organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­oxy­benzene­carbo­thio­amide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drsa54@yahoo.com

(Received 6 April 2010; accepted 29 April 2010; online 8 May 2010)

The asymmetric unit of the title compound, C8H9NOS, contains two independent mol­ecules with the meth­oxy groups oriented in opposite conformations. The mean planes of the carbothio­amide groups are tilted by 7.88 (15) and 11.16 (9)° from the mean planes of the benzene rings. In the crystal, the mol­ecules form dimers via intermolecular N—H⋯S inter­molecular hydrogen bonds, resulting in eight-membered rings of R22(8) graph-set motif. The dimers are further linked by C—H⋯O hydrogen bonds into chains along the c axis. Adjacent chains inter­act through inter­molecular N—H⋯S hydrogen bonds, generating eight-membered rings of R42(8) graph-set motif.

Related literature

For the synthesis, biological activity and applications of thio­amides, see: Zahid et al. (2009[Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85-93.]); Klimesova et al. (1999[Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem. 34, 433-440.]); Jagodzinski (2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]); Lebana et al. (2008[Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008-1016.]). For related structures, see: Khan et al. (2009a[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.],b[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.],c[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446.]); Jian et al. (2006[Jian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63-67.]). For graph-set notation, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NOS

  • Mr = 167.22

  • Orthorhombic, P 21 21 21

  • a = 5.6545 (2) Å

  • b = 7.3966 (2) Å

  • c = 38.7497 (13) Å

  • V = 1620.67 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.961, Tmax = 0.974

  • 6598 measured reflections

  • 3656 independent reflections

  • 3500 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.09

  • 3656 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1469 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.85 (3) 2.79 (3) 3.383 (2) 129 (2)
N11—H11B⋯S11ii 0.88 (3) 2.63 (2) 3.286 (2) 132 (2)
C8—H8B⋯O11iii 0.98 2.54 3.382 (3) 144
N1—H1B⋯S11 0.91 (2) 2.47 (3) 3.368 (2) 168 (2)
N11—H11A⋯S1 0.87 (2) 2.57 (2) 3.420 (2) 165 (2)
C2—H2⋯S1 0.95 2.69 3.100 (2) 107
C12—H12⋯S11 0.95 2.70 3.103 (2) 106
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thioamides exhibit a wide range of applications, not only as synthetic intermediates in the synthesis of a variety of heterocyclic compounds (Zahid et al., 2009), but also numerous biological activities have been associated with them (Jagodzinski, 2003; Klimesova et al., 1999). Moreover, thioamides are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c), we have synthesized 4-methoxybenzothioamide. In this article we report the crystal structure of the title compound.

The title structure contains two conformational isomers, molecule A and B, containing atoms S1 and S11, respectively, in an asymmetric unit with methoxy groups oriented in opposite conformations (Fig. 1). The mean-planes of the carbothioamide groups (S/N/C) are tilted by 7.88 (15) and 11.16 (9)° from the mean-planes of the phenyl rings in molecules A and B, respectively. The dihedral angle between the mean-planes of the phenyl rings of the two molecules is 58.57 (4)°. The molecules A and B form dimers via N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R22(8) motif (Bernstein et al., 1994). The dimers are further linked by C8—H8B···O11 hydrogen bonds into chains along the c-axis (Fig. 2). The adjacent chains of molecules are held together by N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R42(8) motif (Fig. 3); details of hydrogen bonding geometry have been provided in Table 1.

The bond distances and angles in both molecules agree with the cortresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006).

Related literature top

For the synthesis, biological activity and applications of thioamides, see: Zahid et al. (2009); Klimesova et al. (1999); Jagodzinski (2003); Lebana et al. (2008). For related structures, see: Khan et al. (2009a,b,c); Jian et al. (2006). For graph-set notation, see: Bernstein et al. (1994).

Experimental top

A slurry of magnesium cholride hexahydrate (5.8 mmol) and sodium hydrogen sulphide hydrate (70%, 11.6 mmol) was prepared in dimethylformamide (15 ml). 4-Methoxybenzonitrile (5.8 mmol) was added to the slurry and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was poured into water (60 ml) and the resulting precipitates were collected by filtration. The product obtained was resuspended in 1 N HCl (30 ml), stirred for another 25 min, the precipitated solid filtered and washed with water. Recrystallization of the product from chloroform afforded the crystals of the title compound suitable for X-ray crystallographic analysis.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The H-atoms bonded to N atoms were allowed to refine. The Uiso(H) were allowed at 1.2/1.5Ueq(N/C). The final difference map was essentially featurless.

Structure description top

Thioamides exhibit a wide range of applications, not only as synthetic intermediates in the synthesis of a variety of heterocyclic compounds (Zahid et al., 2009), but also numerous biological activities have been associated with them (Jagodzinski, 2003; Klimesova et al., 1999). Moreover, thioamides are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c), we have synthesized 4-methoxybenzothioamide. In this article we report the crystal structure of the title compound.

The title structure contains two conformational isomers, molecule A and B, containing atoms S1 and S11, respectively, in an asymmetric unit with methoxy groups oriented in opposite conformations (Fig. 1). The mean-planes of the carbothioamide groups (S/N/C) are tilted by 7.88 (15) and 11.16 (9)° from the mean-planes of the phenyl rings in molecules A and B, respectively. The dihedral angle between the mean-planes of the phenyl rings of the two molecules is 58.57 (4)°. The molecules A and B form dimers via N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R22(8) motif (Bernstein et al., 1994). The dimers are further linked by C8—H8B···O11 hydrogen bonds into chains along the c-axis (Fig. 2). The adjacent chains of molecules are held together by N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R42(8) motif (Fig. 3); details of hydrogen bonding geometry have been provided in Table 1.

The bond distances and angles in both molecules agree with the cortresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006).

For the synthesis, biological activity and applications of thioamides, see: Zahid et al. (2009); Klimesova et al. (1999); Jagodzinski (2003); Lebana et al. (2008). For related structures, see: Khan et al. (2009a,b,c); Jian et al. (2006). For graph-set notation, see: Bernstein et al. (1994).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound plotted with displacement ellipsoids at the 50% probability level (Farrugia, 1997). Intermolecular hydrogen bonds have been presented by dashed lines.
[Figure 2] Fig. 2. A unit cell showing intermolecular hydrogen bonds by dashed lines resulting in chains of molecules along the c-axis. The H-atoms not involved in H-bonds have been excluded for clarity.
[Figure 3] Fig. 3. A part of the unit cell showing intermolecular hydrogen bonds of the N—H···S type resulting in eight membered rings generating R22(8) and R42(8) graph-set motifs. The H-atoms not involved in H-bonds have been excluded for clarity.
4-Methoxybenzenecarbothioamide top
Crystal data top
C8H9NOSF(000) = 704
Mr = 167.22Dx = 1.371 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3578 reflections
a = 5.6545 (2) Åθ = 1.0–27.5°
b = 7.3966 (2) ŵ = 0.34 mm1
c = 38.7497 (13) ÅT = 173 K
V = 1620.67 (9) Å3Prism, yellow
Z = 80.12 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3656 independent reflections
Radiation source: fine-focus sealed tube3500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 67
Tmin = 0.961, Tmax = 0.974k = 99
6598 measured reflectionsl = 5049
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.7048P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3656 reflectionsΔρmax = 0.22 e Å3
213 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1469 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C8H9NOSV = 1620.67 (9) Å3
Mr = 167.22Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 5.6545 (2) ŵ = 0.34 mm1
b = 7.3966 (2) ÅT = 173 K
c = 38.7497 (13) Å0.12 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3656 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3500 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.974Rint = 0.025
6598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.22 e Å3
S = 1.09Δρmin = 0.27 e Å3
3656 reflectionsAbsolute structure: Flack (1983), 1469 Friedel pairs
213 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54377 (9)0.80205 (8)0.411169 (12)0.03778 (14)
S110.00254 (9)0.83920 (9)0.329665 (12)0.04206 (15)
O10.3345 (2)1.12722 (19)0.56954 (3)0.0314 (3)
O110.2829 (2)0.8073 (2)0.16293 (3)0.0372 (3)
N10.1172 (3)0.9318 (3)0.41309 (5)0.0384 (4)
H1A0.015 (5)0.958 (3)0.4224 (6)0.046*
H1B0.109 (4)0.901 (3)0.3904 (7)0.046*
N110.4395 (3)0.7318 (3)0.32528 (4)0.0380 (4)
H11A0.445 (4)0.734 (3)0.3477 (6)0.046*
H11B0.577 (4)0.720 (3)0.3147 (6)0.046*
C10.3167 (3)0.9530 (2)0.46743 (4)0.0215 (3)
C20.5056 (3)0.9037 (2)0.48859 (4)0.0233 (3)
H20.62950.83210.47920.028*
C30.5173 (3)0.9561 (2)0.52284 (4)0.0245 (3)
H30.64810.92110.53670.029*
C40.3364 (3)1.0602 (2)0.53680 (5)0.0247 (4)
C50.1422 (3)1.1069 (2)0.51645 (5)0.0274 (4)
H50.01641.17530.52610.033*
C60.1329 (3)1.0540 (2)0.48245 (5)0.0250 (4)
H60.00031.08630.46880.030*
C70.3124 (3)0.9001 (2)0.43058 (5)0.0240 (4)
C80.5271 (4)1.0780 (3)0.59156 (5)0.0432 (5)
H8A0.52970.94640.59450.065*
H8B0.50731.13600.61410.065*
H8C0.67621.11780.58120.065*
C110.2594 (3)0.7796 (2)0.26992 (4)0.0223 (3)
C120.0790 (3)0.8599 (2)0.25047 (5)0.0272 (4)
H120.05370.91120.26190.033*
C130.0917 (3)0.8656 (3)0.21488 (5)0.0292 (4)
H130.03190.92060.20200.035*
C140.2848 (3)0.7913 (3)0.19784 (5)0.0274 (4)
C150.4646 (3)0.7085 (2)0.21656 (4)0.0286 (4)
H150.59570.65570.20500.034*
C160.4502 (3)0.7039 (2)0.25229 (4)0.0272 (4)
H160.57340.64780.26510.033*
C170.2475 (3)0.7799 (2)0.30819 (5)0.0256 (4)
C180.4835 (5)0.7421 (4)0.14431 (5)0.0517 (6)
H18A0.62670.80170.15290.078*
H18B0.46380.76880.11970.078*
H18C0.49760.61120.14760.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0264 (2)0.0619 (3)0.0250 (2)0.0131 (2)0.00098 (18)0.0060 (2)
S110.0233 (2)0.0758 (4)0.0271 (2)0.0073 (3)0.00048 (19)0.0079 (2)
O10.0349 (7)0.0362 (7)0.0229 (6)0.0047 (6)0.0003 (6)0.0048 (5)
O110.0409 (8)0.0482 (8)0.0225 (6)0.0052 (7)0.0012 (6)0.0014 (6)
N10.0257 (8)0.0610 (12)0.0286 (9)0.0113 (8)0.0050 (7)0.0105 (9)
N110.0262 (8)0.0637 (12)0.0241 (8)0.0107 (8)0.0027 (7)0.0031 (8)
C10.0187 (8)0.0204 (7)0.0253 (8)0.0012 (6)0.0007 (7)0.0025 (7)
C20.0214 (8)0.0221 (8)0.0264 (8)0.0025 (7)0.0018 (7)0.0003 (6)
C30.0248 (9)0.0248 (8)0.0238 (8)0.0023 (7)0.0044 (7)0.0016 (6)
C40.0275 (9)0.0230 (8)0.0235 (8)0.0024 (7)0.0023 (7)0.0006 (7)
C50.0270 (9)0.0245 (8)0.0308 (9)0.0033 (7)0.0043 (7)0.0010 (7)
C60.0202 (8)0.0234 (8)0.0313 (9)0.0024 (7)0.0003 (7)0.0008 (7)
C70.0203 (8)0.0246 (8)0.0272 (9)0.0018 (7)0.0013 (7)0.0023 (7)
C80.0461 (12)0.0573 (13)0.0262 (9)0.0095 (12)0.0060 (10)0.0073 (9)
C110.0209 (8)0.0222 (8)0.0238 (8)0.0023 (7)0.0013 (6)0.0003 (7)
C120.0220 (8)0.0297 (9)0.0299 (9)0.0009 (7)0.0001 (7)0.0010 (7)
C130.0263 (9)0.0317 (10)0.0296 (9)0.0044 (8)0.0062 (7)0.0000 (8)
C140.0327 (9)0.0262 (9)0.0234 (8)0.0037 (8)0.0022 (7)0.0001 (7)
C150.0277 (9)0.0307 (9)0.0273 (8)0.0045 (8)0.0019 (7)0.0024 (7)
C160.0252 (9)0.0291 (9)0.0273 (8)0.0051 (8)0.0015 (7)0.0002 (7)
C170.0232 (8)0.0273 (9)0.0262 (9)0.0039 (7)0.0007 (7)0.0008 (7)
C180.0535 (14)0.0752 (16)0.0263 (9)0.0138 (14)0.0077 (10)0.0003 (10)
Geometric parameters (Å, º) top
S1—C71.6744 (19)C5—C61.376 (3)
S11—C171.6742 (18)C5—H50.9500
O1—C41.362 (2)C6—H60.9500
O1—C81.431 (2)C8—H8A0.9800
O11—C141.358 (2)C8—H8B0.9800
O11—C181.428 (3)C8—H8C0.9800
N1—C71.316 (2)C11—C161.394 (2)
N1—H1A0.85 (3)C11—C121.401 (2)
N1—H1B0.91 (2)C11—C171.484 (2)
N11—C171.321 (2)C12—C131.381 (2)
N11—H11A0.87 (2)C12—H120.9500
N11—H11B0.88 (3)C13—C141.389 (3)
C1—C21.395 (2)C13—H130.9500
C1—C61.406 (2)C14—C151.391 (2)
C1—C71.481 (2)C15—C161.387 (2)
C2—C31.384 (2)C15—H150.9500
C2—H20.9500C16—H160.9500
C3—C41.390 (2)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.395 (3)C18—H18C0.9800
C4—O1—C8117.17 (15)H8A—C8—H8B109.5
C14—O11—C18117.87 (16)O1—C8—H8C109.5
C7—N1—H1A124.0 (16)H8A—C8—H8C109.5
C7—N1—H1B119.9 (16)H8B—C8—H8C109.5
H1A—N1—H1B115 (2)C16—C11—C12118.03 (16)
C17—N11—H11A121.8 (16)C16—C11—C17121.70 (16)
C17—N11—H11B121.3 (15)C12—C11—C17120.25 (16)
H11A—N11—H11B116 (2)C13—C12—C11120.82 (17)
C2—C1—C6117.49 (16)C13—C12—H12119.6
C2—C1—C7120.67 (16)C11—C12—H12119.6
C6—C1—C7121.84 (16)C12—C13—C14120.21 (17)
C3—C2—C1121.81 (16)C12—C13—H13119.9
C3—C2—H2119.1C14—C13—H13119.9
C1—C2—H2119.1O11—C14—C13115.64 (16)
C2—C3—C4119.53 (17)O11—C14—C15124.33 (17)
C2—C3—H3120.2C13—C14—C15120.04 (16)
C4—C3—H3120.2C16—C15—C14119.24 (17)
O1—C4—C3124.76 (17)C16—C15—H15120.4
O1—C4—C5115.45 (16)C14—C15—H15120.4
C3—C4—C5119.77 (16)C15—C16—C11121.65 (17)
C6—C5—C4120.07 (17)C15—C16—H16119.2
C6—C5—H5120.0C11—C16—H16119.2
C4—C5—H5120.0N11—C17—C11117.58 (16)
C5—C6—C1121.29 (17)N11—C17—S11120.10 (14)
C5—C6—H6119.4C11—C17—S11122.32 (13)
C1—C6—H6119.4O11—C18—H18A109.5
N1—C7—C1117.58 (17)O11—C18—H18B109.5
N1—C7—S1120.09 (15)H18A—C18—H18B109.5
C1—C7—S1122.33 (13)O11—C18—H18C109.5
O1—C8—H8A109.5H18A—C18—H18C109.5
O1—C8—H8B109.5H18B—C18—H18C109.5
C6—C1—C2—C32.0 (3)C16—C11—C12—C130.7 (3)
C7—C1—C2—C3178.01 (16)C17—C11—C12—C13177.91 (17)
C1—C2—C3—C40.2 (3)C11—C12—C13—C140.0 (3)
C8—O1—C4—C33.6 (3)C18—O11—C14—C13176.58 (19)
C8—O1—C4—C5178.21 (18)C18—O11—C14—C153.0 (3)
C2—C3—C4—O1176.50 (17)C12—C13—C14—O11178.65 (17)
C2—C3—C4—C51.6 (3)C12—C13—C14—C150.9 (3)
O1—C4—C5—C6176.62 (16)O11—C14—C15—C16178.48 (18)
C3—C4—C5—C61.7 (3)C13—C14—C15—C161.0 (3)
C4—C5—C6—C10.1 (3)C14—C15—C16—C110.3 (3)
C2—C1—C6—C51.9 (3)C12—C11—C16—C150.6 (3)
C7—C1—C6—C5178.06 (17)C17—C11—C16—C15178.02 (17)
C2—C1—C7—N1172.04 (18)C16—C11—C17—N1110.3 (3)
C6—C1—C7—N18.0 (3)C12—C11—C17—N11168.26 (18)
C2—C1—C7—S17.6 (2)C16—C11—C17—S11169.92 (14)
C6—C1—C7—S1172.40 (14)C12—C11—C17—S1111.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.85 (3)2.79 (3)3.383 (2)129 (2)
N11—H11B···S11ii0.88 (3)2.63 (2)3.286 (2)132 (2)
C8—H8B···O11iii0.982.543.382 (3)144
N1—H1B···S110.91 (2)2.47 (3)3.368 (2)168 (2)
N11—H11A···S10.87 (2)2.57 (2)3.420 (2)165 (2)
C2—H2···S10.952.693.100 (2)107
C12—H12···S110.952.703.103 (2)106
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9NOS
Mr167.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.6545 (2), 7.3966 (2), 38.7497 (13)
V3)1620.67 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.961, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 3656, 3500
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.09
No. of reflections3656
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.27
Absolute structureFlack (1983), 1469 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.85 (3)2.79 (3)3.383 (2)129 (2)
N11—H11B···S11ii0.88 (3)2.63 (2)3.286 (2)132 (2)
C8—H8B···O11iii0.982.543.382 (3)144
N1—H1B···S110.91 (2)2.47 (3)3.368 (2)168 (2)
N11—H11A···S10.87 (2)2.57 (2)3.420 (2)165 (2)
C2—H2···S10.952.693.100 (2)107
C12—H12···S110.952.703.103 (2)106
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+2, z+1/2.
 

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem. 34, 433–440.  CrossRef CAS Google Scholar
First citationLebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds