metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ferrocene-1-carbaldehyde thio­semi­carbazone

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2010; accepted 13 May 2010; online 22 May 2010)

The asymmetric unit of the title compound, [Fe(C5H5)(C7H8N3S)], consists of two crystallographically independent mol­ecules, A and B. The cyclo­penta­dienyl (Cp) rings in both mol­ecules adopt an eclipsed conformation and are parallel to each other, forming dihedral angles of 2.5 (3) and 1.1 (3)°, respectively. The mean plane of the semicarbazone group is coplanar with the attached Cp ring in mol­ecule A, whereas it is twisted away in mol­ecule B. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into two-dimensional planes parallel to the ab plane. The structure is further consolidated by C—H⋯π inter­actions.

Related literature

For related structures, see: Vikneswaran et al. (2009[Vikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1524-m1525.]). For the synthesis of the title compound, see: Mariño et al. (2006[Mariño, M., Gayoso, E., Antelo, J. M., Adrio, L. A., Fernańdez, J. J. & Vila, J. M. (2006). Polyhedron, 25, 1449-1456.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C7H8N3S)]

  • Mr = 287.16

  • Triclinic, [P \overline 1]

  • a = 5.8390 (1) Å

  • b = 12.7092 (3) Å

  • c = 16.7675 (4) Å

  • α = 94.447 (2)°

  • β = 97.965 (2)°

  • γ = 97.639 (2)°

  • V = 1215.51 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 100 K

  • 0.30 × 0.11 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.929

  • 24408 measured reflections

  • 5589 independent reflections

  • 4024 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.169

  • S = 1.07

  • 5589 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AB⋯S1Ai 0.86 2.66 3.370 (4) 141
N3A—H3AC⋯S1Bii 0.86 2.46 3.295 (4) 165
N2B—H2BB⋯S1Aiii 0.86 2.52 3.298 (4) 151
N3B—H3BC⋯S1Biv 0.86 2.47 3.323 (4) 173
C7A—H7AACg1 0.98 2.90 3.668 (6) 136
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y-1, z; (iii) x, y+1, z; (iv) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a continuation of our research related to ferrocenyl thiosemicarbazones and their metal complexes, herein we report the crystal structure of formylferrocene thiosemicarbazone.

The asymmetric unit of title compound consists of two crystallographically independent molecules, A and B (Fig. 1). The geometric parameter are comparable to those observed in a closely related structure (Vikneswaran et al., 2009). The Cp rings of each ferrocene residue are parallel, with dihedral angles of Cp1/Cp2 [C1A–C5A/C6A–C10A] = 2.5 (3)° and Cp3/Cp4 [C1B–C5B/C6B–C10B] = 1.1 (3)°. The Cp rings in both molecules adopt an eclipsed conformation [average torsion angles for C–Cg–Cg–C being 2.83 and 3.92°]. The mean plane of the semicarbazone group is coplanar with the attached Cp2 ring in molecule A, whereas the mean plane of semicarbazone group is twisted away from the attached Cp4 ring in molecule B with the dihedral angles between the mean plane and the Cp ring of 4.4 (2) and 33.3 (2)° respectively.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into two-dimensional layers parallel to ab plane (Fig. 2). The crystal structure is further consolidated by C7A—H7AA···Cg1 interactions.

Related literature top

For related structures, see: Vikneswaran et al. (2009). For the synthesis of the title compound, see: Mariño et al. (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Formylferrocene thiosemicarbazone was prepared as described by Mariño et al. (2006). The single crystals were grown from an aqueous ethanol solution at room temperature in the dark.

Refinement top

All H-atoms were placed in calculated positions, with C–H = 0.93–0.98 Å and N–H = 0.86 Å and refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N). The highest residual density peak is located 1.06 Å from atom Fe1B and the deepest hole is located 0.75 Å from atom Fe1A.

Structure description top

As a continuation of our research related to ferrocenyl thiosemicarbazones and their metal complexes, herein we report the crystal structure of formylferrocene thiosemicarbazone.

The asymmetric unit of title compound consists of two crystallographically independent molecules, A and B (Fig. 1). The geometric parameter are comparable to those observed in a closely related structure (Vikneswaran et al., 2009). The Cp rings of each ferrocene residue are parallel, with dihedral angles of Cp1/Cp2 [C1A–C5A/C6A–C10A] = 2.5 (3)° and Cp3/Cp4 [C1B–C5B/C6B–C10B] = 1.1 (3)°. The Cp rings in both molecules adopt an eclipsed conformation [average torsion angles for C–Cg–Cg–C being 2.83 and 3.92°]. The mean plane of the semicarbazone group is coplanar with the attached Cp2 ring in molecule A, whereas the mean plane of semicarbazone group is twisted away from the attached Cp4 ring in molecule B with the dihedral angles between the mean plane and the Cp ring of 4.4 (2) and 33.3 (2)° respectively.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into two-dimensional layers parallel to ab plane (Fig. 2). The crystal structure is further consolidated by C7A—H7AA···Cg1 interactions.

For related structures, see: Vikneswaran et al. (2009). For the synthesis of the title compound, see: Mariño et al. (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing 2-D layers parallel to ab plane. Hydrogen atoms not involved in hydrogen-bonding (dashed lines) are omitted for clarity.
Ferrocene-1-carbaldehyde thiosemicarbazone top
Crystal data top
[Fe(C5H5)(C7H8N3S)]Z = 4
Mr = 287.16F(000) = 592
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8390 (1) ÅCell parameters from 3248 reflections
b = 12.7092 (3) Åθ = 2.3–30.0°
c = 16.7675 (4) ŵ = 1.39 mm1
α = 94.447 (2)°T = 100 K
β = 97.965 (2)°Block, brown
γ = 97.639 (2)°0.30 × 0.11 × 0.05 mm
V = 1215.51 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5589 independent reflections
Radiation source: fine-focus sealed tube4024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.681, Tmax = 0.929k = 1616
24408 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0849P)2 + 1.4801P]
where P = (Fo2 + 2Fc2)/3
5589 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Fe(C5H5)(C7H8N3S)]γ = 97.639 (2)°
Mr = 287.16V = 1215.51 (5) Å3
Triclinic, P1Z = 4
a = 5.8390 (1) ÅMo Kα radiation
b = 12.7092 (3) ŵ = 1.39 mm1
c = 16.7675 (4) ÅT = 100 K
α = 94.447 (2)°0.30 × 0.11 × 0.05 mm
β = 97.965 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5589 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4024 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.929Rint = 0.087
24408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.07Δρmax = 1.77 e Å3
5589 reflectionsΔρmin = 0.53 e Å3
307 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe1A0.01430 (12)0.26161 (5)0.31434 (4)0.01472 (18)
S1A0.3946 (2)0.15030 (10)0.01954 (8)0.0197 (3)
N1A0.0969 (7)0.0658 (3)0.1302 (2)0.0172 (9)
N2A0.2533 (7)0.0155 (3)0.0929 (2)0.0184 (9)
H2AB0.38700.05000.08820.022*
N3A0.0087 (7)0.1375 (3)0.0736 (2)0.0198 (9)
H3AB0.10160.10400.09800.024*
H3AC0.04980.20360.05570.024*
C1A0.0588 (9)0.2347 (4)0.4275 (3)0.0212 (11)
H1AA0.21250.23060.44520.025*
C2A0.0402 (9)0.1482 (4)0.3940 (3)0.0194 (10)
H2AA0.03510.07380.38390.023*
C3A0.2645 (9)0.1878 (4)0.3766 (3)0.0202 (11)
H3AA0.37160.14580.35280.024*
C4A0.3071 (9)0.3000 (4)0.4004 (3)0.0199 (11)
H4AA0.44830.34880.39570.024*
C5A0.1068 (10)0.3281 (4)0.4308 (3)0.0235 (11)
H5AA0.08590.40010.45090.028*
C6A0.0681 (9)0.3422 (4)0.2154 (3)0.0187 (10)
H6AA0.21150.38810.20870.022*
C7A0.1234 (9)0.3749 (4)0.2508 (3)0.0198 (11)
H7AA0.13480.44760.27250.024*
C8A0.2945 (9)0.2840 (4)0.2488 (3)0.0204 (11)
H8AA0.44400.28310.26920.024*
C9A0.2107 (9)0.1940 (4)0.2135 (3)0.0204 (11)
H9AA0.29240.12060.20530.024*
C10A0.0119 (9)0.2293 (4)0.1916 (3)0.0176 (10)
C11A0.1600 (9)0.1663 (4)0.1515 (3)0.0176 (10)
H11A0.30340.19900.14090.021*
C12A0.1969 (8)0.0878 (4)0.0638 (3)0.0164 (10)
Fe1B0.31852 (12)0.76679 (5)0.33898 (4)0.01544 (19)
S1B0.8033 (2)0.62803 (10)0.02897 (7)0.0184 (3)
N1B0.4716 (7)0.6003 (3)0.1573 (2)0.0165 (8)
N2B0.5307 (7)0.6233 (3)0.0826 (2)0.0171 (9)
H2BB0.45540.66510.05470.021*
N3B0.7899 (7)0.5037 (3)0.0921 (2)0.0197 (9)
H3BB0.73440.48270.13400.024*
H3BC0.90130.47470.07500.024*
C1B0.6319 (9)0.8646 (4)0.3469 (3)0.0240 (11)
H1BA0.78360.84110.34320.029*
C2B0.4734 (9)0.8886 (4)0.2811 (3)0.0239 (11)
H2BA0.49620.88430.22420.029*
C3B0.2759 (10)0.9180 (4)0.3118 (3)0.0249 (12)
H3BA0.13790.93860.28000.030*
C4B0.3125 (10)0.9134 (4)0.3974 (3)0.0238 (11)
H4BA0.20490.93060.43480.029*
C5B0.5345 (9)0.8807 (4)0.4187 (3)0.0230 (11)
H5BA0.60680.87080.47330.028*
C6B0.0264 (8)0.6671 (4)0.2828 (3)0.0160 (10)
H6BA0.10640.68780.24820.019*
C7B0.0491 (9)0.6626 (4)0.3678 (3)0.0196 (10)
H7BA0.06510.68080.40230.024*
C8B0.2653 (9)0.6287 (4)0.3946 (3)0.0180 (10)
H8BA0.32610.61970.45070.022*
C9B0.3813 (9)0.6118 (4)0.3270 (3)0.0160 (10)
H9BA0.53450.58800.32770.019*
C10B0.2328 (8)0.6359 (4)0.2570 (3)0.0165 (10)
C11B0.2939 (9)0.6408 (4)0.1760 (3)0.0168 (10)
H11B0.20400.67330.13760.020*
C12B0.7035 (8)0.5809 (4)0.0537 (3)0.0145 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe1A0.0161 (4)0.0153 (4)0.0130 (3)0.0028 (3)0.0020 (3)0.0026 (3)
S1A0.0174 (6)0.0182 (6)0.0271 (6)0.0065 (5)0.0101 (5)0.0059 (5)
N1A0.015 (2)0.019 (2)0.019 (2)0.0050 (17)0.0053 (17)0.0022 (16)
N2A0.016 (2)0.018 (2)0.022 (2)0.0024 (17)0.0038 (17)0.0039 (17)
N3A0.014 (2)0.020 (2)0.024 (2)0.0008 (18)0.0059 (17)0.0045 (17)
C1A0.022 (3)0.030 (3)0.013 (2)0.005 (2)0.005 (2)0.006 (2)
C2A0.022 (3)0.019 (2)0.018 (2)0.004 (2)0.000 (2)0.0065 (19)
C3A0.019 (3)0.024 (3)0.018 (2)0.006 (2)0.000 (2)0.003 (2)
C4A0.015 (2)0.025 (3)0.017 (2)0.003 (2)0.0027 (19)0.003 (2)
C5A0.032 (3)0.027 (3)0.013 (2)0.009 (2)0.003 (2)0.003 (2)
C6A0.025 (3)0.017 (2)0.015 (2)0.005 (2)0.003 (2)0.0057 (18)
C7A0.026 (3)0.020 (2)0.016 (2)0.011 (2)0.004 (2)0.0047 (19)
C8A0.019 (3)0.027 (3)0.015 (2)0.007 (2)0.002 (2)0.000 (2)
C9A0.018 (3)0.023 (3)0.019 (2)0.004 (2)0.000 (2)0.000 (2)
C10A0.020 (3)0.017 (2)0.014 (2)0.000 (2)0.0013 (19)0.0034 (18)
C11A0.016 (2)0.022 (3)0.016 (2)0.004 (2)0.0033 (19)0.0053 (19)
C12A0.013 (2)0.020 (2)0.017 (2)0.000 (2)0.0042 (19)0.0040 (19)
Fe1B0.0157 (4)0.0154 (4)0.0150 (3)0.0021 (3)0.0022 (3)0.0008 (3)
S1B0.0210 (6)0.0173 (6)0.0186 (6)0.0033 (5)0.0078 (5)0.0030 (5)
N1B0.018 (2)0.015 (2)0.0164 (19)0.0006 (17)0.0045 (17)0.0016 (15)
N2B0.017 (2)0.017 (2)0.020 (2)0.0065 (17)0.0082 (17)0.0051 (16)
N3B0.019 (2)0.022 (2)0.021 (2)0.0073 (18)0.0076 (17)0.0045 (17)
C1B0.019 (3)0.014 (2)0.037 (3)0.002 (2)0.002 (2)0.001 (2)
C2B0.026 (3)0.019 (3)0.027 (3)0.002 (2)0.009 (2)0.006 (2)
C3B0.025 (3)0.020 (3)0.029 (3)0.001 (2)0.001 (2)0.006 (2)
C4B0.028 (3)0.017 (2)0.027 (3)0.003 (2)0.009 (2)0.001 (2)
C5B0.027 (3)0.014 (2)0.024 (3)0.001 (2)0.004 (2)0.001 (2)
C6B0.013 (2)0.015 (2)0.020 (2)0.0012 (19)0.0028 (19)0.0029 (18)
C7B0.018 (3)0.018 (2)0.021 (2)0.005 (2)0.005 (2)0.0033 (19)
C8B0.019 (2)0.015 (2)0.021 (2)0.001 (2)0.005 (2)0.0024 (19)
C9B0.017 (2)0.013 (2)0.018 (2)0.0013 (19)0.0021 (19)0.0001 (18)
C10B0.017 (2)0.015 (2)0.018 (2)0.0007 (19)0.0049 (19)0.0030 (18)
C11B0.018 (2)0.014 (2)0.017 (2)0.002 (2)0.0010 (19)0.0013 (18)
C12B0.014 (2)0.014 (2)0.014 (2)0.0012 (19)0.0000 (18)0.0002 (17)
Geometric parameters (Å, º) top
Fe1A—C5A2.036 (5)Fe1B—C10B2.034 (5)
Fe1A—C7A2.040 (5)Fe1B—C4B2.043 (5)
Fe1A—C8A2.043 (5)Fe1B—C6B2.048 (5)
Fe1A—C9A2.045 (5)Fe1B—C3B2.049 (5)
Fe1A—C2A2.045 (5)Fe1B—C9B2.051 (5)
Fe1A—C1A2.045 (5)Fe1B—C1B2.053 (5)
Fe1A—C3A2.049 (5)Fe1B—C7B2.054 (5)
Fe1A—C6A2.054 (5)Fe1B—C5B2.054 (5)
Fe1A—C4A2.057 (5)Fe1B—C8B2.058 (5)
Fe1A—C10A2.065 (5)Fe1B—C2B2.064 (5)
S1A—C12A1.704 (5)S1B—C12B1.697 (5)
N1A—C11A1.289 (6)N1B—C11B1.283 (6)
N1A—N2A1.373 (5)N1B—N2B1.386 (5)
N2A—C12A1.346 (6)N2B—C12B1.336 (6)
N2A—H2AB0.8600N2B—H2BB0.8600
N3A—C12A1.318 (6)N3B—C12B1.331 (6)
N3A—H3AB0.8600N3B—H3BB0.8600
N3A—H3AC0.8600N3B—H3BC0.8600
C1A—C5A1.419 (8)C1B—C5B1.413 (8)
C1A—C2A1.422 (7)C1B—C2B1.417 (7)
C1A—H1AA0.9800C1B—H1BA0.9800
C2A—C3A1.416 (7)C2B—C3B1.408 (8)
C2A—H2AA0.9800C2B—H2BA0.9800
C3A—C4A1.430 (7)C3B—C4B1.429 (7)
C3A—H3AA0.9800C3B—H3BA0.9800
C4A—C5A1.415 (7)C4B—C5B1.420 (7)
C4A—H4AA0.9800C4B—H4BA0.9800
C5A—H5AA0.9800C5B—H5BA0.9800
C6A—C7A1.430 (7)C6B—C7B1.420 (7)
C6A—C10A1.440 (7)C6B—C10B1.429 (7)
C6A—H6AA0.9800C6B—H6BA0.9800
C7A—C8A1.418 (7)C7B—C8B1.413 (7)
C7A—H7AA0.9800C7B—H7BA0.9800
C8A—C9A1.423 (7)C8B—C9B1.416 (7)
C8A—H8AA0.9800C8B—H8BA0.9800
C9A—C10A1.424 (7)C9B—C10B1.437 (6)
C9A—H9AA0.9800C9B—H9BA0.9800
C10A—C11A1.450 (7)C10B—C11B1.456 (7)
C11A—H11A0.9300C11B—H11B0.9300
C5A—Fe1A—C7A106.2 (2)C10B—Fe1B—C4B160.8 (2)
C5A—Fe1A—C8A120.3 (2)C10B—Fe1B—C6B40.97 (19)
C7A—Fe1A—C8A40.6 (2)C4B—Fe1B—C6B124.1 (2)
C5A—Fe1A—C9A156.0 (2)C10B—Fe1B—C3B123.6 (2)
C7A—Fe1A—C9A68.7 (2)C4B—Fe1B—C3B40.9 (2)
C8A—Fe1A—C9A40.72 (19)C6B—Fe1B—C3B107.1 (2)
C5A—Fe1A—C2A68.2 (2)C10B—Fe1B—C9B41.19 (18)
C7A—Fe1A—C2A159.1 (2)C4B—Fe1B—C9B156.8 (2)
C8A—Fe1A—C2A123.3 (2)C6B—Fe1B—C9B68.92 (19)
C9A—Fe1A—C2A107.7 (2)C3B—Fe1B—C9B160.8 (2)
C5A—Fe1A—C1A40.7 (2)C10B—Fe1B—C1B121.3 (2)
C7A—Fe1A—C1A122.1 (2)C4B—Fe1B—C1B68.0 (2)
C8A—Fe1A—C1A105.8 (2)C6B—Fe1B—C1B156.5 (2)
C9A—Fe1A—C1A120.7 (2)C3B—Fe1B—C1B67.7 (2)
C2A—Fe1A—C1A40.7 (2)C9B—Fe1B—C1B108.0 (2)
C5A—Fe1A—C3A68.4 (2)C10B—Fe1B—C7B68.31 (19)
C7A—Fe1A—C3A158.1 (2)C4B—Fe1B—C7B108.2 (2)
C8A—Fe1A—C3A160.6 (2)C6B—Fe1B—C7B40.49 (18)
C9A—Fe1A—C3A124.9 (2)C3B—Fe1B—C7B121.8 (2)
C2A—Fe1A—C3A40.5 (2)C9B—Fe1B—C7B68.1 (2)
C1A—Fe1A—C3A68.5 (2)C1B—Fe1B—C7B161.8 (2)
C5A—Fe1A—C6A123.7 (2)C10B—Fe1B—C5B156.8 (2)
C7A—Fe1A—C6A40.89 (19)C4B—Fe1B—C5B40.6 (2)
C8A—Fe1A—C6A68.5 (2)C6B—Fe1B—C5B161.3 (2)
C9A—Fe1A—C6A68.8 (2)C3B—Fe1B—C5B68.2 (2)
C2A—Fe1A—C6A158.8 (2)C9B—Fe1B—C5B121.6 (2)
C1A—Fe1A—C6A159.4 (2)C1B—Fe1B—C5B40.3 (2)
C3A—Fe1A—C6A123.2 (2)C7B—Fe1B—C5B125.3 (2)
C5A—Fe1A—C4A40.5 (2)C10B—Fe1B—C8B68.31 (19)
C7A—Fe1A—C4A121.5 (2)C4B—Fe1B—C8B122.1 (2)
C8A—Fe1A—C4A156.3 (2)C6B—Fe1B—C8B68.15 (19)
C9A—Fe1A—C4A162.1 (2)C3B—Fe1B—C8B157.3 (2)
C2A—Fe1A—C4A68.2 (2)C9B—Fe1B—C8B40.31 (19)
C1A—Fe1A—C4A68.4 (2)C1B—Fe1B—C8B125.5 (2)
C3A—Fe1A—C4A40.8 (2)C7B—Fe1B—C8B40.21 (19)
C6A—Fe1A—C4A108.4 (2)C5B—Fe1B—C8B108.8 (2)
C5A—Fe1A—C10A161.4 (2)C10B—Fe1B—C2B107.3 (2)
C7A—Fe1A—C10A68.63 (19)C4B—Fe1B—C2B68.0 (2)
C8A—Fe1A—C10A68.21 (19)C6B—Fe1B—C2B121.0 (2)
C9A—Fe1A—C10A40.5 (2)C3B—Fe1B—C2B40.0 (2)
C2A—Fe1A—C10A122.9 (2)C9B—Fe1B—C2B124.7 (2)
C1A—Fe1A—C10A157.2 (2)C1B—Fe1B—C2B40.3 (2)
C3A—Fe1A—C10A109.4 (2)C7B—Fe1B—C2B156.6 (2)
C6A—Fe1A—C10A40.94 (18)C5B—Fe1B—C2B67.8 (2)
C4A—Fe1A—C10A125.8 (2)C8B—Fe1B—C2B161.6 (2)
C11A—N1A—N2A115.4 (4)C11B—N1B—N2B114.4 (4)
C12A—N2A—N1A119.9 (4)C12B—N2B—N1B120.5 (4)
C12A—N2A—H2AB120.0C12B—N2B—H2BB119.7
N1A—N2A—H2AB120.0N1B—N2B—H2BB119.7
C12A—N3A—H3AB120.0C12B—N3B—H3BB120.0
C12A—N3A—H3AC120.0C12B—N3B—H3BC120.0
H3AB—N3A—H3AC120.0H3BB—N3B—H3BC120.0
C5A—C1A—C2A107.3 (5)C5B—C1B—C2B108.4 (5)
C5A—C1A—Fe1A69.3 (3)C5B—C1B—Fe1B69.9 (3)
C2A—C1A—Fe1A69.7 (3)C2B—C1B—Fe1B70.3 (3)
C5A—C1A—H1AA126.4C5B—C1B—H1BA125.8
C2A—C1A—H1AA126.4C2B—C1B—H1BA125.8
Fe1A—C1A—H1AA126.4Fe1B—C1B—H1BA125.8
C3A—C2A—C1A108.6 (5)C3B—C2B—C1B108.0 (5)
C3A—C2A—Fe1A69.9 (3)C3B—C2B—Fe1B69.4 (3)
C1A—C2A—Fe1A69.7 (3)C1B—C2B—Fe1B69.4 (3)
C3A—C2A—H2AA125.7C3B—C2B—H2BA126.0
C1A—C2A—H2AA125.7C1B—C2B—H2BA126.0
Fe1A—C2A—H2AA125.7Fe1B—C2B—H2BA126.0
C2A—C3A—C4A107.7 (4)C2B—C3B—C4B108.1 (5)
C2A—C3A—Fe1A69.6 (3)C2B—C3B—Fe1B70.6 (3)
C4A—C3A—Fe1A69.9 (3)C4B—C3B—Fe1B69.4 (3)
C2A—C3A—H3AA126.1C2B—C3B—H3BA126.0
C4A—C3A—H3AA126.1C4B—C3B—H3BA126.0
Fe1A—C3A—H3AA126.1Fe1B—C3B—H3BA126.0
C5A—C4A—C3A107.6 (5)C5B—C4B—C3B107.6 (5)
C5A—C4A—Fe1A69.0 (3)C5B—C4B—Fe1B70.1 (3)
C3A—C4A—Fe1A69.3 (3)C3B—C4B—Fe1B69.8 (3)
C5A—C4A—H4AA126.2C5B—C4B—H4BA126.2
C3A—C4A—H4AA126.2C3B—C4B—H4BA126.2
Fe1A—C4A—H4AA126.2Fe1B—C4B—H4BA126.2
C4A—C5A—C1A108.8 (5)C1B—C5B—C4B107.8 (5)
C4A—C5A—Fe1A70.5 (3)C1B—C5B—Fe1B69.8 (3)
C1A—C5A—Fe1A70.0 (3)C4B—C5B—Fe1B69.3 (3)
C4A—C5A—H5AA125.6C1B—C5B—H5BA126.1
C1A—C5A—H5AA125.6C4B—C5B—H5BA126.1
Fe1A—C5A—H5AA125.6Fe1B—C5B—H5BA126.1
C7A—C6A—C10A107.5 (5)C7B—C6B—C10B107.4 (4)
C7A—C6A—Fe1A69.0 (3)C7B—C6B—Fe1B70.0 (3)
C10A—C6A—Fe1A69.9 (3)C10B—C6B—Fe1B69.0 (3)
C7A—C6A—H6AA126.3C7B—C6B—H6BA126.3
C10A—C6A—H6AA126.3C10B—C6B—H6BA126.3
Fe1A—C6A—H6AA126.3Fe1B—C6B—H6BA126.3
C8A—C7A—C6A108.1 (4)C8B—C7B—C6B108.6 (4)
C8A—C7A—Fe1A69.8 (3)C8B—C7B—Fe1B70.1 (3)
C6A—C7A—Fe1A70.1 (3)C6B—C7B—Fe1B69.5 (3)
C8A—C7A—H7AA125.9C8B—C7B—H7BA125.7
C6A—C7A—H7AA125.9C6B—C7B—H7BA125.7
Fe1A—C7A—H7AA125.9Fe1B—C7B—H7BA125.7
C7A—C8A—C9A108.5 (4)C7B—C8B—C9B108.7 (4)
C7A—C8A—Fe1A69.6 (3)C7B—C8B—Fe1B69.7 (3)
C9A—C8A—Fe1A69.7 (3)C9B—C8B—Fe1B69.6 (3)
C7A—C8A—H8AA125.7C7B—C8B—H8BA125.7
C9A—C8A—H8AA125.7C9B—C8B—H8BA125.7
Fe1A—C8A—H8AA125.7Fe1B—C8B—H8BA125.7
C8A—C9A—C10A108.1 (5)C8B—C9B—C10B107.3 (4)
C8A—C9A—Fe1A69.6 (3)C8B—C9B—Fe1B70.1 (3)
C10A—C9A—Fe1A70.5 (3)C10B—C9B—Fe1B68.8 (3)
C8A—C9A—H9AA126.0C8B—C9B—H9BA126.4
C10A—C9A—H9AA126.0C10B—C9B—H9BA126.4
Fe1A—C9A—H9AA126.0Fe1B—C9B—H9BA126.4
C9A—C10A—C6A107.8 (4)C6B—C10B—C9B108.1 (4)
C9A—C10A—C11A127.7 (5)C6B—C10B—C11B125.6 (4)
C6A—C10A—C11A124.4 (5)C9B—C10B—C11B125.9 (4)
C9A—C10A—Fe1A69.0 (3)C6B—C10B—Fe1B70.0 (3)
C6A—C10A—Fe1A69.1 (3)C9B—C10B—Fe1B70.0 (3)
C11A—C10A—Fe1A128.0 (3)C11B—C10B—Fe1B119.8 (3)
N1A—C11A—C10A121.3 (5)N1B—C11B—C10B120.1 (4)
N1A—C11A—H11A119.4N1B—C11B—H11B119.9
C10A—C11A—H11A119.4C10B—C11B—H11B119.9
N3A—C12A—N2A117.7 (4)N3B—C12B—N2B117.7 (4)
N3A—C12A—S1A122.7 (4)N3B—C12B—S1B123.3 (4)
N2A—C12A—S1A119.6 (4)N2B—C12B—S1B118.9 (3)
C11A—N1A—N2A—C12A175.7 (4)C11B—N1B—N2B—C12B176.0 (4)
C7A—Fe1A—C1A—C5A77.1 (4)C10B—Fe1B—C1B—C5B161.2 (3)
C8A—Fe1A—C1A—C5A118.3 (3)C4B—Fe1B—C1B—C5B37.8 (3)
C9A—Fe1A—C1A—C5A159.9 (3)C6B—Fe1B—C1B—C5B163.7 (4)
C2A—Fe1A—C1A—C5A118.6 (4)C3B—Fe1B—C1B—C5B82.1 (3)
C3A—Fe1A—C1A—C5A81.4 (3)C9B—Fe1B—C1B—C5B117.9 (3)
C6A—Fe1A—C1A—C5A47.4 (7)C7B—Fe1B—C1B—C5B43.4 (8)
C4A—Fe1A—C1A—C5A37.4 (3)C8B—Fe1B—C1B—C5B76.7 (4)
C10A—Fe1A—C1A—C5A170.4 (5)C2B—Fe1B—C1B—C5B119.3 (4)
C5A—Fe1A—C1A—C2A118.6 (4)C10B—Fe1B—C1B—C2B79.6 (3)
C7A—Fe1A—C1A—C2A164.3 (3)C4B—Fe1B—C1B—C2B81.5 (3)
C8A—Fe1A—C1A—C2A123.1 (3)C6B—Fe1B—C1B—C2B44.4 (6)
C9A—Fe1A—C1A—C2A81.5 (3)C3B—Fe1B—C1B—C2B37.2 (3)
C3A—Fe1A—C1A—C2A37.2 (3)C9B—Fe1B—C1B—C2B122.8 (3)
C6A—Fe1A—C1A—C2A166.0 (5)C7B—Fe1B—C1B—C2B162.6 (6)
C4A—Fe1A—C1A—C2A81.2 (3)C5B—Fe1B—C1B—C2B119.3 (4)
C10A—Fe1A—C1A—C2A51.8 (6)C8B—Fe1B—C1B—C2B164.0 (3)
C5A—C1A—C2A—C3A0.1 (5)C5B—C1B—C2B—C3B0.9 (6)
Fe1A—C1A—C2A—C3A59.3 (3)Fe1B—C1B—C2B—C3B58.9 (4)
C5A—C1A—C2A—Fe1A59.3 (3)C5B—C1B—C2B—Fe1B59.7 (4)
C5A—Fe1A—C2A—C3A81.8 (3)C10B—Fe1B—C2B—C3B122.0 (3)
C7A—Fe1A—C2A—C3A160.0 (5)C4B—Fe1B—C2B—C3B38.1 (3)
C8A—Fe1A—C2A—C3A165.5 (3)C6B—Fe1B—C2B—C3B79.4 (4)
C9A—Fe1A—C2A—C3A123.4 (3)C9B—Fe1B—C2B—C3B164.0 (3)
C1A—Fe1A—C2A—C3A119.9 (4)C1B—Fe1B—C2B—C3B119.6 (5)
C6A—Fe1A—C2A—C3A46.5 (7)C7B—Fe1B—C2B—C3B46.9 (6)
C4A—Fe1A—C2A—C3A38.0 (3)C5B—Fe1B—C2B—C3B82.1 (3)
C10A—Fe1A—C2A—C3A81.4 (3)C8B—Fe1B—C2B—C3B164.9 (6)
C5A—Fe1A—C2A—C1A38.1 (3)C10B—Fe1B—C2B—C1B118.4 (3)
C7A—Fe1A—C2A—C1A40.1 (7)C4B—Fe1B—C2B—C1B81.4 (3)
C8A—Fe1A—C2A—C1A74.7 (4)C6B—Fe1B—C2B—C1B161.0 (3)
C9A—Fe1A—C2A—C1A116.8 (3)C3B—Fe1B—C2B—C1B119.6 (5)
C3A—Fe1A—C2A—C1A119.9 (4)C9B—Fe1B—C2B—C1B76.4 (4)
C6A—Fe1A—C2A—C1A166.4 (5)C7B—Fe1B—C2B—C1B166.5 (5)
C4A—Fe1A—C2A—C1A81.8 (3)C5B—Fe1B—C2B—C1B37.5 (3)
C10A—Fe1A—C2A—C1A158.7 (3)C8B—Fe1B—C2B—C1B45.3 (8)
C1A—C2A—C3A—C4A0.6 (5)C1B—C2B—C3B—C4B0.6 (6)
Fe1A—C2A—C3A—C4A59.8 (3)Fe1B—C2B—C3B—C4B59.4 (4)
C1A—C2A—C3A—Fe1A59.1 (3)C1B—C2B—C3B—Fe1B58.9 (4)
C5A—Fe1A—C3A—C2A81.3 (3)C10B—Fe1B—C3B—C2B76.3 (4)
C7A—Fe1A—C3A—C2A160.9 (5)C4B—Fe1B—C3B—C2B119.0 (5)
C8A—Fe1A—C3A—C2A39.0 (7)C6B—Fe1B—C3B—C2B118.2 (3)
C9A—Fe1A—C3A—C2A75.8 (4)C9B—Fe1B—C3B—C2B43.4 (8)
C1A—Fe1A—C3A—C2A37.4 (3)C1B—Fe1B—C3B—C2B37.4 (3)
C6A—Fe1A—C3A—C2A161.7 (3)C7B—Fe1B—C3B—C2B160.0 (3)
C4A—Fe1A—C3A—C2A118.8 (4)C5B—Fe1B—C3B—C2B81.0 (3)
C10A—Fe1A—C3A—C2A118.3 (3)C8B—Fe1B—C3B—C2B167.7 (5)
C5A—Fe1A—C3A—C4A37.5 (3)C10B—Fe1B—C3B—C4B164.7 (3)
C7A—Fe1A—C3A—C4A42.1 (7)C6B—Fe1B—C3B—C4B122.8 (3)
C8A—Fe1A—C3A—C4A157.8 (5)C9B—Fe1B—C3B—C4B162.4 (6)
C9A—Fe1A—C3A—C4A165.4 (3)C1B—Fe1B—C3B—C4B81.6 (3)
C2A—Fe1A—C3A—C4A118.8 (4)C7B—Fe1B—C3B—C4B81.0 (4)
C1A—Fe1A—C3A—C4A81.4 (3)C5B—Fe1B—C3B—C4B38.0 (3)
C6A—Fe1A—C3A—C4A79.5 (3)C8B—Fe1B—C3B—C4B48.7 (7)
C10A—Fe1A—C3A—C4A122.8 (3)C2B—Fe1B—C3B—C4B119.0 (5)
C2A—C3A—C4A—C5A1.0 (5)C2B—C3B—C4B—C5B0.0 (6)
Fe1A—C3A—C4A—C5A58.6 (3)Fe1B—C3B—C4B—C5B60.2 (3)
C2A—C3A—C4A—Fe1A59.6 (3)C2B—C3B—C4B—Fe1B60.2 (4)
C7A—Fe1A—C4A—C5A77.7 (4)C10B—Fe1B—C4B—C5B160.3 (6)
C8A—Fe1A—C4A—C5A42.5 (6)C6B—Fe1B—C4B—C5B165.5 (3)
C9A—Fe1A—C4A—C5A161.6 (6)C3B—Fe1B—C4B—C5B118.5 (5)
C2A—Fe1A—C4A—C5A81.5 (3)C9B—Fe1B—C4B—C5B46.9 (7)
C1A—Fe1A—C4A—C5A37.6 (3)C1B—Fe1B—C4B—C5B37.5 (3)
C3A—Fe1A—C4A—C5A119.3 (4)C7B—Fe1B—C4B—C5B123.6 (3)
C6A—Fe1A—C4A—C5A120.7 (3)C8B—Fe1B—C4B—C5B81.6 (4)
C10A—Fe1A—C4A—C5A162.8 (3)C2B—Fe1B—C4B—C5B81.1 (3)
C5A—Fe1A—C4A—C3A119.3 (4)C10B—Fe1B—C4B—C3B41.9 (8)
C7A—Fe1A—C4A—C3A163.0 (3)C6B—Fe1B—C4B—C3B76.1 (4)
C8A—Fe1A—C4A—C3A161.8 (5)C9B—Fe1B—C4B—C3B165.4 (5)
C9A—Fe1A—C4A—C3A42.2 (8)C1B—Fe1B—C4B—C3B81.0 (3)
C2A—Fe1A—C4A—C3A37.8 (3)C7B—Fe1B—C4B—C3B118.0 (3)
C1A—Fe1A—C4A—C3A81.7 (3)C5B—Fe1B—C4B—C3B118.5 (5)
C6A—Fe1A—C4A—C3A119.9 (3)C8B—Fe1B—C4B—C3B160.0 (3)
C10A—Fe1A—C4A—C3A77.8 (4)C2B—Fe1B—C4B—C3B37.4 (3)
C3A—C4A—C5A—C1A0.9 (5)C2B—C1B—C5B—C4B0.9 (6)
Fe1A—C4A—C5A—C1A59.8 (3)Fe1B—C1B—C5B—C4B59.1 (4)
C3A—C4A—C5A—Fe1A58.8 (3)C2B—C1B—C5B—Fe1B60.0 (4)
C2A—C1A—C5A—C4A0.5 (5)C3B—C4B—C5B—C1B0.5 (6)
Fe1A—C1A—C5A—C4A60.1 (3)Fe1B—C4B—C5B—C1B59.4 (3)
C2A—C1A—C5A—Fe1A59.6 (3)C3B—C4B—C5B—Fe1B59.9 (4)
C7A—Fe1A—C5A—C4A119.8 (3)C10B—Fe1B—C5B—C1B44.5 (6)
C8A—Fe1A—C5A—C4A161.7 (3)C4B—Fe1B—C5B—C1B119.2 (4)
C9A—Fe1A—C5A—C4A166.1 (5)C6B—Fe1B—C5B—C1B159.6 (6)
C2A—Fe1A—C5A—C4A81.5 (3)C3B—Fe1B—C5B—C1B80.9 (3)
C1A—Fe1A—C5A—C4A119.5 (4)C9B—Fe1B—C5B—C1B80.6 (3)
C3A—Fe1A—C5A—C4A37.8 (3)C7B—Fe1B—C5B—C1B164.8 (3)
C6A—Fe1A—C5A—C4A78.6 (4)C8B—Fe1B—C5B—C1B123.1 (3)
C10A—Fe1A—C5A—C4A48.8 (7)C2B—Fe1B—C5B—C1B37.5 (3)
C7A—Fe1A—C5A—C1A120.6 (3)C10B—Fe1B—C5B—C4B163.7 (5)
C8A—Fe1A—C5A—C1A78.8 (3)C6B—Fe1B—C5B—C4B40.4 (8)
C9A—Fe1A—C5A—C1A46.6 (6)C3B—Fe1B—C5B—C4B38.3 (3)
C2A—Fe1A—C5A—C1A38.0 (3)C9B—Fe1B—C5B—C4B160.3 (3)
C3A—Fe1A—C5A—C1A81.8 (3)C1B—Fe1B—C5B—C4B119.2 (4)
C6A—Fe1A—C5A—C1A161.9 (3)C7B—Fe1B—C5B—C4B76.1 (4)
C4A—Fe1A—C5A—C1A119.5 (4)C8B—Fe1B—C5B—C4B117.7 (3)
C10A—Fe1A—C5A—C1A168.3 (6)C2B—Fe1B—C5B—C4B81.6 (3)
C5A—Fe1A—C6A—C7A75.2 (4)C10B—Fe1B—C6B—C7B118.7 (4)
C8A—Fe1A—C6A—C7A37.7 (3)C4B—Fe1B—C6B—C7B77.7 (3)
C9A—Fe1A—C6A—C7A81.6 (3)C3B—Fe1B—C6B—C7B119.3 (3)
C2A—Fe1A—C6A—C7A165.9 (5)C9B—Fe1B—C6B—C7B80.5 (3)
C1A—Fe1A—C6A—C7A39.9 (7)C1B—Fe1B—C6B—C7B167.4 (5)
C3A—Fe1A—C6A—C7A159.8 (3)C5B—Fe1B—C6B—C7B47.1 (7)
C4A—Fe1A—C6A—C7A117.2 (3)C8B—Fe1B—C6B—C7B37.1 (3)
C10A—Fe1A—C6A—C7A118.8 (4)C2B—Fe1B—C6B—C7B160.8 (3)
C5A—Fe1A—C6A—C10A166.0 (3)C4B—Fe1B—C6B—C10B163.6 (3)
C7A—Fe1A—C6A—C10A118.8 (4)C3B—Fe1B—C6B—C10B121.9 (3)
C8A—Fe1A—C6A—C10A81.1 (3)C9B—Fe1B—C6B—C10B38.2 (3)
C9A—Fe1A—C6A—C10A37.2 (3)C1B—Fe1B—C6B—C10B48.6 (6)
C2A—Fe1A—C6A—C10A47.1 (7)C7B—Fe1B—C6B—C10B118.7 (4)
C1A—Fe1A—C6A—C10A158.7 (5)C5B—Fe1B—C6B—C10B165.8 (6)
C3A—Fe1A—C6A—C10A81.4 (3)C8B—Fe1B—C6B—C10B81.6 (3)
C4A—Fe1A—C6A—C10A123.9 (3)C2B—Fe1B—C6B—C10B80.5 (3)
C10A—C6A—C7A—C8A0.0 (5)C10B—C6B—C7B—C8B0.3 (5)
Fe1A—C6A—C7A—C8A59.7 (3)Fe1B—C6B—C7B—C8B59.3 (3)
C10A—C6A—C7A—Fe1A59.6 (3)C10B—C6B—C7B—Fe1B59.1 (3)
C5A—Fe1A—C7A—C8A117.8 (3)C10B—Fe1B—C7B—C8B81.6 (3)
C9A—Fe1A—C7A—C8A37.4 (3)C4B—Fe1B—C7B—C8B118.5 (3)
C2A—Fe1A—C7A—C8A46.6 (7)C6B—Fe1B—C7B—C8B119.9 (4)
C1A—Fe1A—C7A—C8A76.4 (3)C3B—Fe1B—C7B—C8B161.4 (3)
C3A—Fe1A—C7A—C8A170.0 (5)C9B—Fe1B—C7B—C8B37.1 (3)
C6A—Fe1A—C7A—C8A119.1 (4)C1B—Fe1B—C7B—C8B43.9 (8)
C4A—Fe1A—C7A—C8A159.1 (3)C5B—Fe1B—C7B—C8B76.9 (3)
C10A—Fe1A—C7A—C8A81.0 (3)C2B—Fe1B—C7B—C8B165.1 (5)
C5A—Fe1A—C7A—C6A123.1 (3)C10B—Fe1B—C7B—C6B38.2 (3)
C8A—Fe1A—C7A—C6A119.1 (4)C4B—Fe1B—C7B—C6B121.6 (3)
C9A—Fe1A—C7A—C6A81.7 (3)C3B—Fe1B—C7B—C6B78.8 (3)
C2A—Fe1A—C7A—C6A165.7 (5)C9B—Fe1B—C7B—C6B82.8 (3)
C1A—Fe1A—C7A—C6A164.6 (3)C1B—Fe1B—C7B—C6B163.8 (6)
C3A—Fe1A—C7A—C6A50.9 (6)C5B—Fe1B—C7B—C6B163.2 (3)
C4A—Fe1A—C7A—C6A81.8 (3)C8B—Fe1B—C7B—C6B119.9 (4)
C10A—Fe1A—C7A—C6A38.1 (3)C2B—Fe1B—C7B—C6B45.2 (6)
C6A—C7A—C8A—C9A0.8 (5)C6B—C7B—C8B—C9B0.2 (5)
Fe1A—C7A—C8A—C9A59.0 (3)Fe1B—C7B—C8B—C9B58.9 (3)
C6A—C7A—C8A—Fe1A59.8 (3)C6B—C7B—C8B—Fe1B59.0 (3)
C5A—Fe1A—C8A—C7A79.5 (3)C10B—Fe1B—C8B—C7B81.6 (3)
C9A—Fe1A—C8A—C7A119.9 (4)C4B—Fe1B—C8B—C7B80.1 (3)
C2A—Fe1A—C8A—C7A161.9 (3)C6B—Fe1B—C8B—C7B37.4 (3)
C1A—Fe1A—C8A—C7A121.1 (3)C3B—Fe1B—C8B—C7B44.7 (6)
C3A—Fe1A—C8A—C7A168.8 (5)C9B—Fe1B—C8B—C7B120.1 (4)
C6A—Fe1A—C8A—C7A37.9 (3)C1B—Fe1B—C8B—C7B164.6 (3)
C4A—Fe1A—C8A—C7A49.0 (6)C5B—Fe1B—C8B—C7B122.9 (3)
C10A—Fe1A—C8A—C7A82.1 (3)C2B—Fe1B—C8B—C7B161.1 (6)
C5A—Fe1A—C8A—C9A160.6 (3)C10B—Fe1B—C8B—C9B38.5 (3)
C7A—Fe1A—C8A—C9A119.9 (4)C4B—Fe1B—C8B—C9B159.8 (3)
C2A—Fe1A—C8A—C9A78.1 (4)C6B—Fe1B—C8B—C9B82.7 (3)
C1A—Fe1A—C8A—C9A118.9 (3)C3B—Fe1B—C8B—C9B164.8 (5)
C3A—Fe1A—C8A—C9A48.8 (7)C1B—Fe1B—C8B—C9B75.3 (4)
C6A—Fe1A—C8A—C9A82.0 (3)C7B—Fe1B—C8B—C9B120.1 (4)
C4A—Fe1A—C8A—C9A168.9 (5)C5B—Fe1B—C8B—C9B117.0 (3)
C10A—Fe1A—C8A—C9A37.8 (3)C2B—Fe1B—C8B—C9B41.0 (8)
C7A—C8A—C9A—C10A1.3 (5)C7B—C8B—C9B—C10B0.0 (5)
Fe1A—C8A—C9A—C10A60.2 (3)Fe1B—C8B—C9B—C10B58.9 (3)
C7A—C8A—C9A—Fe1A58.9 (3)C7B—C8B—C9B—Fe1B59.0 (3)
C5A—Fe1A—C9A—C8A44.9 (6)C10B—Fe1B—C9B—C8B118.7 (4)
C7A—Fe1A—C9A—C8A37.3 (3)C4B—Fe1B—C9B—C8B48.1 (6)
C2A—Fe1A—C9A—C8A120.9 (3)C6B—Fe1B—C9B—C8B80.7 (3)
C1A—Fe1A—C9A—C8A78.3 (4)C3B—Fe1B—C9B—C8B162.0 (6)
C3A—Fe1A—C9A—C8A162.2 (3)C1B—Fe1B—C9B—C8B124.1 (3)
C6A—Fe1A—C9A—C8A81.3 (3)C7B—Fe1B—C9B—C8B37.0 (3)
C4A—Fe1A—C9A—C8A165.4 (6)C5B—Fe1B—C9B—C8B82.0 (3)
C10A—Fe1A—C9A—C8A118.9 (4)C2B—Fe1B—C9B—C8B165.4 (3)
C5A—Fe1A—C9A—C10A163.7 (5)C4B—Fe1B—C9B—C10B166.7 (5)
C7A—Fe1A—C9A—C10A81.6 (3)C6B—Fe1B—C9B—C10B38.0 (3)
C8A—Fe1A—C9A—C10A118.9 (4)C3B—Fe1B—C9B—C10B43.4 (7)
C2A—Fe1A—C9A—C10A120.2 (3)C1B—Fe1B—C9B—C10B117.3 (3)
C1A—Fe1A—C9A—C10A162.8 (3)C7B—Fe1B—C9B—C10B81.6 (3)
C3A—Fe1A—C9A—C10A78.9 (4)C5B—Fe1B—C9B—C10B159.4 (3)
C6A—Fe1A—C9A—C10A37.6 (3)C8B—Fe1B—C9B—C10B118.7 (4)
C4A—Fe1A—C9A—C10A46.6 (8)C2B—Fe1B—C9B—C10B75.9 (3)
C8A—C9A—C10A—C6A1.3 (5)C7B—C6B—C10B—C9B0.3 (5)
Fe1A—C9A—C10A—C6A58.4 (3)Fe1B—C6B—C10B—C9B60.0 (3)
C8A—C9A—C10A—C11A177.9 (4)C7B—C6B—C10B—C11B172.7 (4)
Fe1A—C9A—C10A—C11A122.4 (5)Fe1B—C6B—C10B—C11B113.0 (5)
C8A—C9A—C10A—Fe1A59.7 (3)C7B—C6B—C10B—Fe1B59.7 (3)
C7A—C6A—C10A—C9A0.8 (5)C8B—C9B—C10B—C6B0.2 (5)
Fe1A—C6A—C10A—C9A58.3 (3)Fe1B—C9B—C10B—C6B60.0 (3)
C7A—C6A—C10A—C11A178.4 (4)C8B—C9B—C10B—C11B172.8 (5)
Fe1A—C6A—C10A—C11A122.5 (5)Fe1B—C9B—C10B—C11B113.0 (5)
C7A—C6A—C10A—Fe1A59.1 (3)C8B—C9B—C10B—Fe1B59.8 (3)
C5A—Fe1A—C10A—C9A159.0 (6)C4B—Fe1B—C10B—C6B45.2 (7)
C7A—Fe1A—C10A—C9A81.8 (3)C3B—Fe1B—C10B—C6B76.9 (3)
C8A—Fe1A—C10A—C9A38.0 (3)C9B—Fe1B—C10B—C6B118.9 (4)
C2A—Fe1A—C10A—C9A78.5 (3)C1B—Fe1B—C10B—C6B159.5 (3)
C1A—Fe1A—C10A—C9A40.9 (6)C7B—Fe1B—C10B—C6B37.8 (3)
C3A—Fe1A—C10A—C9A121.4 (3)C5B—Fe1B—C10B—C6B168.5 (5)
C6A—Fe1A—C10A—C9A119.8 (4)C8B—Fe1B—C10B—C6B81.2 (3)
C4A—Fe1A—C10A—C9A164.0 (3)C2B—Fe1B—C10B—C6B117.8 (3)
C5A—Fe1A—C10A—C6A39.2 (7)C4B—Fe1B—C10B—C9B164.1 (6)
C7A—Fe1A—C10A—C6A38.0 (3)C6B—Fe1B—C10B—C9B118.9 (4)
C8A—Fe1A—C10A—C6A81.9 (3)C3B—Fe1B—C10B—C9B164.3 (3)
C9A—Fe1A—C10A—C6A119.8 (4)C1B—Fe1B—C10B—C9B81.6 (3)
C2A—Fe1A—C10A—C6A161.6 (3)C7B—Fe1B—C10B—C9B81.1 (3)
C1A—Fe1A—C10A—C6A160.8 (5)C5B—Fe1B—C10B—C9B49.6 (6)
C3A—Fe1A—C10A—C6A118.7 (3)C8B—Fe1B—C10B—C9B37.7 (3)
C4A—Fe1A—C10A—C6A76.2 (4)C2B—Fe1B—C10B—C9B123.4 (3)
C5A—Fe1A—C10A—C11A78.9 (8)C4B—Fe1B—C10B—C11B75.1 (8)
C7A—Fe1A—C10A—C11A156.0 (5)C6B—Fe1B—C10B—C11B120.4 (5)
C8A—Fe1A—C10A—C11A160.1 (5)C3B—Fe1B—C10B—C11B43.5 (5)
C9A—Fe1A—C10A—C11A122.1 (6)C9B—Fe1B—C10B—C11B120.8 (5)
C2A—Fe1A—C10A—C11A43.6 (5)C1B—Fe1B—C10B—C11B39.1 (5)
C1A—Fe1A—C10A—C11A81.2 (7)C7B—Fe1B—C10B—C11B158.2 (4)
C3A—Fe1A—C10A—C11A0.7 (5)C5B—Fe1B—C10B—C11B71.1 (7)
C6A—Fe1A—C10A—C11A118.0 (6)C8B—Fe1B—C10B—C11B158.4 (4)
C4A—Fe1A—C10A—C11A41.9 (5)C2B—Fe1B—C10B—C11B2.6 (4)
N2A—N1A—C11A—C10A179.9 (4)N2B—N1B—C11B—C10B171.3 (4)
C9A—C10A—C11A—N1A0.6 (8)C6B—C10B—C11B—N1B172.7 (5)
C6A—C10A—C11A—N1A178.5 (4)C9B—C10B—C11B—N1B15.5 (7)
Fe1A—C10A—C11A—N1A92.2 (5)Fe1B—C10B—C11B—N1B101.5 (5)
N1A—N2A—C12A—N3A1.0 (7)N1B—N2B—C12B—N3B10.6 (7)
N1A—N2A—C12A—S1A178.6 (3)N1B—N2B—C12B—S1B168.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···S1Ai0.862.663.370 (4)141
N3A—H3AC···S1Bii0.862.463.295 (4)165
N2B—H2BB···S1Aiii0.862.523.298 (4)151
N3B—H3BC···S1Biv0.862.473.323 (4)173
C7A—H7AA···Cg10.982.903.668 (6)136
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H8N3S)]
Mr287.16
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8390 (1), 12.7092 (3), 16.7675 (4)
α, β, γ (°)94.447 (2), 97.965 (2), 97.639 (2)
V3)1215.51 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.30 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.681, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
24408, 5589, 4024
Rint0.087
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.169, 1.07
No. of reflections5589
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···S1Ai0.86002.66003.370 (4)141.00
N3A—H3AC···S1Bii0.86002.46003.295 (4)165.00
N2B—H2BB···S1Aiii0.86002.52003.298 (4)151.00
N3B—H3BC···S1Biv0.86002.47003.323 (4)173.00
C7A—H7AA···Cg10.98002.90003.668 (6)136.00
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+2, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMariño, M., Gayoso, E., Antelo, J. M., Adrio, L. A., Fernańdez, J. J. & Vila, J. M. (2006). Polyhedron, 25, 1449–1456.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVikneswaran, M. R., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1524–m1525.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds