organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title compound, C14H14ClNO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −54.9 (2)°. The sulfonyl and aniline benzene rings are rotated relative to each other by 75.7 (1)°. An intra­molecular N—H⋯Cl hydrogen bond is present. In the crystal, inter­molecular N—H⋯O hydrogen-bonding inter­actions are observed and the mol­ecules are packed into chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o717.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o188.]); Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Orthorhombic, P b c n

  • a = 10.574 (1) Å

  • b = 16.269 (2) Å

  • c = 16.859 (2) Å

  • V = 2900.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 299 K

  • 0.38 × 0.34 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.862, Tmax = 0.909

  • 18999 measured reflections

  • 2922 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.05

  • 2922 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.20 (1) 3.010 (2) 159 (2)
N1—H1N⋯Cl1 0.85 (1) 2.63 (2) 2.9822 (18) 106 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al. , 2009a,b, 2010), in the present work the structure of 2,4-dimethyl-N-(2-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of -54.9 (2)°, compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (II) (Nirmala et al., 2009), 74.8 (4)° in 4-chloro-2-methyl-N-(2-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009b), -46.1 (3)° (molecule 1) and 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV) (Gowda et al., 2009a) and -54.8 (2)° in N-(2-chlorophenyl)-4-methylbenzenesulfonamide (V) (Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 75.7 (1)°, compared to the values of 47.0 (1)° (II), 45.5 (2)° in (III), 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (IV), and 71.6 (1)° in (V). The other bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The structure shows simultaneous N—H···Cl intramolecular and N—H···O intermolecular H-bonding (Table 1). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2009a,b, 2010); Nirmala et al. (2009); Perlovich et al. (2006)

Experimental top

A solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 °C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dimethyl-N-(2-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The prism like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation of an ethanol solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As part of a study of the substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al. , 2009a,b, 2010), in the present work the structure of 2,4-dimethyl-N-(2-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of -54.9 (2)°, compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (II) (Nirmala et al., 2009), 74.8 (4)° in 4-chloro-2-methyl-N-(2-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009b), -46.1 (3)° (molecule 1) and 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV) (Gowda et al., 2009a) and -54.8 (2)° in N-(2-chlorophenyl)-4-methylbenzenesulfonamide (V) (Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 75.7 (1)°, compared to the values of 47.0 (1)° (II), 45.5 (2)° in (III), 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (IV), and 71.6 (1)° in (V). The other bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The structure shows simultaneous N—H···Cl intramolecular and N—H···O intermolecular H-bonding (Table 1). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds is shown in Fig.2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2009a,b, 2010); Nirmala et al. (2009); Perlovich et al. (2006)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2-Chlorophenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 1232
Mr = 295.77Dx = 1.355 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2348 reflections
a = 10.574 (1) Åθ = 2.6–27.8°
b = 16.269 (2) ŵ = 0.40 mm1
c = 16.859 (2) ÅT = 299 K
V = 2900.2 (6) Å3Prism, colourless
Z = 80.38 × 0.34 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2922 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 813
Tmin = 0.862, Tmax = 0.909k = 1919
18999 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.1956P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
2922 reflectionsΔρmax = 0.23 e Å3
178 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (6)
Crystal data top
C14H14ClNO2SV = 2900.2 (6) Å3
Mr = 295.77Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 10.574 (1) ŵ = 0.40 mm1
b = 16.269 (2) ÅT = 299 K
c = 16.859 (2) Å0.38 × 0.34 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2922 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2330 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.909Rint = 0.026
18999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2922 reflectionsΔρmin = 0.27 e Å3
178 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31380 (18)0.39372 (11)0.32739 (11)0.0470 (4)
C20.2828 (2)0.47702 (12)0.31522 (12)0.0543 (5)
C30.3721 (2)0.53467 (14)0.33864 (15)0.0707 (6)
H30.35300.59000.33180.085*
C40.4873 (3)0.51455 (17)0.37137 (16)0.0809 (7)
C50.5148 (3)0.43261 (18)0.38187 (19)0.0872 (8)
H50.59210.41750.40380.105*
C60.4290 (2)0.37243 (15)0.36013 (15)0.0670 (6)
H60.44900.31730.36760.080*
C70.10341 (18)0.31392 (11)0.44692 (10)0.0465 (4)
C80.0207 (2)0.35953 (11)0.49298 (11)0.0499 (5)
C90.0269 (3)0.35663 (14)0.57551 (12)0.0660 (6)
H90.03050.38630.60590.079*
C100.1184 (3)0.30960 (14)0.61177 (12)0.0712 (7)
H100.12370.30830.66680.085*
C110.2011 (3)0.26496 (15)0.56722 (13)0.0687 (6)
H110.26330.23380.59210.082*
C120.1932 (2)0.26568 (14)0.48522 (12)0.0629 (6)
H120.24850.23360.45550.076*
C130.1609 (2)0.50496 (15)0.27754 (16)0.0766 (7)
H13A0.09070.48460.30780.092*
H13B0.15600.48410.22440.092*
H13C0.15830.56390.27640.092*
C140.5812 (3)0.5810 (2)0.3941 (3)0.1248 (13)
H14A0.53960.62170.42600.150*
H14B0.61400.60630.34700.150*
H14C0.64940.55700.42370.150*
N10.09250 (16)0.31599 (11)0.36289 (9)0.0538 (4)
H1N0.0245 (14)0.3331 (13)0.3411 (12)0.065*
O10.15450 (14)0.32896 (10)0.22493 (7)0.0610 (4)
O20.27871 (14)0.23745 (8)0.31126 (9)0.0625 (4)
Cl10.09351 (6)0.42128 (4)0.44867 (3)0.0714 (2)
S10.21116 (5)0.31295 (3)0.30076 (3)0.04739 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (11)0.0479 (10)0.0435 (9)0.0042 (8)0.0033 (8)0.0029 (8)
C20.0586 (12)0.0515 (11)0.0528 (11)0.0071 (9)0.0096 (9)0.0013 (9)
C30.0839 (17)0.0502 (12)0.0779 (16)0.0034 (12)0.0141 (14)0.0051 (11)
C40.0782 (17)0.0775 (17)0.0872 (18)0.0189 (14)0.0004 (15)0.0105 (14)
C50.0599 (14)0.0923 (19)0.109 (2)0.0086 (14)0.0208 (15)0.0019 (16)
C60.0587 (13)0.0597 (13)0.0825 (16)0.0057 (11)0.0130 (12)0.0024 (11)
C70.0548 (11)0.0488 (10)0.0358 (9)0.0121 (9)0.0039 (8)0.0009 (8)
C80.0643 (12)0.0432 (9)0.0423 (9)0.0129 (9)0.0035 (9)0.0022 (8)
C90.0950 (18)0.0603 (13)0.0428 (11)0.0148 (12)0.0070 (11)0.0098 (9)
C100.112 (2)0.0645 (14)0.0372 (10)0.0271 (14)0.0138 (12)0.0084 (10)
C110.0886 (17)0.0681 (14)0.0494 (12)0.0103 (13)0.0191 (12)0.0122 (10)
C120.0715 (14)0.0687 (14)0.0487 (11)0.0044 (11)0.0093 (10)0.0056 (10)
C130.0767 (16)0.0623 (14)0.0907 (18)0.0212 (13)0.0013 (14)0.0076 (12)
C140.110 (3)0.110 (3)0.154 (3)0.048 (2)0.006 (2)0.023 (2)
N10.0493 (10)0.0769 (12)0.0352 (8)0.0021 (9)0.0043 (7)0.0025 (8)
O10.0647 (9)0.0840 (10)0.0342 (7)0.0007 (8)0.0022 (6)0.0054 (6)
O20.0747 (10)0.0478 (8)0.0650 (9)0.0094 (7)0.0006 (8)0.0098 (6)
Cl10.0827 (4)0.0706 (4)0.0610 (3)0.0138 (3)0.0051 (3)0.0124 (3)
S10.0538 (3)0.0511 (3)0.0372 (2)0.0036 (2)0.0007 (2)0.00583 (18)
Geometric parameters (Å, º) top
C1—C61.381 (3)C9—C101.376 (3)
C1—C21.409 (3)C9—H90.9300
C1—S11.7624 (19)C10—C111.363 (3)
C2—C31.388 (3)C10—H100.9300
C2—C131.508 (3)C11—C121.385 (3)
C3—C41.377 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.376 (4)C13—H13A0.9600
C4—C141.518 (4)C13—H13B0.9600
C5—C61.385 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.385 (3)C14—H14C0.9600
C7—C121.391 (3)N1—S11.6352 (17)
C7—N11.422 (2)N1—H1N0.854 (9)
C8—C91.394 (3)O1—S11.4357 (14)
C8—Cl11.739 (2)O2—S11.4319 (14)
C6—C1—C2120.29 (19)C9—C10—H10119.9
C6—C1—S1117.24 (16)C10—C11—C12120.5 (2)
C2—C1—S1122.47 (15)C10—C11—H11119.8
C3—C2—C1116.8 (2)C12—C11—H11119.8
C3—C2—C13119.8 (2)C11—C12—C7120.6 (2)
C1—C2—C13123.37 (19)C11—C12—H12119.7
C4—C3—C2123.7 (2)C7—C12—H12119.7
C4—C3—H3118.1C2—C13—H13A109.5
C2—C3—H3118.1C2—C13—H13B109.5
C5—C4—C3118.0 (2)H13A—C13—H13B109.5
C5—C4—C14121.3 (3)C2—C13—H13C109.5
C3—C4—C14120.7 (3)H13A—C13—H13C109.5
C4—C5—C6120.8 (2)H13B—C13—H13C109.5
C4—C5—H5119.6C4—C14—H14A109.5
C6—C5—H5119.6C4—C14—H14B109.5
C1—C6—C5120.4 (2)H14A—C14—H14B109.5
C1—C6—H6119.8C4—C14—H14C109.5
C5—C6—H6119.8H14A—C14—H14C109.5
C8—C7—C12118.24 (17)H14B—C14—H14C109.5
C8—C7—N1119.64 (17)C7—N1—S1125.12 (14)
C12—C7—N1122.10 (18)C7—N1—H1N120.3 (16)
C7—C8—C9120.8 (2)S1—N1—H1N112.4 (15)
C7—C8—Cl1120.47 (14)O2—S1—O1118.28 (9)
C9—C8—Cl1118.77 (17)O2—S1—N1109.24 (9)
C10—C9—C8119.7 (2)O1—S1—N1104.16 (9)
C10—C9—H9120.1O2—S1—C1107.52 (9)
C8—C9—H9120.1O1—S1—C1110.40 (9)
C11—C10—C9120.2 (2)N1—S1—C1106.67 (9)
C11—C10—H10119.9
C6—C1—C2—C30.9 (3)Cl1—C8—C9—C10178.55 (16)
S1—C1—C2—C3179.84 (16)C8—C9—C10—C111.1 (3)
C6—C1—C2—C13178.1 (2)C9—C10—C11—C120.7 (4)
S1—C1—C2—C130.9 (3)C10—C11—C12—C72.0 (4)
C1—C2—C3—C40.9 (3)C8—C7—C12—C111.4 (3)
C13—C2—C3—C4178.1 (2)N1—C7—C12—C11179.9 (2)
C2—C3—C4—C50.5 (4)C8—C7—N1—S1144.02 (16)
C2—C3—C4—C14178.8 (3)C12—C7—N1—S137.6 (3)
C3—C4—C5—C60.0 (4)C7—N1—S1—O261.07 (19)
C14—C4—C5—C6179.3 (3)C7—N1—S1—O1171.66 (16)
C2—C1—C6—C50.5 (3)C7—N1—S1—C154.86 (19)
S1—C1—C6—C5179.5 (2)C6—C1—S1—O26.68 (19)
C4—C5—C6—C10.0 (4)C2—C1—S1—O2172.29 (15)
C12—C7—C8—C90.4 (3)C6—C1—S1—O1137.03 (17)
N1—C7—C8—C9178.06 (18)C2—C1—S1—O141.94 (19)
C12—C7—C8—Cl1179.82 (15)C6—C1—S1—N1110.40 (17)
N1—C7—C8—Cl11.7 (2)C2—C1—S1—N170.63 (18)
C7—C8—C9—C101.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.20 (1)3.010 (2)159 (2)
N1—H1N···Cl10.85 (1)2.63 (2)2.9822 (18)106 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)299
a, b, c (Å)10.574 (1), 16.269 (2), 16.859 (2)
V3)2900.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.38 × 0.34 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.862, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
18999, 2922, 2330
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.05
No. of reflections2922
No. of parameters178
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.854 (9)2.197 (12)3.010 (2)159 (2)
N1—H1N···Cl10.854 (9)2.63 (2)2.9822 (18)106.3 (17)
Symmetry code: (i) x, y, z+1/2.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds