT = 296 K
V = 1362.93 (8) Å3Block, colorless
Z = 40.53 × 0.19 × 0.16 mm
F(000) = 664
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 66
Tmin = 0.576, Tmax = 0.653k = 1315
17031 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.7667P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2674 reflectionsΔρmax = 0.64 e Å3
182 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 1086 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.595 (13)
Crystal data top
C16H11BrO3V = 1362.93 (8) Å3
Mr = 331.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0434 (2) ŵ = 3.02 mm1
b = 12.9354 (4) ÅT = 296 K
c = 20.8916 (7) Å0.53 × 0.19 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2437 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.653Rint = 0.023
17031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.64 e Å3
S = 1.06Δρmin = 0.52 e Å3
2674 reflectionsAbsolute structure: Flack (1983), 1086 Bijvoet pairs
182 parametersAbsolute structure parameter: 0.595 (13)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74414 (9)0.52368 (3)0.425085 (18)0.07369 (16)
O10.0651 (6)0.5167 (2)0.25271 (15)0.0779 (9)
O20.6166 (5)0.26394 (18)0.06042 (12)0.0586 (6)
O30.6165 (5)0.44083 (18)0.07678 (11)0.0554 (5)
C10.7744 (7)0.3802 (2)0.40661 (13)0.0493 (7)
C20.9616 (7)0.3239 (3)0.44092 (16)0.0610 (9)
H21.06600.35610.47170.073*
C30.9903 (8)0.2201 (3)0.42877 (19)0.0679 (11)
H31.11210.18130.45200.081*
C40.8394 (8)0.1738 (3)0.3824 (2)0.0661 (10)
H40.85950.10360.37410.079*
C50.6594 (7)0.2304 (3)0.34812 (17)0.0576 (9)
H50.56030.19750.31660.069*
C60.6196 (6)0.3355 (3)0.35892 (14)0.0461 (7)
C70.4282 (7)0.3947 (3)0.32148 (16)0.0533 (8)
H70.42760.46580.32800.064*
C80.2596 (7)0.3595 (2)0.28037 (14)0.0524 (7)
H80.25610.28850.27320.063*
C90.0717 (6)0.4246 (3)0.24404 (15)0.0461 (7)
C100.1054 (6)0.3754 (2)0.19621 (13)0.0413 (6)
C110.1108 (7)0.2691 (3)0.18603 (16)0.0486 (7)
H110.00150.22680.20970.058*
C120.2804 (7)0.2245 (2)0.14116 (15)0.0522 (8)
H120.28420.15340.13470.063*
C130.4395 (6)0.2889 (2)0.10737 (14)0.0436 (7)
C140.4375 (6)0.3942 (2)0.11713 (13)0.0398 (6)
C150.2737 (7)0.4401 (2)0.16089 (12)0.0430 (6)
H150.27390.51130.16700.052*
C160.7382 (8)0.3593 (2)0.04180 (13)0.0498 (7)
H16A0.71510.37040.00380.060*
H16B0.92670.35720.05100.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0729 (2)0.0700 (2)0.0781 (3)0.0085 (2)0.0259 (2)0.02381 (18)
O10.096 (2)0.0487 (15)0.0889 (19)0.0021 (15)0.0448 (17)0.0083 (14)
O20.0621 (14)0.0532 (13)0.0605 (13)0.0012 (11)0.0161 (12)0.0129 (11)
O30.0580 (13)0.0492 (12)0.0589 (13)0.0062 (11)0.0187 (11)0.0013 (11)
C10.0454 (16)0.0575 (17)0.0449 (14)0.0019 (17)0.0005 (14)0.0032 (12)
C20.0490 (18)0.088 (3)0.0466 (17)0.0060 (18)0.0039 (15)0.0082 (18)
C30.057 (2)0.083 (3)0.064 (2)0.0180 (19)0.0026 (19)0.027 (2)
C40.064 (2)0.054 (2)0.081 (2)0.0069 (16)0.0111 (19)0.017 (2)
C50.056 (2)0.056 (2)0.0608 (19)0.0020 (15)0.0003 (16)0.0071 (17)
C60.0418 (15)0.0552 (19)0.0415 (15)0.0003 (15)0.0029 (12)0.0046 (13)
C70.0564 (19)0.0461 (18)0.0575 (18)0.0046 (15)0.0111 (16)0.0041 (15)
C80.0509 (16)0.0510 (16)0.0553 (16)0.003 (2)0.0075 (18)0.0004 (13)
C90.0473 (17)0.0479 (19)0.0432 (15)0.0038 (15)0.0021 (13)0.0006 (13)
C100.0411 (15)0.0450 (16)0.0378 (13)0.0004 (13)0.0037 (12)0.0025 (13)
C110.0464 (17)0.0473 (18)0.0522 (17)0.0055 (15)0.0052 (15)0.0026 (15)
C120.058 (2)0.0368 (14)0.0621 (17)0.0016 (17)0.0073 (18)0.0041 (13)
C130.0435 (16)0.0458 (17)0.0415 (14)0.0033 (13)0.0011 (13)0.0046 (13)
C140.0371 (14)0.0441 (16)0.0383 (13)0.0011 (12)0.0031 (12)0.0026 (12)
C150.0463 (16)0.0397 (13)0.0429 (13)0.0003 (16)0.0004 (13)0.0022 (11)
C160.0492 (16)0.0540 (17)0.0463 (14)0.005 (2)0.0056 (16)0.0007 (12)
Geometric parameters (Å, º) top
Br1—C11.902 (3)C7—C81.292 (5)
O1—C91.206 (4)C7—H70.9300
O2—C131.365 (4)C8—C91.478 (5)
O2—C161.431 (4)C8—H80.9300
O3—C141.374 (4)C9—C101.484 (4)
O3—C161.423 (4)C10—C111.391 (4)
C1—C21.391 (5)C10—C151.402 (4)
C1—C61.392 (4)C11—C121.394 (4)
C2—C31.374 (6)C11—H110.9300
C2—H20.9300C12—C131.355 (4)
C3—C41.371 (6)C12—H120.9300
C3—H30.9300C13—C141.378 (4)
C4—C51.368 (5)C14—C151.368 (4)
C4—H40.9300C15—H150.9300
C5—C61.393 (5)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.459 (4)
C13—O2—C16105.8 (2)O1—C9—C10120.6 (3)
C14—O3—C16105.9 (2)C8—C9—C10119.1 (3)
C2—C1—C6122.1 (3)C11—C10—C15119.9 (3)
C2—C1—Br1117.4 (3)C11—C10—C9122.6 (3)
C6—C1—Br1120.4 (2)C15—C10—C9117.5 (3)
C3—C2—C1119.2 (4)C10—C11—C12121.6 (3)
C3—C2—H2120.4C10—C11—H11119.2
C1—C2—H2120.4C12—C11—H11119.2
C4—C3—C2120.0 (3)C13—C12—C11117.3 (3)
C4—C3—H3120.0C13—C12—H12121.3
C2—C3—H3120.0C11—C12—H12121.3
C5—C4—C3120.3 (4)C12—C13—O2128.1 (3)
C5—C4—H4119.9C12—C13—C14121.8 (3)
C3—C4—H4119.9O2—C13—C14110.2 (3)
C4—C5—C6122.2 (4)C15—C14—O3128.0 (3)
C4—C5—H5118.9C15—C14—C13122.2 (3)
C6—C5—H5118.9O3—C14—C13109.8 (3)
C1—C6—C5116.2 (3)C14—C15—C10117.3 (3)
C1—C6—C7122.4 (3)C14—C15—H15121.4
C5—C6—C7121.4 (3)C10—C15—H15121.4
C8—C7—C6127.4 (3)O3—C16—O2108.3 (2)
C8—C7—H7116.3O3—C16—H16A110.0
C6—C7—H7116.3O2—C16—H16A110.0
C7—C8—C9124.3 (3)O3—C16—H16B110.0
C7—C8—H8117.9O2—C16—H16B110.0
C9—C8—H8117.9H16A—C16—H16B108.4
O1—C9—C8120.3 (3)
C6—C1—C2—C31.8 (5)C15—C10—C11—C120.1 (5)
Br1—C1—C2—C3179.7 (3)C9—C10—C11—C12179.5 (3)
C1—C2—C3—C41.4 (5)C10—C11—C12—C130.4 (5)
C2—C3—C4—C50.2 (6)C11—C12—C13—O2178.6 (3)
C3—C4—C5—C60.6 (6)C11—C12—C13—C140.7 (5)
C2—C1—C6—C51.0 (5)C16—O2—C13—C12178.4 (3)
Br1—C1—C6—C5178.8 (2)C16—O2—C13—C142.3 (3)
C2—C1—C6—C7178.2 (3)C16—O3—C14—C15179.3 (3)
Br1—C1—C6—C70.4 (4)C16—O3—C14—C131.5 (3)
C4—C5—C6—C10.2 (5)C12—C13—C14—C150.6 (5)
C4—C5—C6—C7179.4 (3)O2—C13—C14—C15178.8 (3)
C1—C6—C7—C8173.5 (4)C12—C13—C14—O3180.0 (3)
C5—C6—C7—C87.4 (6)O2—C13—C14—O30.5 (4)
C6—C7—C8—C9179.8 (3)O3—C14—C15—C10179.3 (3)
C7—C8—C9—O11.5 (6)C13—C14—C15—C100.1 (4)
C7—C8—C9—C10177.6 (3)C11—C10—C15—C140.2 (4)
O1—C9—C10—C11177.9 (4)C9—C10—C15—C14179.7 (3)
C8—C9—C10—C113.0 (4)C14—O3—C16—O22.8 (3)
O1—C9—C10—C151.5 (5)C13—O2—C16—O33.1 (3)
C8—C9—C10—C15177.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Br10.932.693.164 (4)113
C7—H7···O10.932.502.812 (6)100
C16—H16B···Cg3i0.972.763.563 (4)141
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11BrO3
Mr331.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.0434 (2), 12.9354 (4), 20.8916 (7)
V3)1362.93 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.53 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.576, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
17031, 2674, 2437
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.06
No. of reflections2674
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.52
Absolute structureFlack (1983), 1086 Bijvoet pairs
Absolute structure parameter0.595 (13)

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Br10.932.693.164 (4)113
C7—H7···O10.932.502.812 (6)100
C16—H16B···Cg3i0.972.763.563 (4)141
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Mangalore University and the Bioinformatics Infrastructure Facility, University of Hyderabad, are gratefully acknowledged. BN thanks UGC–SAP for financial support. RSR thanks the CSIR, New Delhi, for support under the scientist's pool scheme.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGómez, S. L., Palma, A., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o233–o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRathore, R. S., Subramanya, K., Narasimhamurthy, T., Vijay, T., Anilkumar, H. G., Yathirajan, H. S. & Basavaraju, Y. B. (2006). Anal. Sci. X-ray Online, 22, x111–x112.  CrossRef CAS Google Scholar
First citationRiley, K. E., Murray, J. S., Politzer, P., Concha, M. C. & Hobza, P. (2009). J. Chem. Theory Comput. 5, 155–163.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgognec, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052–1053.  Web of Science CSD CrossRef Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J.-Y., Yang, M. S., Hong, S.-G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds