organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo­ethyl)-1,4-diazo­niabi­cyclo­[2.2.2]octane bromide di­hydrogen phosphate–phospho­ric acid (1/1)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xjm_cool@163.com

(Received 27 April 2010; accepted 10 May 2010; online 15 May 2010)

In the crystal structure of the title compound, C8H17BrN22+·Br·H2PO4·H3PO4, the cations, anions and phospho­ric acid mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯Br hydrogen bonds into layers parallel to (101).

Related literature

For the dielectric properties of N-protonated compounds, see: Szafranski & Katrusiak (2008[Szafranski, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 6779-6785.]); Katrusiak & Szafranski (1999[Katrusiak, A. & Szafranski, M. (1999). Phys. Rev. Lett. 82, 576-579.]); Chen et al. (2008[Chen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2008). Cryst. Growth Des. 9, 3828-3831.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C8H17BrN22+·Br·H2PO4·H3PO4

  • Mr = 496.02

  • Monoclinic, P 21 /c

  • a = 12.963 (3) Å

  • b = 7.5959 (15) Å

  • c = 17.721 (4) Å

  • β = 92.00 (3)°

  • V = 1743.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.87 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.240, Tmax = 0.379

  • 17431 measured reflections

  • 3991 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.10

  • 3991 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.91 1.79 2.667 (6) 162
O1—H1D⋯O6 0.82 1.71 2.519 (5) 170
O4—H4C⋯O3i 0.82 1.80 2.560 (5) 155
O5—H5C⋯O3i 0.82 1.73 2.555 (5) 179
O7—H7C⋯O2ii 0.82 1.77 2.555 (5) 159
O8—H8D⋯Br1iii 0.96 2.18 3.100 (4) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions in which there is a dielectric anomaly at the transition temperature (Szafranski & Katrusiak, 2008; Katrusiak & Szafranski, 1999; Chen et al., 2008; Fu et al., 2009; Zhao et al., 2008). Unluckily, the title compound, whose crystal structure is reported herein, has no dielectric disuniformity from 93 K to 400 K (m.p. = 410-412 K).

The asymmetric unit of the title compound (Fig. 1) consists of a 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dication, a bromide anion, a dihydrogenphosphate anion and a phosphoric acid molecule. In the crystal packing (Fig. 2), intermolecular N—H···O, O—H···O and O—H···Br hydrogen interactions (Table 1) link ions and molecules forming layers parallel to the (101) plane.

Related literature top

For the dielectric properties of N-protonated compounds, see: Szafranski & Katrusiak (2008); Katrusiak & Szafranski (1999); Chen et al. (2008); Fu et al. (2009); Zhao et al. (2008).

Experimental top

To a solution of 1,4-diazabicyclo[2.2.2]octane (5.6 g, 0.05 mol) in chloroform (20 ml) 1,2-dibromoethane (0.048 mol) was added in one portion and the mixture was refluxed for 8 hour. On standing for about 16 hour at room temperature, colourless hygroscopic crystals of 4-diazabicyclo[2.2.2]octan-1-ium bromide were obtained. The crude product was collected and dissolved in 20 ml methanol, then 1 M H3PO4 was dropped slowly with stirring. The white precipitate formed (yield 80%) was filtered and dissolved in the H2O. After a few weeks, colourless hygroscopic block crystals of the title compound were obtained on slow evaporation of the solvent.

Refinement top

All the H atoms were calculated geometrically and refined using a riding model, with N—H = 0.90 Å, C—H = 0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Structure description top

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions in which there is a dielectric anomaly at the transition temperature (Szafranski & Katrusiak, 2008; Katrusiak & Szafranski, 1999; Chen et al., 2008; Fu et al., 2009; Zhao et al., 2008). Unluckily, the title compound, whose crystal structure is reported herein, has no dielectric disuniformity from 93 K to 400 K (m.p. = 410-412 K).

The asymmetric unit of the title compound (Fig. 1) consists of a 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dication, a bromide anion, a dihydrogenphosphate anion and a phosphoric acid molecule. In the crystal packing (Fig. 2), intermolecular N—H···O, O—H···O and O—H···Br hydrogen interactions (Table 1) link ions and molecules forming layers parallel to the (101) plane.

For the dielectric properties of N-protonated compounds, see: Szafranski & Katrusiak (2008); Katrusiak & Szafranski (1999); Chen et al. (2008); Fu et al. (2009); Zhao et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
1-(2-Bromoethyl)-1,4-diazoniabicyclo[2.2.2]octane bromide dihydrogen phosphate–phosphoric acid (1/1) top
Crystal data top
C8H17BrN22+·Br·H2PO4·H3PO4F(000) = 992
Mr = 496.02Dx = 1.889 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7671 reflections
a = 12.963 (3) Åθ = 3.4–27.5°
b = 7.5959 (15) ŵ = 4.87 mm1
c = 17.721 (4) ÅT = 293 K
β = 92.00 (3)°Prism, colourless
V = 1743.9 (7) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3097 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.240, Tmax = 0.379l = 2322
17431 measured reflections1814 standard reflections
3991 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0703P)2 + 1.8668P]
where P = (Fo2 + 2Fc2)/3
3991 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
C8H17BrN22+·Br·H2PO4·H3PO4V = 1743.9 (7) Å3
Mr = 496.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.963 (3) ŵ = 4.87 mm1
b = 7.5959 (15) ÅT = 293 K
c = 17.721 (4) Å0.3 × 0.25 × 0.2 mm
β = 92.00 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3991 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3097 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.379Rint = 0.072
17431 measured reflections1814 standard reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.10Δρmax = 1.03 e Å3
3991 reflectionsΔρmin = 1.30 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8045 (5)0.7487 (8)0.5147 (3)0.0471 (14)
H1A0.82210.64580.54500.057*
H1B0.82400.85270.54360.057*
C20.8627 (4)0.7443 (7)0.4414 (3)0.0352 (11)
H2A0.90450.84960.43740.042*
H2B0.90830.64310.44130.042*
C30.6645 (5)0.9084 (8)0.4485 (3)0.0458 (14)
H3A0.68511.01540.47480.055*
H3B0.59050.91260.43870.055*
C40.7193 (4)0.8955 (6)0.3750 (2)0.0283 (10)
H4A0.76100.99990.36810.034*
H4B0.66900.88870.33330.034*
C50.6608 (5)0.5869 (8)0.4562 (3)0.0491 (15)
H5A0.58750.58940.44340.059*
H5B0.67480.48580.48850.059*
C60.7217 (4)0.5720 (6)0.3848 (3)0.0323 (11)
H6A0.76540.46840.38770.039*
H6B0.67450.55910.34150.039*
C70.8408 (4)0.7146 (7)0.3008 (3)0.0378 (12)
H7A0.88070.60650.30190.045*
H7B0.78880.70470.26030.045*
C80.9111 (5)0.8654 (8)0.2840 (3)0.0492 (14)
H8A0.96380.87780.32380.059*
H8B0.87220.97430.28030.059*
N10.6916 (4)0.7512 (5)0.4966 (2)0.0344 (10)
H1C0.65700.75800.54040.041*
N20.7874 (3)0.7339 (5)0.3752 (2)0.0262 (8)
O10.4055 (3)0.7844 (4)0.65616 (19)0.0342 (8)
H1D0.37130.75030.69140.051*
O20.5835 (3)0.8397 (4)0.6163 (2)0.0407 (9)
O30.5392 (3)0.5469 (4)0.6708 (2)0.0401 (9)
O40.5490 (3)0.8038 (5)0.7549 (2)0.0438 (9)
H4C0.51000.88350.76670.066*
O50.2784 (3)0.9370 (5)0.8525 (3)0.0589 (11)
H5C0.33710.97070.84480.088*
O60.2824 (3)0.6928 (6)0.7558 (2)0.0578 (12)
O70.3544 (4)0.6584 (6)0.8901 (2)0.0622 (12)
H7C0.36390.55480.87940.093*
O80.1613 (4)0.6852 (7)0.8600 (2)0.0734 (15)
H8D0.15110.72970.90990.110*
Br10.11078 (4)0.73719 (7)0.02823 (3)0.03808 (18)
Br20.97424 (5)0.81384 (9)0.18848 (3)0.0491 (2)
P10.52097 (10)0.74245 (15)0.67295 (7)0.0260 (3)
P20.26999 (11)0.73716 (17)0.83560 (8)0.0336 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (4)0.061 (4)0.027 (3)0.003 (3)0.015 (2)0.004 (2)
C20.027 (3)0.037 (3)0.041 (3)0.001 (2)0.010 (2)0.003 (2)
C30.054 (3)0.045 (3)0.039 (3)0.018 (3)0.011 (3)0.008 (2)
C40.034 (3)0.025 (2)0.026 (2)0.0043 (19)0.0025 (19)0.0012 (18)
C50.064 (4)0.044 (3)0.040 (3)0.024 (3)0.007 (3)0.005 (3)
C60.038 (3)0.023 (2)0.035 (3)0.004 (2)0.008 (2)0.0012 (19)
C70.040 (3)0.038 (3)0.035 (3)0.004 (2)0.004 (2)0.008 (2)
C80.048 (3)0.060 (4)0.040 (3)0.005 (3)0.017 (3)0.013 (3)
N10.045 (3)0.032 (2)0.026 (2)0.0003 (18)0.0029 (19)0.0015 (16)
N20.027 (2)0.0226 (18)0.029 (2)0.0039 (15)0.0020 (16)0.0014 (15)
O10.0329 (19)0.0411 (19)0.0284 (17)0.0070 (15)0.0029 (15)0.0076 (15)
O20.052 (2)0.0301 (18)0.042 (2)0.0086 (16)0.0173 (17)0.0011 (15)
O30.047 (2)0.0254 (17)0.048 (2)0.0046 (15)0.0133 (17)0.0055 (15)
O40.041 (2)0.058 (2)0.0319 (19)0.0148 (18)0.0095 (16)0.0110 (17)
O50.053 (2)0.040 (2)0.085 (3)0.0016 (19)0.014 (2)0.010 (2)
O60.054 (3)0.088 (3)0.033 (2)0.016 (2)0.0131 (19)0.014 (2)
O70.084 (3)0.047 (2)0.055 (3)0.016 (2)0.007 (2)0.005 (2)
O80.063 (3)0.113 (4)0.045 (2)0.044 (3)0.020 (2)0.022 (3)
Br10.0384 (3)0.0382 (3)0.0377 (3)0.0004 (2)0.0016 (2)0.0041 (2)
Br20.0453 (4)0.0619 (4)0.0406 (3)0.0004 (3)0.0118 (3)0.0015 (3)
P10.0294 (6)0.0237 (6)0.0251 (6)0.0022 (5)0.0035 (5)0.0006 (4)
P20.0386 (7)0.0318 (7)0.0308 (7)0.0040 (5)0.0064 (6)0.0031 (5)
Geometric parameters (Å, º) top
C1—N11.488 (7)C7—C81.500 (8)
C1—C21.526 (8)C7—N21.517 (6)
C1—H1A0.9700C7—H7A0.9700
C1—H1B0.9700C7—H7B0.9700
C2—N21.501 (6)C8—Br21.945 (5)
C2—H2A0.9700C8—H8A0.9700
C2—H2B0.9700C8—H8B0.9700
C3—N11.501 (6)N1—H1C0.9100
C3—C41.510 (7)O1—P11.549 (4)
C3—H3A0.9700O1—H1D0.8200
C3—H3B0.9700O2—P11.507 (3)
C4—N21.511 (6)O3—P11.505 (3)
C4—H4A0.9700O4—P11.556 (4)
C4—H4B0.9700O4—H4C0.8200
C5—N11.486 (6)O5—P21.550 (4)
C5—C61.519 (7)O5—H5C0.8200
C5—H5A0.9700O6—P21.468 (4)
C5—H5B0.9700O7—P21.554 (4)
C6—N21.509 (6)O7—H7C0.8200
C6—H6A0.9700O8—P21.539 (4)
C6—H6B0.9700O8—H8D0.9600
N1—C1—C2109.1 (4)C8—C7—H7B108.9
N1—C1—H1A109.9N2—C7—H7B108.9
C2—C1—H1A109.9H7A—C7—H7B107.7
N1—C1—H1B109.9C7—C8—Br2107.2 (4)
C2—C1—H1B109.9C7—C8—H8A110.3
H1A—C1—H1B108.3Br2—C8—H8A110.3
N2—C2—C1109.9 (4)C7—C8—H8B110.3
N2—C2—H2A109.7Br2—C8—H8B110.3
C1—C2—H2A109.7H8A—C8—H8B108.5
N2—C2—H2B109.7C5—N1—C1109.8 (4)
C1—C2—H2B109.7C5—N1—C3110.0 (4)
H2A—C2—H2B108.2C1—N1—C3110.0 (4)
N1—C3—C4109.3 (4)C5—N1—H1C109.0
N1—C3—H3A109.8C1—N1—H1C109.0
C4—C3—H3A109.8C3—N1—H1C109.0
N1—C3—H3B109.8C2—N2—C6108.0 (4)
C4—C3—H3B109.8C2—N2—C4108.8 (3)
H3A—C3—H3B108.3C6—N2—C4109.3 (4)
C3—C4—N2110.1 (4)C2—N2—C7112.3 (4)
C3—C4—H4A109.6C6—N2—C7107.2 (4)
N2—C4—H4A109.6C4—N2—C7111.1 (4)
C3—C4—H4B109.6P1—O1—H1D109.5
N2—C4—H4B109.6P1—O4—H4C109.5
H4A—C4—H4B108.2P2—O5—H5C109.5
N1—C5—C6109.0 (4)P2—O7—H7C109.5
N1—C5—H5A109.9P2—O8—H8D109.0
C6—C5—H5A109.9O3—P1—O2112.23 (19)
N1—C5—H5B109.9O3—P1—O1110.5 (2)
C6—C5—H5B109.9O2—P1—O1108.1 (2)
H5A—C5—H5B108.3O3—P1—O4106.7 (2)
N2—C6—C5110.2 (4)O2—P1—O4111.2 (2)
N2—C6—H6A109.6O1—P1—O4108.1 (2)
C5—C6—H6A109.6O6—P2—O8110.1 (3)
N2—C6—H6B109.6O6—P2—O5113.7 (3)
C5—C6—H6B109.6O8—P2—O5104.8 (3)
H6A—C6—H6B108.1O6—P2—O7114.4 (3)
C8—C7—N2113.5 (4)O8—P2—O7111.0 (3)
C8—C7—H7A108.9O5—P2—O7102.3 (2)
N2—C7—H7A108.9
N1—C1—C2—N23.1 (6)C1—C2—N2—C461.1 (5)
N1—C3—C4—N22.8 (6)C1—C2—N2—C7175.5 (4)
N1—C5—C6—N24.0 (6)C5—C6—N2—C262.0 (5)
N2—C7—C8—Br2178.6 (3)C5—C6—N2—C456.2 (5)
C6—C5—N1—C158.3 (6)C5—C6—N2—C7176.8 (4)
C6—C5—N1—C362.8 (6)C3—C4—N2—C257.6 (5)
C2—C1—N1—C562.7 (5)C3—C4—N2—C660.1 (5)
C2—C1—N1—C358.4 (5)C3—C4—N2—C7178.2 (4)
C4—C3—N1—C559.0 (6)C8—C7—N2—C260.4 (6)
C4—C3—N1—C162.0 (6)C8—C7—N2—C6178.9 (4)
C1—C2—N2—C657.5 (5)C8—C7—N2—C461.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.911.792.667 (6)162
O1—H1D···O60.821.712.519 (5)170
O4—H4C···O3i0.821.802.560 (5)155
O5—H5C···O3i0.821.732.555 (5)179
O7—H7C···O2ii0.821.772.555 (5)159
O8—H8D···Br1iii0.962.183.100 (4)160
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H17BrN22+·Br·H2PO4·H3PO4
Mr496.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.963 (3), 7.5959 (15), 17.721 (4)
β (°) 92.00 (3)
V3)1743.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.87
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.240, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
17431, 3991, 3097
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.10
No. of reflections3991
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.911.792.667 (6)162.2
O1—H1D···O60.821.712.519 (5)170.2
O4—H4C···O3i0.821.802.560 (5)154.5
O5—H5C···O3i0.821.732.555 (5)178.7
O7—H7C···O2ii0.821.772.555 (5)159.4
O8—H8D···Br1iii0.962.183.100 (4)160
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationChen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2008). Cryst. Growth Des. 9, 3828–3831.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafranski, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafranski, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 6779–6785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds