organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-5-nitro­thio­phene

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 19 April 2010; accepted 11 May 2010; online 22 May 2010)

The title compound, C4H2INO2S, was synthesized by nitration of iodo­thio­phene with acetyl nitrate. The molecule is essentially planar, withthe nitro group tilted by 1.78 (19)° and the iodine atom displaced by 0.0233 (2) Å with respect to the thiophene ring. In the crystal structure, adjacent mol­ecules are linked through weak I⋯O inter­actions [3.039 (2)Å], forming chains extending along the b axis.

Related literature

For the bioactivity of thio­phene derivatives, see: Wilson et al. (2010[Wilson, K., De Almeida, G., Haidle, A., Konrad, K., Machacek, M. & Zabierek, A. (2010). PCT Int. Appl. WO 2010005841.]); Rudra et al. (2007[Rudra, S., Yadav, A., Raja Rao, A. V. S., Srinivas, A. S. S. V., Pandya, M., Bhateja, P., Mathur, T., Malhotra, S., Rattan, A., Salman, M., Mehta, A., Cliffe, I. A. & Das, B. (2007). Bioorg. Med. Chem. Lett. 17, 6714-6719.]); Altman et al. (2008[Altman, M., Christopher, M., Grimm, J. B., Haidle, A., Konrad, K., Lim, J., Maccoss, R. N., Machacek, M., Osimboni, E., Otte, R. D., Siu, T., Spencer, K., Taoka, B., Tempest, P., Wilson, K., Woo, H. C., Young, J. & Zabierek, A. (2008). PCT Int. Appl. WO 2008156726.]); Morley et al. (2006[Morley, J. O. & Matthews, T. P. (2006). Org. Biomol. Chem. 4, 359-366.]).

[Scheme 1]

Experimental

Crystal data
  • C4H2INO2S

  • Mr = 255.03

  • Monoclinic, P 21 /c

  • a = 9.195 (2) Å

  • b = 9.727 (2) Å

  • c = 7.6714 (17) Å

  • β = 105.043 (4)°

  • V = 662.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.07 mm−1

  • T = 110 K

  • 0.48 × 0.29 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.195, Tmax = 0.687

  • 3264 measured reflections

  • 1419 independent reflections

  • 1294 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.09

  • 1419 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.07 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many thiophene derivatives show important bioactivities and are employed as antibacterial (Morley et al., 2006), as inhibitors of Janus kinases (Wilson et al., 2010), in the identification of RBx 8700 (Rudra et al., 2007) and in the treatment of myeloproliferative disorders and cancers (Altman et al., 2008). This is the reason they have attracted our interest.

The molecule of the title compound (Fig. 1) is essentially planar, with the nitro group tilted by 1.78 (19)° and the iodine atom displaced by 0.0233 (2) Å with respect to the thiophene ring. In the crystal structure, adjacent molecules are linked through weak I···O interactions to form chains extending along the b axis. (Fig. 2).

Related literature top

For the bioactivity of thiophene derivatives, see: Wilson et al. (2010); Rudra et al. (2007); Altman et al. (2008); Morley et al. (2006).

Experimental top

Iodothiophene (6.5 g, 31 mmol) dissolved in 10 ml of acetic anhydride was introduced into a round flask, provided with a stirrer and a cooling device. Acetyl nitrate was added dropwise in forty-five minutes and the temperature was kept under 273 K. When the addition was over, the mixture was stirred for half an hour continuously at the same temperature. The nitrating flask was then surrounded with ice and kept in a refrigerator for 24 hours. The product was poured, with stirring, into finely crushed ice. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in methanol, pale yellow monoclinic crystals suitable for X-ray analysis (m.p. 348 K, 67% yield) grew over a period of five days on slow evaporation of the solvent at room temperature.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model, with Uiso = 1.2 Ueq(C).

Structure description top

Many thiophene derivatives show important bioactivities and are employed as antibacterial (Morley et al., 2006), as inhibitors of Janus kinases (Wilson et al., 2010), in the identification of RBx 8700 (Rudra et al., 2007) and in the treatment of myeloproliferative disorders and cancers (Altman et al., 2008). This is the reason they have attracted our interest.

The molecule of the title compound (Fig. 1) is essentially planar, with the nitro group tilted by 1.78 (19)° and the iodine atom displaced by 0.0233 (2) Å with respect to the thiophene ring. In the crystal structure, adjacent molecules are linked through weak I···O interactions to form chains extending along the b axis. (Fig. 2).

For the bioactivity of thiophene derivatives, see: Wilson et al. (2010); Rudra et al. (2007); Altman et al. (2008); Morley et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the the title compound viewed along the c axis. Dashed lines indicate weak intermolecular interactions.
2-Iodo-5-nitrothiophene top
Crystal data top
C4H2INO2SF(000) = 472
Mr = 255.03Dx = 2.556 Mg m3
Monoclinic, P21/cMelting point: 348 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.195 (2) ÅCell parameters from 2600 reflections
b = 9.727 (2) Åθ = 2.3–27.0°
c = 7.6714 (17) ŵ = 5.07 mm1
β = 105.043 (4)°T = 110 K
V = 662.6 (2) Å3Plate, pale yellow
Z = 40.48 × 0.29 × 0.08 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed tube1294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.195, Tmax = 0.687k = 126
3264 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2502P]
where P = (Fo2 + 2Fc2)/3
1419 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
C4H2INO2SV = 662.6 (2) Å3
Mr = 255.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.195 (2) ŵ = 5.07 mm1
b = 9.727 (2) ÅT = 110 K
c = 7.6714 (17) Å0.48 × 0.29 × 0.08 mm
β = 105.043 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1419 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1294 reflections with I > 2σ(I)
Tmin = 0.195, Tmax = 0.687Rint = 0.022
3264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.09Δρmax = 1.65 e Å3
1419 reflectionsΔρmin = 1.07 e Å3
82 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.742893 (19)0.45070 (2)0.00911 (2)0.01661 (11)
S10.63408 (8)0.77403 (7)0.09375 (9)0.01554 (17)
C10.7728 (3)0.6618 (3)0.0128 (3)0.0154 (6)
O20.5694 (3)1.06507 (19)0.1375 (3)0.0224 (5)
N10.6975 (3)1.0473 (2)0.0419 (3)0.0173 (5)
C20.9003 (3)0.7266 (3)0.1129 (4)0.0176 (6)
H20.98730.67960.18050.021*
C30.8865 (3)0.8712 (3)0.1034 (3)0.0171 (6)
H30.96270.93360.16300.021*
O10.7865 (3)1.1411 (2)0.0229 (3)0.0257 (5)
C40.7496 (3)0.9090 (4)0.0027 (3)0.0148 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02192 (16)0.00881 (16)0.01937 (15)0.00103 (5)0.00585 (10)0.00003 (5)
S10.0171 (4)0.0104 (3)0.0176 (3)0.0009 (2)0.0018 (3)0.0006 (2)
C10.0216 (14)0.0082 (14)0.0184 (14)0.0040 (10)0.0087 (11)0.0022 (9)
O20.0232 (12)0.0178 (10)0.0254 (11)0.0056 (8)0.0047 (9)0.0048 (8)
N10.0215 (15)0.0148 (13)0.0163 (12)0.0016 (9)0.0060 (11)0.0011 (8)
C20.0165 (14)0.0168 (13)0.0196 (14)0.0021 (10)0.0046 (11)0.0006 (10)
C30.0176 (14)0.0132 (13)0.0201 (14)0.0027 (10)0.0042 (11)0.0028 (10)
O10.0331 (12)0.0094 (11)0.0324 (12)0.0033 (9)0.0044 (10)0.0019 (8)
C40.0206 (18)0.0087 (16)0.0167 (16)0.0007 (9)0.0079 (13)0.0021 (8)
Geometric parameters (Å, º) top
I1—C12.073 (3)N1—C41.433 (4)
S1—C11.716 (3)C2—C31.412 (4)
S1—C41.719 (3)C2—H20.9500
C1—C21.376 (4)C3—C41.361 (4)
O2—N11.227 (4)C3—H30.9500
N1—O11.241 (3)
C1—S1—C489.32 (14)C1—C2—H2124.0
C2—C1—S1113.2 (2)C3—C2—H2124.0
C2—C1—I1125.1 (2)C4—C3—C2110.9 (3)
S1—C1—I1121.68 (16)C4—C3—H3124.5
O2—N1—O1124.5 (2)C2—C3—H3124.5
O2—N1—C4118.3 (2)C3—C4—N1125.9 (3)
O1—N1—C4117.2 (3)C3—C4—S1114.5 (3)
C1—C2—C3112.0 (3)N1—C4—S1119.59 (19)
C4—S1—C1—C20.2 (2)O2—N1—C4—C3178.6 (2)
C4—S1—C1—I1179.18 (13)O1—N1—C4—C31.9 (4)
S1—C1—C2—C30.2 (3)O2—N1—C4—S11.5 (3)
I1—C1—C2—C3179.22 (17)O1—N1—C4—S1178.06 (17)
C1—C2—C3—C40.2 (3)C1—S1—C4—C30.0 (2)
C2—C3—C4—N1180.0 (2)C1—S1—C4—N1179.92 (18)
C2—C3—C4—S10.1 (3)

Experimental details

Crystal data
Chemical formulaC4H2INO2S
Mr255.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)9.195 (2), 9.727 (2), 7.6714 (17)
β (°) 105.043 (4)
V3)662.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.07
Crystal size (mm)0.48 × 0.29 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.195, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
3264, 1419, 1294
Rint0.022
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.09
No. of reflections1419
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.07

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationAltman, M., Christopher, M., Grimm, J. B., Haidle, A., Konrad, K., Lim, J., Maccoss, R. N., Machacek, M., Osimboni, E., Otte, R. D., Siu, T., Spencer, K., Taoka, B., Tempest, P., Wilson, K., Woo, H. C., Young, J. & Zabierek, A. (2008). PCT Int. Appl. WO 2008156726.  Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMorley, J. O. & Matthews, T. P. (2006). Org. Biomol. Chem. 4, 359–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRudra, S., Yadav, A., Raja Rao, A. V. S., Srinivas, A. S. S. V., Pandya, M., Bhateja, P., Mathur, T., Malhotra, S., Rattan, A., Salman, M., Mehta, A., Cliffe, I. A. & Das, B. (2007). Bioorg. Med. Chem. Lett. 17, 6714–6719.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, K., De Almeida, G., Haidle, A., Konrad, K., Machacek, M. & Zabierek, A. (2010). PCT Int. Appl. WO 2010005841.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds