metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-κ4O:O′;κ3O:O,O′;κ3O,O′:O′-bis­­[(benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)terbium(III)] benzoic acid disolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2010; accepted 7 May 2010; online 15 May 2010)

The asymmetric unit of the title complex, [Tb2(C7H5O2)6(C12H8N2)2]·2C7H6O2, consists of one-half of the complex mol­ecule, which lies on a crystallographic inversion centre, and one benzoic acid solvent mol­ecule. The two TbIII ions are linked by four bridging benzoate ions, with a Tb⋯Tb distance of 3.9280 (6) Å. Additionally, each TbIII ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the TbIII ion is composed of seven O and two N atoms. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds. In the crystal structure, mol­ecules are linked into chains along the a axis by inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions. Weak ππ inter­actions are also observed [centroid–centroid distances = 3.6275 (14)–3.6604 (14) Å].

Related literature

For general background to and applications of terbium(III) complexes, see: Xin et al. (2003[Xin, H., Li, F. Y., Shi, M., Bian, Z. Q. & Huang, C. H. (2003). J. Am. Chem. Soc. 125, 7166-7167.]); Tian et al. (2009[Tian, L., Ren, N., Zhang, J. J., Liu, H. M., Bai, J. H., Ye, H. M. & Sun, S. J. (2009). Inorg. Chim. Acta, 362, 3388-3394.]). For related Ln–benzoato (Ln = lanthanide) complexes, see: Niu et al. (1999[Niu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245-248.], 2002[Niu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103-1106.]); Shi et al. (2001[Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122-m123.]); Ooi et al. (2010a[Ooi, P. H., Teoh, S. G., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, m221-m222.],b[Ooi, P. H., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m597-m598.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C7H5O2)6(C12H8N2)2]·2C7H6O2

  • Mr = 1649.14

  • Triclinic, [P \overline 1]

  • a = 9.5264 (15) Å

  • b = 12.719 (2) Å

  • c = 15.061 (2) Å

  • α = 74.836 (6)°

  • β = 78.345 (6)°

  • γ = 76.242 (6)°

  • V = 1691.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 100 K

  • 0.59 × 0.27 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.364, Tmax = 0.765

  • 71560 measured reflections

  • 11944 independent reflections

  • 11553 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.101

  • S = 1.20

  • 11944 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −2.25 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O5i 2.3349 (14)
Tb1—O4i 2.3420 (15)
Tb1—O6 2.3490 (15)
Tb1—O3 2.4251 (15)
Tb1—O1 2.4669 (15)
Tb1—O2 2.4672 (15)
Tb1—N2 2.5370 (17)
Tb1—N1 2.5813 (18)
Tb1—O4 2.6057 (16)
Symmetry code: (i) -x+2, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C35–C40 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1O8⋯O1 0.82 1.88 2.640 (3) 154
C2—H2A⋯O5i 0.93 2.40 3.036 (3) 125
C4—H4A⋯O2ii 0.93 2.45 3.172 (3) 135
C11—H11A⋯O6 0.93 2.40 2.969 (3) 120
C15—H15A⋯O7 0.93 2.58 3.448 (3) 155
C23—H23ACg1iii 0.93 2.57 3.462 (3) 160
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x-1, y, z; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Lanthanide complexes, especially terbium and europium complexes possess excellent luminescence properties due to their narrow emission bands and are widely used in lighting devices (Xin et al., 2003). Rare-earth metals with benzoic acid and some of the derivatives or with mixed ligands have drawn great attention due to the various crystal structures and unique properties (Tian et al., 2009). The title compound (I) was synthesized and its structure was determined. Similar crystal structures with different lanthanides have been reported, such as lanthanum(III) (Shi et al., 2001), samarium(III) (Niu et al., 1999), gadolinium(III) (Niu et al., 2002) and neodymium(III) (Ooi et al., 2010a).

The asymmetric unit of (I) (Fig. 1) consists of one-half of the complex molecule and one benzoic acid. The complex molecule lies on a crystallographic inversion center. The geometric parameters and the configuration is very close to the related europium(III) complex (Ooi et al., 2010b). The two terbium(III) ions are linked by four benzoate ions, with an Tb–Tb distance of 3.9280 (6) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the terbium(III) ions. Additionally, each terbium(III) ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the terbium(III) ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Bond lengths of Tb–O and Tb–N are listed in Table 1.

In the crystal structure, intermolecular C4—H4A···O2 hydrogen bonds (Table 2) link the molecules into chains along the a axis (Fig. 2). The crystal structure is further stabilized by intermolecular O8—H1O8···O1, C15A—H15A···O7 and C23—H23A···Cg1 interactions (Table 2; Cg1 is the centroid of the C35–C40 phenyl ring). Intramolecular C2—H2A···O5 and C11—H11A···O6 hydrogen bonds (Table 2) stabilize the molecular structure. Weak ππ interactions of Cg2···Cg3iv = 3.6604 (14) Å and Cg3···Cg3iv = 3.6275 (14) Å [Cg2 and Cg3 are centroids of rings C8–C11/N2/C12 and C1/C5–C8/C12; symmetry code: (iv) 1-x, 1-y, 2-z] are observed.

Related literature top

For general background to and applications of terbium(III) complexes, see: Xin et al. (2003); Tian et al. (2009). For related Ln–benzoato (Ln = lanthanide) complexes, see: Niu et al. (1999, 2002); Shi et al. (2001); Ooi et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

0.5 mmol of TbCl3.6H2O was dissolved in methanol and then was added into a solution (methanol-H2O, 1.5:1) of 1,10-phenanthroline (0.5 mmol) and benzoic acid (1.5 mmol). The mixture was sealed in a tube, and heated directly to 403 K. After keeping at 403 K for 2 days, it was cooled to room temperature. Colourless block crystals of the title compound were obtained by filtration, and were washed with water and ethanol.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C–H = 0.93 Å, O–H = 0.82 Å, and refined using a riding model with Uiso = 1.2 Ueq(C) or 1.5 Ueq(O).

Structure description top

Lanthanide complexes, especially terbium and europium complexes possess excellent luminescence properties due to their narrow emission bands and are widely used in lighting devices (Xin et al., 2003). Rare-earth metals with benzoic acid and some of the derivatives or with mixed ligands have drawn great attention due to the various crystal structures and unique properties (Tian et al., 2009). The title compound (I) was synthesized and its structure was determined. Similar crystal structures with different lanthanides have been reported, such as lanthanum(III) (Shi et al., 2001), samarium(III) (Niu et al., 1999), gadolinium(III) (Niu et al., 2002) and neodymium(III) (Ooi et al., 2010a).

The asymmetric unit of (I) (Fig. 1) consists of one-half of the complex molecule and one benzoic acid. The complex molecule lies on a crystallographic inversion center. The geometric parameters and the configuration is very close to the related europium(III) complex (Ooi et al., 2010b). The two terbium(III) ions are linked by four benzoate ions, with an Tb–Tb distance of 3.9280 (6) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the terbium(III) ions. Additionally, each terbium(III) ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the terbium(III) ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Bond lengths of Tb–O and Tb–N are listed in Table 1.

In the crystal structure, intermolecular C4—H4A···O2 hydrogen bonds (Table 2) link the molecules into chains along the a axis (Fig. 2). The crystal structure is further stabilized by intermolecular O8—H1O8···O1, C15A—H15A···O7 and C23—H23A···Cg1 interactions (Table 2; Cg1 is the centroid of the C35–C40 phenyl ring). Intramolecular C2—H2A···O5 and C11—H11A···O6 hydrogen bonds (Table 2) stabilize the molecular structure. Weak ππ interactions of Cg2···Cg3iv = 3.6604 (14) Å and Cg3···Cg3iv = 3.6275 (14) Å [Cg2 and Cg3 are centroids of rings C8–C11/N2/C12 and C1/C5–C8/C12; symmetry code: (iv) 1-x, 1-y, 2-z] are observed.

For general background to and applications of terbium(III) complexes, see: Xin et al. (2003); Tian et al. (2009). For related Ln–benzoato (Ln = lanthanide) complexes, see: Niu et al. (1999, 2002); Shi et al. (2001); Ooi et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 20% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The suffix A corresponds to the symmetry code [-x+2, -y, -z+2].
[Figure 2] Fig. 2. The crystal structure of the title complex, viewed along the a axis, showing four chains along a axis. The benzoic acid solvent molecules have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines.
Tetra-µ-benzoato-κ4O:O';κ3O:O,O'; κ3O,O':O'-bis[(benzoato-κ2O,O')(1,10- phenanthroline-κ2N,N')terbium(III)] benzoic acid disolvate top
Crystal data top
[Tb2(C7H5O2)6(C12H8N2)2]·2C7H6O2Z = 1
Mr = 1649.14F(000) = 824
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5264 (15) ÅCell parameters from 9691 reflections
b = 12.719 (2) Åθ = 4.5–40.3°
c = 15.061 (2) ŵ = 2.15 mm1
α = 74.836 (6)°T = 100 K
β = 78.345 (6)°Block, colourless
γ = 76.242 (6)°0.59 × 0.27 × 0.13 mm
V = 1691.7 (4) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
11944 independent reflections
Radiation source: fine-focus sealed tube11553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.364, Tmax = 0.765k = 1919
71560 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.5014P]
where P = (Fo2 + 2Fc2)/3
11944 reflections(Δ/σ)max = 0.006
460 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 2.25 e Å3
Crystal data top
[Tb2(C7H5O2)6(C12H8N2)2]·2C7H6O2γ = 76.242 (6)°
Mr = 1649.14V = 1691.7 (4) Å3
Triclinic, P1Z = 1
a = 9.5264 (15) ÅMo Kα radiation
b = 12.719 (2) ŵ = 2.15 mm1
c = 15.061 (2) ÅT = 100 K
α = 74.836 (6)°0.59 × 0.27 × 0.13 mm
β = 78.345 (6)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
11944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
11553 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.765Rint = 0.025
71560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.20Δρmax = 1.41 e Å3
11944 reflectionsΔρmin = 2.25 e Å3
460 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.854736 (8)0.139249 (6)0.983123 (5)0.00821 (4)
O10.81573 (17)0.27589 (13)0.83589 (10)0.0136 (2)
O20.99273 (17)0.28773 (13)0.90388 (10)0.0142 (3)
O30.71754 (17)0.05736 (13)1.12842 (10)0.0151 (3)
O40.92371 (16)0.05516 (13)1.09240 (10)0.0125 (2)
O51.20586 (16)0.01538 (12)1.08640 (10)0.0125 (2)
O61.01879 (16)0.13125 (12)1.08315 (10)0.0128 (2)
N10.57889 (18)0.21253 (14)0.97767 (12)0.0117 (3)
N20.73763 (19)0.29920 (14)1.06183 (12)0.0119 (3)
C10.5069 (2)0.29323 (16)1.02408 (13)0.0118 (3)
C20.5018 (2)0.17375 (17)0.93360 (15)0.0153 (3)
H2A0.55020.11900.90150.018*
C30.3507 (2)0.21131 (19)0.93312 (16)0.0179 (4)
H3A0.30090.18190.90130.022*
C40.2774 (2)0.29236 (18)0.98047 (16)0.0172 (4)
H4A0.17750.31870.98080.021*
C50.3556 (2)0.33437 (16)1.02809 (14)0.0143 (3)
C60.2861 (2)0.4186 (2)1.07950 (16)0.0196 (4)
H6A0.18580.44471.08300.024*
C70.3645 (3)0.46038 (19)1.12277 (16)0.0190 (4)
H7A0.31760.51521.15520.023*
C80.5192 (2)0.42095 (17)1.11911 (14)0.0150 (3)
C90.6044 (3)0.46323 (18)1.16243 (15)0.0180 (4)
H9A0.56080.51641.19700.022*
C100.7530 (3)0.42479 (18)1.15290 (15)0.0184 (4)
H10A0.81160.45231.18020.022*
C110.8150 (3)0.34356 (19)1.10146 (15)0.0160 (4)
H11A0.91590.31931.09460.019*
C120.5909 (2)0.33772 (16)1.06979 (13)0.0120 (3)
C130.9288 (2)0.31535 (16)0.83381 (13)0.0117 (3)
C140.9857 (2)0.39245 (16)0.74819 (13)0.0132 (3)
C150.8946 (2)0.45653 (17)0.68380 (14)0.0154 (3)
H15A0.79700.45050.69290.019*
C160.9508 (3)0.52973 (19)0.60562 (15)0.0204 (4)
H16A0.89000.57390.56330.024*
C171.0978 (3)0.5369 (2)0.59085 (16)0.0234 (4)
H17A1.13470.58590.53870.028*
C181.1888 (3)0.4715 (2)0.65327 (16)0.0222 (4)
H18A1.28730.47530.64250.027*
C191.1326 (2)0.39948 (18)0.73292 (15)0.0165 (3)
H19A1.19340.35630.77560.020*
C200.8169 (2)0.02502 (16)1.15246 (13)0.0113 (3)
C210.8118 (2)0.08378 (16)1.25201 (13)0.0119 (3)
C220.6784 (2)0.0938 (2)1.30829 (15)0.0180 (4)
H22A0.59190.06621.28310.022*
C230.6744 (3)0.1448 (2)1.40201 (16)0.0234 (4)
H23A0.58520.15191.43960.028*
C240.8026 (3)0.1851 (2)1.43949 (16)0.0232 (4)
H24A0.79930.21871.50240.028*
C250.9368 (3)0.1757 (2)1.38402 (15)0.0211 (4)
H25A1.02300.20351.40960.025*
C260.9411 (2)0.12441 (18)1.28979 (14)0.0156 (3)
H26A1.03030.11741.25230.019*
C271.1338 (2)0.07212 (17)1.11195 (13)0.0114 (3)
C281.1887 (2)0.11019 (17)1.18255 (13)0.0123 (3)
C291.3377 (2)0.09517 (17)1.18401 (13)0.0133 (3)
H29A1.40440.05461.14510.016*
C301.3869 (2)0.1408 (2)1.24357 (15)0.0178 (4)
H30A1.48660.13261.24310.021*
C311.2878 (3)0.1983 (2)1.30368 (18)0.0250 (5)
H31A1.32130.22861.34350.030*
C321.1377 (3)0.2110 (3)1.30473 (19)0.0289 (5)
H32A1.07120.24811.34620.035*
C331.0880 (2)0.1681 (2)1.24358 (16)0.0198 (4)
H33A0.98830.17781.24310.024*
O70.5748 (2)0.39406 (17)0.65710 (15)0.0275 (4)
O80.7119 (2)0.22746 (16)0.70482 (13)0.0232 (3)
H1O80.71800.25480.74720.035*
C340.6364 (2)0.3025 (2)0.64473 (16)0.0182 (4)
C350.6377 (3)0.2640 (2)0.55910 (16)0.0204 (4)
C360.7126 (3)0.1611 (3)0.5463 (2)0.0314 (6)
H36A0.76010.11130.59330.038*
C370.7172 (4)0.1314 (4)0.4626 (3)0.0471 (10)
H37A0.76850.06210.45360.056*
C380.6459 (4)0.2047 (4)0.3932 (2)0.0448 (9)
H38A0.65030.18510.33730.054*
C390.5691 (4)0.3057 (3)0.40607 (19)0.0409 (9)
H39A0.52010.35410.35920.049*
C400.5630 (4)0.3373 (3)0.48907 (18)0.0290 (5)
H40B0.50980.40630.49770.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00733 (6)0.00899 (6)0.00856 (6)0.00089 (3)0.00166 (3)0.00267 (3)
O10.0125 (6)0.0153 (6)0.0137 (6)0.0053 (5)0.0031 (5)0.0015 (5)
O20.0145 (6)0.0148 (6)0.0135 (6)0.0041 (5)0.0041 (5)0.0012 (5)
O30.0120 (6)0.0155 (6)0.0137 (6)0.0016 (5)0.0005 (5)0.0009 (5)
O40.0110 (6)0.0155 (6)0.0114 (5)0.0027 (5)0.0005 (4)0.0052 (5)
O50.0111 (6)0.0112 (6)0.0162 (6)0.0001 (5)0.0036 (5)0.0056 (5)
O60.0123 (6)0.0129 (6)0.0140 (6)0.0006 (5)0.0055 (5)0.0047 (5)
N10.0100 (6)0.0117 (6)0.0133 (6)0.0016 (5)0.0019 (5)0.0033 (5)
N20.0117 (7)0.0103 (6)0.0144 (7)0.0006 (5)0.0039 (5)0.0038 (5)
C10.0095 (7)0.0115 (7)0.0132 (7)0.0010 (6)0.0017 (6)0.0016 (6)
C20.0132 (8)0.0156 (8)0.0190 (8)0.0026 (7)0.0056 (7)0.0049 (6)
C30.0131 (8)0.0191 (9)0.0231 (9)0.0046 (7)0.0076 (7)0.0024 (7)
C40.0103 (8)0.0156 (8)0.0230 (9)0.0016 (7)0.0034 (7)0.0001 (7)
C50.0098 (7)0.0115 (7)0.0182 (8)0.0005 (6)0.0011 (6)0.0007 (6)
C60.0123 (8)0.0211 (9)0.0208 (9)0.0001 (7)0.0028 (7)0.0034 (7)
C70.0172 (9)0.0174 (9)0.0183 (9)0.0024 (7)0.0025 (7)0.0059 (7)
C80.0160 (8)0.0123 (8)0.0141 (7)0.0011 (6)0.0003 (6)0.0037 (6)
C90.0240 (10)0.0142 (8)0.0153 (8)0.0009 (7)0.0027 (7)0.0071 (6)
C100.0236 (10)0.0154 (8)0.0187 (9)0.0010 (7)0.0066 (7)0.0082 (7)
C110.0162 (9)0.0178 (9)0.0173 (9)0.0042 (7)0.0051 (7)0.0070 (7)
C120.0114 (7)0.0127 (7)0.0113 (7)0.0019 (6)0.0001 (6)0.0032 (6)
C130.0114 (8)0.0116 (7)0.0126 (7)0.0021 (6)0.0021 (6)0.0032 (6)
C140.0159 (8)0.0128 (7)0.0111 (7)0.0048 (6)0.0003 (6)0.0028 (6)
C150.0190 (9)0.0139 (8)0.0127 (7)0.0019 (7)0.0023 (6)0.0031 (6)
C160.0290 (11)0.0172 (9)0.0133 (8)0.0050 (8)0.0025 (7)0.0007 (7)
C170.0335 (12)0.0222 (10)0.0147 (8)0.0130 (9)0.0014 (8)0.0018 (7)
C180.0248 (11)0.0269 (11)0.0177 (9)0.0154 (9)0.0022 (8)0.0046 (8)
C190.0173 (9)0.0181 (9)0.0159 (8)0.0072 (7)0.0013 (7)0.0046 (7)
C200.0098 (7)0.0130 (7)0.0110 (7)0.0032 (6)0.0006 (6)0.0024 (6)
C210.0120 (7)0.0111 (7)0.0113 (7)0.0016 (6)0.0006 (6)0.0017 (5)
C220.0144 (9)0.0232 (10)0.0148 (8)0.0069 (7)0.0003 (7)0.0002 (7)
C230.0208 (10)0.0307 (12)0.0154 (9)0.0106 (9)0.0016 (7)0.0021 (8)
C240.0264 (11)0.0269 (11)0.0129 (8)0.0065 (9)0.0020 (8)0.0020 (7)
C250.0204 (10)0.0266 (11)0.0147 (8)0.0022 (8)0.0061 (7)0.0014 (7)
C260.0146 (8)0.0183 (9)0.0133 (8)0.0021 (7)0.0025 (6)0.0033 (6)
C270.0111 (8)0.0137 (8)0.0107 (7)0.0038 (6)0.0019 (6)0.0037 (6)
C280.0118 (7)0.0151 (8)0.0118 (7)0.0025 (6)0.0027 (6)0.0055 (6)
C290.0122 (8)0.0151 (8)0.0141 (7)0.0018 (6)0.0033 (6)0.0053 (6)
C300.0156 (9)0.0245 (10)0.0174 (8)0.0053 (8)0.0049 (7)0.0086 (7)
C310.0202 (10)0.0392 (13)0.0236 (10)0.0056 (9)0.0043 (8)0.0201 (10)
C320.0206 (10)0.0470 (16)0.0279 (11)0.0046 (10)0.0008 (9)0.0278 (11)
C330.0130 (8)0.0307 (11)0.0194 (9)0.0010 (8)0.0019 (7)0.0149 (8)
O70.0284 (9)0.0259 (9)0.0323 (9)0.0025 (7)0.0143 (8)0.0129 (7)
O80.0244 (8)0.0232 (8)0.0253 (8)0.0009 (7)0.0132 (7)0.0091 (6)
C340.0146 (8)0.0219 (9)0.0198 (9)0.0035 (7)0.0049 (7)0.0061 (7)
C350.0173 (9)0.0289 (11)0.0193 (9)0.0096 (8)0.0028 (7)0.0084 (8)
C360.0209 (11)0.0417 (15)0.0413 (15)0.0014 (10)0.0090 (10)0.0269 (12)
C370.0299 (14)0.073 (3)0.057 (2)0.0113 (16)0.0017 (14)0.050 (2)
C380.0393 (17)0.082 (3)0.0297 (14)0.0327 (19)0.0044 (12)0.0306 (16)
C390.057 (2)0.061 (2)0.0171 (10)0.0429 (19)0.0069 (11)0.0013 (11)
C400.0395 (14)0.0340 (13)0.0197 (10)0.0232 (12)0.0092 (9)0.0011 (9)
Geometric parameters (Å, º) top
Tb1—O5i2.3349 (14)C15—H15A0.9300
Tb1—O4i2.3420 (15)C16—C171.394 (4)
Tb1—O62.3490 (15)C16—H16A0.9300
Tb1—O32.4251 (15)C17—C181.380 (4)
Tb1—O12.4669 (15)C17—H17A0.9300
Tb1—O22.4672 (15)C18—C191.402 (3)
Tb1—N22.5370 (17)C18—H18A0.9300
Tb1—N12.5813 (18)C19—H19A0.9300
Tb1—O42.6057 (16)C20—C211.487 (3)
Tb1—C132.8367 (19)C21—C221.391 (3)
Tb1—C202.8633 (19)C21—C261.391 (3)
Tb1—Tb1i3.9280 (6)C22—C231.388 (3)
O1—C131.284 (2)C22—H22A0.9300
O2—C131.254 (2)C23—C241.379 (4)
O3—C201.262 (3)C23—H23A0.9300
O4—C201.274 (2)C24—C251.391 (3)
O4—Tb1i2.3420 (15)C24—H24A0.9300
O5—C271.269 (2)C25—C261.395 (3)
O5—Tb1i2.3348 (14)C25—H25A0.9300
O6—C271.259 (2)C26—H26A0.9300
N1—C21.328 (3)C27—C281.501 (3)
N1—C11.364 (2)C28—C291.390 (3)
N2—C111.330 (3)C28—C331.404 (3)
N2—C121.358 (3)C29—C301.390 (3)
C1—C51.406 (3)C29—H29A0.9300
C1—C121.441 (3)C30—C311.385 (3)
C2—C31.406 (3)C30—H30A0.9300
C2—H2A0.9300C31—C321.398 (4)
C3—C41.378 (3)C31—H31A0.9300
C3—H3A0.9300C32—C331.389 (3)
C4—C51.401 (3)C32—H32A0.9300
C4—H4A0.9300C33—H33A0.9300
C5—C61.440 (3)O7—C341.217 (3)
C6—C71.353 (4)O8—C341.316 (3)
C6—H6A0.9300O8—H1O80.8200
C7—C81.434 (3)C34—C351.491 (3)
C7—H7A0.9300C35—C361.376 (4)
C8—C91.407 (3)C35—C401.400 (4)
C8—C121.415 (3)C36—C371.397 (4)
C9—C101.375 (3)C36—H36A0.9300
C9—H9A0.9300C37—C381.378 (7)
C10—C111.400 (3)C37—H37A0.9300
C10—H10A0.9300C38—C391.359 (6)
C11—H11A0.9300C38—H38A0.9300
C13—C141.493 (3)C39—C401.397 (4)
C14—C191.391 (3)C39—H39A0.9300
C14—C151.396 (3)C40—H40B0.9300
C15—C161.396 (3)
O5i—Tb1—O4i74.50 (5)C10—C9—C8119.06 (19)
O5i—Tb1—O6136.68 (5)C10—C9—H9A120.5
O4i—Tb1—O678.07 (5)C8—C9—H9A120.5
O5i—Tb1—O388.57 (5)C9—C10—C11119.1 (2)
O4i—Tb1—O3126.68 (5)C9—C10—H10A120.5
O6—Tb1—O381.63 (5)C11—C10—H10A120.5
O5i—Tb1—O185.28 (5)N2—C11—C10123.6 (2)
O4i—Tb1—O189.11 (5)N2—C11—H11A118.2
O6—Tb1—O1127.31 (5)C10—C11—H11A118.2
O3—Tb1—O1140.33 (5)N2—C12—C8122.55 (18)
O5i—Tb1—O2126.18 (5)N2—C12—C1118.12 (17)
O4i—Tb1—O273.03 (5)C8—C12—C1119.32 (18)
O6—Tb1—O274.65 (5)O2—C13—O1119.67 (18)
O3—Tb1—O2145.10 (5)O2—C13—C14119.87 (18)
O1—Tb1—O252.80 (5)O1—C13—C14120.46 (18)
O5i—Tb1—N2141.13 (5)O2—C13—Tb160.23 (10)
O4i—Tb1—N2143.06 (5)O1—C13—Tb160.29 (10)
O6—Tb1—N276.18 (5)C14—C13—Tb1170.03 (14)
O3—Tb1—N274.81 (5)C19—C14—C15120.02 (18)
O1—Tb1—N285.87 (5)C19—C14—C13118.85 (18)
O2—Tb1—N274.91 (5)C15—C14—C13121.13 (18)
O5i—Tb1—N177.20 (5)C16—C15—C14119.5 (2)
O4i—Tb1—N1145.78 (5)C16—C15—H15A120.2
O6—Tb1—N1136.14 (5)C14—C15—H15A120.2
O3—Tb1—N170.78 (5)C17—C16—C15120.2 (2)
O1—Tb1—N169.64 (5)C17—C16—H16A119.9
O2—Tb1—N1110.26 (5)C15—C16—H16A119.9
N2—Tb1—N164.24 (5)C18—C17—C16120.2 (2)
O5i—Tb1—O475.20 (5)C18—C17—H17A119.9
O4i—Tb1—O475.02 (5)C16—C17—H17A119.9
O6—Tb1—O465.64 (5)C17—C18—C19119.9 (2)
O3—Tb1—O451.71 (5)C17—C18—H18A120.0
O1—Tb1—O4157.45 (5)C19—C18—H18A120.0
O2—Tb1—O4133.00 (5)C14—C19—C18120.0 (2)
N2—Tb1—O4116.44 (5)C14—C19—H19A120.0
N1—Tb1—O4115.60 (5)C18—C19—H19A120.0
O5i—Tb1—C13105.11 (6)O3—C20—O4120.25 (18)
O4i—Tb1—C1377.50 (6)O3—C20—C21119.52 (17)
O6—Tb1—C13100.82 (6)O4—C20—C21120.18 (18)
O3—Tb1—C13155.23 (5)O3—C20—Tb157.25 (10)
O1—Tb1—C1326.87 (5)O4—C20—Tb165.44 (10)
O2—Tb1—C1326.18 (5)C21—C20—Tb1161.59 (13)
N2—Tb1—C1381.81 (6)C22—C21—C26119.98 (18)
N1—Tb1—C1391.87 (6)C22—C21—C20120.43 (18)
O4—Tb1—C13151.34 (5)C26—C21—C20119.53 (17)
O5i—Tb1—C2085.27 (6)C23—C22—C21120.0 (2)
O4i—Tb1—C20101.22 (6)C23—C22—H22A120.0
O6—Tb1—C2067.92 (5)C21—C22—H22A120.0
O3—Tb1—C2025.96 (5)C24—C23—C22120.0 (2)
O1—Tb1—C20163.59 (5)C24—C23—H23A120.0
O2—Tb1—C20142.47 (5)C22—C23—H23A120.0
N2—Tb1—C2093.14 (6)C23—C24—C25120.6 (2)
N1—Tb1—C2095.17 (5)C23—C24—H24A119.7
O4—Tb1—C2026.41 (5)C25—C24—H24A119.7
C13—Tb1—C20168.56 (6)C24—C25—C26119.5 (2)
O5i—Tb1—Tb1i70.80 (4)C24—C25—H25A120.3
O4i—Tb1—Tb1i39.85 (4)C26—C25—H25A120.3
O6—Tb1—Tb1i66.62 (4)C21—C26—C25119.9 (2)
O3—Tb1—Tb1i86.85 (4)C21—C26—H26A120.0
O1—Tb1—Tb1i127.12 (4)C25—C26—H26A120.0
O2—Tb1—Tb1i106.16 (4)O6—C27—O5125.75 (18)
N2—Tb1—Tb1i140.52 (4)O6—C27—C28116.05 (18)
N1—Tb1—Tb1i141.23 (4)O5—C27—C28118.20 (18)
O4—Tb1—Tb1i35.17 (3)C29—C28—C33119.88 (18)
C13—Tb1—Tb1i116.94 (4)C29—C28—C27120.82 (17)
C20—Tb1—Tb1i61.44 (4)C33—C28—C27119.16 (18)
C13—O1—Tb192.84 (12)C30—C29—C28120.00 (19)
C13—O2—Tb193.60 (12)C30—C29—H29A120.0
C20—O3—Tb196.79 (12)C28—C29—H29A120.0
C20—O4—Tb1i164.95 (14)C31—C30—C29120.2 (2)
C20—O4—Tb188.14 (12)C31—C30—H30A119.9
Tb1i—O4—Tb1104.98 (5)C29—C30—H30A119.9
C27—O5—Tb1i132.94 (13)C30—C31—C32120.2 (2)
C27—O6—Tb1141.05 (13)C30—C31—H31A119.9
C2—N1—C1117.85 (18)C32—C31—H31A119.9
C2—N1—Tb1123.32 (14)C33—C32—C31119.8 (2)
C1—N1—Tb1118.81 (12)C33—C32—H32A120.1
C11—N2—C12117.72 (18)C31—C32—H32A120.1
C11—N2—Tb1121.72 (14)C32—C33—C28119.9 (2)
C12—N2—Tb1120.44 (12)C32—C33—H33A120.1
N1—C1—C5122.49 (18)C28—C33—H33A120.1
N1—C1—C12118.00 (17)C34—O8—H1O8109.5
C5—C1—C12119.50 (18)O7—C34—O8123.5 (2)
N1—C2—C3123.3 (2)O7—C34—C35123.8 (2)
N1—C2—H2A118.4O8—C34—C35112.7 (2)
C3—C2—H2A118.4C36—C35—C40119.7 (2)
C4—C3—C2119.08 (19)C36—C35—C34122.1 (2)
C4—C3—H3A120.5C40—C35—C34118.2 (2)
C2—C3—H3A120.5C35—C36—C37119.9 (3)
C3—C4—C5118.96 (19)C35—C36—H36A120.1
C3—C4—H4A120.5C37—C36—H36A120.1
C5—C4—H4A120.5C38—C37—C36120.1 (4)
C4—C5—C1118.35 (19)C38—C37—H37A120.0
C4—C5—C6122.03 (19)C36—C37—H37A120.0
C1—C5—C6119.62 (19)C39—C38—C37120.4 (3)
C7—C6—C5121.1 (2)C39—C38—H38A119.8
C7—C6—H6A119.5C37—C38—H38A119.8
C5—C6—H6A119.5C38—C39—C40120.6 (3)
C6—C7—C8120.6 (2)C38—C39—H39A119.7
C6—C7—H7A119.7C40—C39—H39A119.7
C8—C7—H7A119.7C39—C40—C35119.3 (3)
C9—C8—C12117.9 (2)C39—C40—H40B120.4
C9—C8—C7122.18 (19)C35—C40—H40B120.4
C12—C8—C7119.9 (2)
O5i—Tb1—O1—C13137.88 (12)C9—C10—C11—N21.2 (3)
O4i—Tb1—O1—C1363.36 (12)C11—N2—C12—C80.9 (3)
O6—Tb1—O1—C1310.87 (14)Tb1—N2—C12—C8175.14 (14)
O3—Tb1—O1—C13140.10 (12)C11—N2—C12—C1177.66 (18)
O2—Tb1—O1—C135.85 (11)Tb1—N2—C12—C16.3 (2)
N2—Tb1—O1—C1380.01 (12)C9—C8—C12—N21.1 (3)
N1—Tb1—O1—C13144.03 (13)C7—C8—C12—N2178.23 (19)
O4—Tb1—O1—C13108.03 (15)C9—C8—C12—C1179.56 (18)
C20—Tb1—O1—C13167.10 (17)C7—C8—C12—C10.3 (3)
Tb1i—Tb1—O1—C1376.32 (12)N1—C1—C12—N21.9 (3)
O5i—Tb1—O2—C1340.92 (14)C5—C1—C12—N2177.64 (18)
O4i—Tb1—O2—C1396.20 (13)N1—C1—C12—C8179.53 (18)
O6—Tb1—O2—C13178.13 (13)C5—C1—C12—C80.9 (3)
O3—Tb1—O2—C13132.94 (12)Tb1—O2—C13—O110.6 (2)
O1—Tb1—O2—C136.00 (11)Tb1—O2—C13—C14168.50 (16)
N2—Tb1—O2—C13102.38 (13)Tb1—O1—C13—O210.6 (2)
N1—Tb1—O2—C1347.79 (13)Tb1—O1—C13—C14168.50 (16)
O4—Tb1—O2—C13145.35 (11)O5i—Tb1—C13—O2146.80 (12)
C20—Tb1—O2—C13177.43 (11)O4i—Tb1—C13—O276.88 (12)
Tb1i—Tb1—O2—C13118.66 (12)O6—Tb1—C13—O21.83 (13)
O5i—Tb1—O3—C2082.13 (13)O3—Tb1—C13—O291.64 (17)
O4i—Tb1—O3—C2012.74 (15)O1—Tb1—C13—O2169.4 (2)
O6—Tb1—O3—C2055.54 (12)N2—Tb1—C13—O272.32 (12)
O1—Tb1—O3—C20162.97 (11)N1—Tb1—C13—O2135.96 (12)
O2—Tb1—O3—C20102.83 (14)O4—Tb1—C13—O260.11 (17)
N2—Tb1—O3—C20133.41 (13)C20—Tb1—C13—O27.9 (3)
N1—Tb1—O3—C20159.07 (14)Tb1i—Tb1—C13—O270.97 (12)
O4—Tb1—O3—C209.94 (11)O5i—Tb1—C13—O143.82 (12)
C13—Tb1—O3—C20153.24 (15)O4i—Tb1—C13—O1113.73 (12)
Tb1i—Tb1—O3—C2011.28 (12)O6—Tb1—C13—O1171.22 (11)
O5i—Tb1—O4—C20109.90 (12)O3—Tb1—C13—O177.75 (18)
O4i—Tb1—O4—C20172.54 (14)O2—Tb1—C13—O1169.4 (2)
O6—Tb1—O4—C2089.07 (12)N2—Tb1—C13—O197.07 (12)
O3—Tb1—O4—C209.78 (11)N1—Tb1—C13—O133.43 (12)
O1—Tb1—O4—C20140.77 (14)O4—Tb1—C13—O1130.51 (12)
O2—Tb1—O4—C20124.05 (11)C20—Tb1—C13—O1161.5 (2)
N2—Tb1—O4—C2030.26 (13)Tb1i—Tb1—C13—O1119.65 (11)
N1—Tb1—O4—C2042.28 (12)O2—C13—C14—C1924.2 (3)
C13—Tb1—O4—C20155.58 (14)O1—C13—C14—C19154.9 (2)
Tb1i—Tb1—O4—C20172.54 (14)O2—C13—C14—C15156.1 (2)
O5i—Tb1—O4—Tb1i77.56 (6)O1—C13—C14—C1524.8 (3)
O4i—Tb1—O4—Tb1i0.0C19—C14—C15—C161.8 (3)
O6—Tb1—O4—Tb1i83.46 (6)C13—C14—C15—C16178.46 (19)
O3—Tb1—O4—Tb1i177.68 (9)C14—C15—C16—C171.5 (3)
O1—Tb1—O4—Tb1i46.69 (15)C15—C16—C17—C180.1 (4)
O2—Tb1—O4—Tb1i48.49 (8)C16—C17—C18—C191.4 (4)
N2—Tb1—O4—Tb1i142.27 (5)C15—C14—C19—C180.5 (3)
N1—Tb1—O4—Tb1i145.18 (5)C13—C14—C19—C18179.75 (19)
C13—Tb1—O4—Tb1i16.96 (13)C17—C18—C19—C141.1 (3)
C20—Tb1—O4—Tb1i172.54 (14)Tb1—O3—C20—O418.7 (2)
O5i—Tb1—O6—C2719.0 (2)Tb1—O3—C20—C21158.78 (15)
O4i—Tb1—O6—C2732.5 (2)Tb1i—O4—C20—O3168.3 (4)
O3—Tb1—O6—C2797.9 (2)Tb1—O4—C20—O317.25 (19)
O1—Tb1—O6—C27112.1 (2)Tb1i—O4—C20—C219.1 (6)
O2—Tb1—O6—C27107.9 (2)Tb1—O4—C20—C21160.22 (16)
N2—Tb1—O6—C27174.2 (2)Tb1i—O4—C20—Tb1151.1 (5)
N1—Tb1—O6—C27148.63 (19)O5i—Tb1—C20—O396.46 (13)
O4—Tb1—O6—C2746.3 (2)O4i—Tb1—C20—O3169.61 (12)
C13—Tb1—O6—C27107.1 (2)O6—Tb1—C20—O3118.32 (13)
C20—Tb1—O6—C2775.0 (2)O1—Tb1—C20—O341.4 (3)
Tb1i—Tb1—O6—C277.7 (2)O2—Tb1—C20—O3113.70 (13)
O5i—Tb1—N1—C27.84 (15)N2—Tb1—C20—O344.60 (13)
O4i—Tb1—N1—C226.9 (2)N1—Tb1—C20—O319.80 (13)
O6—Tb1—N1—C2155.01 (14)O4—Tb1—C20—O3162.27 (19)
O3—Tb1—N1—C2100.83 (16)C13—Tb1—C20—O3108.0 (3)
O1—Tb1—N1—C281.83 (16)Tb1i—Tb1—C20—O3167.15 (14)
O2—Tb1—N1—C2116.32 (16)O5i—Tb1—C20—O465.81 (11)
N2—Tb1—N1—C2177.22 (17)O4i—Tb1—C20—O47.35 (14)
O4—Tb1—N1—C274.30 (16)O6—Tb1—C20—O479.41 (11)
C13—Tb1—N1—C297.24 (16)O3—Tb1—C20—O4162.27 (19)
C20—Tb1—N1—C291.79 (16)O1—Tb1—C20—O4120.83 (19)
Tb1i—Tb1—N1—C242.63 (18)O2—Tb1—C20—O484.03 (14)
O5i—Tb1—N1—C1170.48 (14)N2—Tb1—C20—O4153.13 (11)
O4i—Tb1—N1—C1154.75 (12)N1—Tb1—C20—O4142.47 (11)
O6—Tb1—N1—C123.32 (17)C13—Tb1—C20—O489.8 (3)
O3—Tb1—N1—C177.50 (14)Tb1i—Tb1—C20—O44.89 (9)
O1—Tb1—N1—C199.84 (14)O5i—Tb1—C20—C21178.0 (4)
O2—Tb1—N1—C165.36 (14)O4i—Tb1—C20—C21104.8 (4)
N2—Tb1—N1—C14.46 (13)O6—Tb1—C20—C2132.8 (4)
O4—Tb1—N1—C1104.02 (14)O3—Tb1—C20—C2185.6 (4)
C13—Tb1—N1—C184.44 (14)O1—Tb1—C20—C21127.0 (4)
C20—Tb1—N1—C186.54 (14)O2—Tb1—C20—C2128.1 (5)
Tb1i—Tb1—N1—C1135.70 (12)N2—Tb1—C20—C2141.0 (4)
O5i—Tb1—N2—C11173.53 (14)N1—Tb1—C20—C21105.4 (4)
O4i—Tb1—N2—C1126.2 (2)O4—Tb1—C20—C21112.2 (5)
O6—Tb1—N2—C1120.83 (16)C13—Tb1—C20—C2122.4 (6)
O3—Tb1—N2—C11105.76 (16)Tb1i—Tb1—C20—C21107.3 (4)
O1—Tb1—N2—C11109.23 (16)O3—C20—C21—C2234.3 (3)
O2—Tb1—N2—C1156.70 (16)O4—C20—C21—C22148.2 (2)
N1—Tb1—N2—C11178.59 (18)Tb1—C20—C21—C22108.8 (4)
O4—Tb1—N2—C1174.21 (17)O3—C20—C21—C26142.7 (2)
C13—Tb1—N2—C1182.50 (16)O4—C20—C21—C2634.8 (3)
C20—Tb1—N2—C1187.18 (16)Tb1—C20—C21—C2668.2 (5)
Tb1i—Tb1—N2—C1140.54 (19)C26—C21—C22—C230.4 (3)
O5i—Tb1—N2—C122.31 (19)C20—C21—C22—C23177.4 (2)
O4i—Tb1—N2—C12157.94 (13)C21—C22—C23—C240.4 (4)
O6—Tb1—N2—C12155.01 (15)C22—C23—C24—C250.4 (4)
O3—Tb1—N2—C1270.09 (14)C23—C24—C25—C260.5 (4)
O1—Tb1—N2—C1274.93 (14)C22—C21—C26—C250.4 (3)
O2—Tb1—N2—C12127.46 (15)C20—C21—C26—C25177.4 (2)
N1—Tb1—N2—C125.57 (13)C24—C25—C26—C210.4 (4)
O4—Tb1—N2—C12101.64 (14)Tb1—O6—C27—O52.0 (3)
C13—Tb1—N2—C12101.65 (15)Tb1—O6—C27—C28178.08 (14)
C20—Tb1—N2—C1288.66 (15)Tb1i—O5—C27—O620.6 (3)
Tb1i—Tb1—N2—C12135.30 (12)Tb1i—O5—C27—C28159.49 (13)
C2—N1—C1—C51.2 (3)O6—C27—C28—C29145.65 (19)
Tb1—N1—C1—C5177.18 (14)O5—C27—C28—C2934.2 (3)
C2—N1—C1—C12178.29 (18)O6—C27—C28—C3330.1 (3)
Tb1—N1—C1—C123.3 (2)O5—C27—C28—C33150.0 (2)
C1—N1—C2—C30.4 (3)C33—C28—C29—C302.2 (3)
Tb1—N1—C2—C3177.95 (16)C27—C28—C29—C30173.52 (19)
N1—C2—C3—C40.0 (3)C28—C29—C30—C312.0 (3)
C2—C3—C4—C50.4 (3)C29—C30—C31—C320.1 (4)
C3—C4—C5—C11.1 (3)C30—C31—C32—C331.6 (5)
C3—C4—C5—C6179.6 (2)C31—C32—C33—C281.4 (4)
N1—C1—C5—C41.6 (3)C29—C28—C33—C320.5 (4)
C12—C1—C5—C4177.89 (18)C27—C28—C33—C32175.3 (2)
N1—C1—C5—C6179.11 (19)O7—C34—C35—C36177.8 (3)
C12—C1—C5—C61.4 (3)O8—C34—C35—C360.8 (3)
C4—C5—C6—C7178.0 (2)O7—C34—C35—C400.4 (4)
C1—C5—C6—C71.2 (3)O8—C34—C35—C40179.0 (2)
C5—C6—C7—C80.5 (3)C40—C35—C36—C371.8 (4)
C6—C7—C8—C9179.3 (2)C34—C35—C36—C37176.4 (3)
C6—C7—C8—C120.1 (3)C35—C36—C37—C380.6 (5)
C12—C8—C9—C101.9 (3)C36—C37—C38—C390.8 (5)
C7—C8—C9—C10177.4 (2)C37—C38—C39—C400.9 (5)
C8—C9—C10—C110.9 (3)C38—C39—C40—C350.3 (4)
C12—N2—C11—C102.0 (3)C36—C35—C40—C391.7 (4)
Tb1—N2—C11—C10173.94 (17)C34—C35—C40—C39176.5 (2)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C35–C40 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O10.821.882.640 (3)154
C2—H2A···O5i0.932.403.036 (3)125
C4—H4A···O2ii0.932.453.172 (3)135
C11—H11A···O60.932.402.969 (3)120
C15—H15A···O70.932.583.448 (3)155
C23—H23A···Cg1iii0.932.573.462 (3)160
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Tb2(C7H5O2)6(C12H8N2)2]·2C7H6O2
Mr1649.14
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5264 (15), 12.719 (2), 15.061 (2)
α, β, γ (°)74.836 (6), 78.345 (6), 76.242 (6)
V3)1691.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.59 × 0.27 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.364, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
71560, 11944, 11553
Rint0.025
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.101, 1.20
No. of reflections11944
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 2.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Tb1—O5i2.3349 (14)Tb1—O22.4672 (15)
Tb1—O4i2.3420 (15)Tb1—N22.5370 (17)
Tb1—O62.3490 (15)Tb1—N12.5813 (18)
Tb1—O32.4251 (15)Tb1—O42.6057 (16)
Tb1—O12.4669 (15)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C35–C40 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O10.82001.88002.640 (3)154
C2—H2A···O5i0.93002.40003.036 (3)125
C4—H4A···O2ii0.93002.45003.172 (3)135
C11—H11A···O60.93002.40002.969 (3)120
C15—H15A···O70.93002.58003.448 (3)155
C23—H23A···Cg1iii0.93002.57003.462 (3)160
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y, z; (iii) x+1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: howieooi83@gmail.com.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SGT and PHO thank Universiti Sains Malaysia (USM) for the University Grant (No. 1001/229/PKIMIA/815002) in this research. HKF and CSY thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNiu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245–248.  CAS Google Scholar
First citationNiu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103–1106.  Web of Science CSD CrossRef CAS Google Scholar
First citationOoi, P. H., Teoh, S. G., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, m221–m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOoi, P. H., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m597–m598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122–m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Ren, N., Zhang, J. J., Liu, H. M., Bai, J. H., Ye, H. M. & Sun, S. J. (2009). Inorg. Chim. Acta, 362, 3388–3394.  Web of Science CSD CrossRef CAS Google Scholar
First citationXin, H., Li, F. Y., Shi, M., Bian, Z. Q. & Huang, C. H. (2003). J. Am. Chem. Soc. 125, 7166–7167.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds